linux/arch/x86/mm/init.c
Mike Rapoport 3ecc68349b memblock: rename memblock_free to memblock_phys_free
Since memblock_free() operates on a physical range, make its name
reflect it and rename it to memblock_phys_free(), so it will be a
logical counterpart to memblock_phys_alloc().

The callers are updated with the below semantic patch:

    @@
    expression addr;
    expression size;
    @@
    - memblock_free(addr, size);
    + memblock_phys_free(addr, size);

Link: https://lkml.kernel.org/r/20210930185031.18648-6-rppt@kernel.org
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Juergen Gross <jgross@suse.com>
Cc: Shahab Vahedi <Shahab.Vahedi@synopsys.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-06 13:30:41 -07:00

1064 lines
30 KiB
C

#include <linux/gfp.h>
#include <linux/initrd.h>
#include <linux/ioport.h>
#include <linux/swap.h>
#include <linux/memblock.h>
#include <linux/swapfile.h>
#include <linux/swapops.h>
#include <linux/kmemleak.h>
#include <linux/sched/task.h>
#include <asm/set_memory.h>
#include <asm/e820/api.h>
#include <asm/init.h>
#include <asm/page.h>
#include <asm/page_types.h>
#include <asm/sections.h>
#include <asm/setup.h>
#include <asm/tlbflush.h>
#include <asm/tlb.h>
#include <asm/proto.h>
#include <asm/dma.h> /* for MAX_DMA_PFN */
#include <asm/microcode.h>
#include <asm/kaslr.h>
#include <asm/hypervisor.h>
#include <asm/cpufeature.h>
#include <asm/pti.h>
#include <asm/text-patching.h>
#include <asm/memtype.h>
/*
* We need to define the tracepoints somewhere, and tlb.c
* is only compiled when SMP=y.
*/
#define CREATE_TRACE_POINTS
#include <trace/events/tlb.h>
#include "mm_internal.h"
/*
* Tables translating between page_cache_type_t and pte encoding.
*
* The default values are defined statically as minimal supported mode;
* WC and WT fall back to UC-. pat_init() updates these values to support
* more cache modes, WC and WT, when it is safe to do so. See pat_init()
* for the details. Note, __early_ioremap() used during early boot-time
* takes pgprot_t (pte encoding) and does not use these tables.
*
* Index into __cachemode2pte_tbl[] is the cachemode.
*
* Index into __pte2cachemode_tbl[] are the caching attribute bits of the pte
* (_PAGE_PWT, _PAGE_PCD, _PAGE_PAT) at index bit positions 0, 1, 2.
*/
static uint16_t __cachemode2pte_tbl[_PAGE_CACHE_MODE_NUM] = {
[_PAGE_CACHE_MODE_WB ] = 0 | 0 ,
[_PAGE_CACHE_MODE_WC ] = 0 | _PAGE_PCD,
[_PAGE_CACHE_MODE_UC_MINUS] = 0 | _PAGE_PCD,
[_PAGE_CACHE_MODE_UC ] = _PAGE_PWT | _PAGE_PCD,
[_PAGE_CACHE_MODE_WT ] = 0 | _PAGE_PCD,
[_PAGE_CACHE_MODE_WP ] = 0 | _PAGE_PCD,
};
unsigned long cachemode2protval(enum page_cache_mode pcm)
{
if (likely(pcm == 0))
return 0;
return __cachemode2pte_tbl[pcm];
}
EXPORT_SYMBOL(cachemode2protval);
static uint8_t __pte2cachemode_tbl[8] = {
[__pte2cm_idx( 0 | 0 | 0 )] = _PAGE_CACHE_MODE_WB,
[__pte2cm_idx(_PAGE_PWT | 0 | 0 )] = _PAGE_CACHE_MODE_UC_MINUS,
[__pte2cm_idx( 0 | _PAGE_PCD | 0 )] = _PAGE_CACHE_MODE_UC_MINUS,
[__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | 0 )] = _PAGE_CACHE_MODE_UC,
[__pte2cm_idx( 0 | 0 | _PAGE_PAT)] = _PAGE_CACHE_MODE_WB,
[__pte2cm_idx(_PAGE_PWT | 0 | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
[__pte2cm_idx(0 | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
[__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC,
};
/* Check that the write-protect PAT entry is set for write-protect */
bool x86_has_pat_wp(void)
{
return __pte2cachemode_tbl[_PAGE_CACHE_MODE_WP] == _PAGE_CACHE_MODE_WP;
}
enum page_cache_mode pgprot2cachemode(pgprot_t pgprot)
{
unsigned long masked;
masked = pgprot_val(pgprot) & _PAGE_CACHE_MASK;
if (likely(masked == 0))
return 0;
return __pte2cachemode_tbl[__pte2cm_idx(masked)];
}
static unsigned long __initdata pgt_buf_start;
static unsigned long __initdata pgt_buf_end;
static unsigned long __initdata pgt_buf_top;
static unsigned long min_pfn_mapped;
static bool __initdata can_use_brk_pgt = true;
/*
* Pages returned are already directly mapped.
*
* Changing that is likely to break Xen, see commit:
*
* 279b706 x86,xen: introduce x86_init.mapping.pagetable_reserve
*
* for detailed information.
*/
__ref void *alloc_low_pages(unsigned int num)
{
unsigned long pfn;
int i;
if (after_bootmem) {
unsigned int order;
order = get_order((unsigned long)num << PAGE_SHIFT);
return (void *)__get_free_pages(GFP_ATOMIC | __GFP_ZERO, order);
}
if ((pgt_buf_end + num) > pgt_buf_top || !can_use_brk_pgt) {
unsigned long ret = 0;
if (min_pfn_mapped < max_pfn_mapped) {
ret = memblock_phys_alloc_range(
PAGE_SIZE * num, PAGE_SIZE,
min_pfn_mapped << PAGE_SHIFT,
max_pfn_mapped << PAGE_SHIFT);
}
if (!ret && can_use_brk_pgt)
ret = __pa(extend_brk(PAGE_SIZE * num, PAGE_SIZE));
if (!ret)
panic("alloc_low_pages: can not alloc memory");
pfn = ret >> PAGE_SHIFT;
} else {
pfn = pgt_buf_end;
pgt_buf_end += num;
}
for (i = 0; i < num; i++) {
void *adr;
adr = __va((pfn + i) << PAGE_SHIFT);
clear_page(adr);
}
return __va(pfn << PAGE_SHIFT);
}
/*
* By default need to be able to allocate page tables below PGD firstly for
* the 0-ISA_END_ADDRESS range and secondly for the initial PMD_SIZE mapping.
* With KASLR memory randomization, depending on the machine e820 memory and the
* PUD alignment, twice that many pages may be needed when KASLR memory
* randomization is enabled.
*/
#ifndef CONFIG_X86_5LEVEL
#define INIT_PGD_PAGE_TABLES 3
#else
#define INIT_PGD_PAGE_TABLES 4
#endif
#ifndef CONFIG_RANDOMIZE_MEMORY
#define INIT_PGD_PAGE_COUNT (2 * INIT_PGD_PAGE_TABLES)
#else
#define INIT_PGD_PAGE_COUNT (4 * INIT_PGD_PAGE_TABLES)
#endif
#define INIT_PGT_BUF_SIZE (INIT_PGD_PAGE_COUNT * PAGE_SIZE)
RESERVE_BRK(early_pgt_alloc, INIT_PGT_BUF_SIZE);
void __init early_alloc_pgt_buf(void)
{
unsigned long tables = INIT_PGT_BUF_SIZE;
phys_addr_t base;
base = __pa(extend_brk(tables, PAGE_SIZE));
pgt_buf_start = base >> PAGE_SHIFT;
pgt_buf_end = pgt_buf_start;
pgt_buf_top = pgt_buf_start + (tables >> PAGE_SHIFT);
}
int after_bootmem;
early_param_on_off("gbpages", "nogbpages", direct_gbpages, CONFIG_X86_DIRECT_GBPAGES);
struct map_range {
unsigned long start;
unsigned long end;
unsigned page_size_mask;
};
static int page_size_mask;
/*
* Save some of cr4 feature set we're using (e.g. Pentium 4MB
* enable and PPro Global page enable), so that any CPU's that boot
* up after us can get the correct flags. Invoked on the boot CPU.
*/
static inline void cr4_set_bits_and_update_boot(unsigned long mask)
{
mmu_cr4_features |= mask;
if (trampoline_cr4_features)
*trampoline_cr4_features = mmu_cr4_features;
cr4_set_bits(mask);
}
static void __init probe_page_size_mask(void)
{
/*
* For pagealloc debugging, identity mapping will use small pages.
* This will simplify cpa(), which otherwise needs to support splitting
* large pages into small in interrupt context, etc.
*/
if (boot_cpu_has(X86_FEATURE_PSE) && !debug_pagealloc_enabled())
page_size_mask |= 1 << PG_LEVEL_2M;
else
direct_gbpages = 0;
/* Enable PSE if available */
if (boot_cpu_has(X86_FEATURE_PSE))
cr4_set_bits_and_update_boot(X86_CR4_PSE);
/* Enable PGE if available */
__supported_pte_mask &= ~_PAGE_GLOBAL;
if (boot_cpu_has(X86_FEATURE_PGE)) {
cr4_set_bits_and_update_boot(X86_CR4_PGE);
__supported_pte_mask |= _PAGE_GLOBAL;
}
/* By the default is everything supported: */
__default_kernel_pte_mask = __supported_pte_mask;
/* Except when with PTI where the kernel is mostly non-Global: */
if (cpu_feature_enabled(X86_FEATURE_PTI))
__default_kernel_pte_mask &= ~_PAGE_GLOBAL;
/* Enable 1 GB linear kernel mappings if available: */
if (direct_gbpages && boot_cpu_has(X86_FEATURE_GBPAGES)) {
printk(KERN_INFO "Using GB pages for direct mapping\n");
page_size_mask |= 1 << PG_LEVEL_1G;
} else {
direct_gbpages = 0;
}
}
static void setup_pcid(void)
{
if (!IS_ENABLED(CONFIG_X86_64))
return;
if (!boot_cpu_has(X86_FEATURE_PCID))
return;
if (boot_cpu_has(X86_FEATURE_PGE)) {
/*
* This can't be cr4_set_bits_and_update_boot() -- the
* trampoline code can't handle CR4.PCIDE and it wouldn't
* do any good anyway. Despite the name,
* cr4_set_bits_and_update_boot() doesn't actually cause
* the bits in question to remain set all the way through
* the secondary boot asm.
*
* Instead, we brute-force it and set CR4.PCIDE manually in
* start_secondary().
*/
cr4_set_bits(X86_CR4_PCIDE);
/*
* INVPCID's single-context modes (2/3) only work if we set
* X86_CR4_PCIDE, *and* we INVPCID support. It's unusable
* on systems that have X86_CR4_PCIDE clear, or that have
* no INVPCID support at all.
*/
if (boot_cpu_has(X86_FEATURE_INVPCID))
setup_force_cpu_cap(X86_FEATURE_INVPCID_SINGLE);
} else {
/*
* flush_tlb_all(), as currently implemented, won't work if
* PCID is on but PGE is not. Since that combination
* doesn't exist on real hardware, there's no reason to try
* to fully support it, but it's polite to avoid corrupting
* data if we're on an improperly configured VM.
*/
setup_clear_cpu_cap(X86_FEATURE_PCID);
}
}
#ifdef CONFIG_X86_32
#define NR_RANGE_MR 3
#else /* CONFIG_X86_64 */
#define NR_RANGE_MR 5
#endif
static int __meminit save_mr(struct map_range *mr, int nr_range,
unsigned long start_pfn, unsigned long end_pfn,
unsigned long page_size_mask)
{
if (start_pfn < end_pfn) {
if (nr_range >= NR_RANGE_MR)
panic("run out of range for init_memory_mapping\n");
mr[nr_range].start = start_pfn<<PAGE_SHIFT;
mr[nr_range].end = end_pfn<<PAGE_SHIFT;
mr[nr_range].page_size_mask = page_size_mask;
nr_range++;
}
return nr_range;
}
/*
* adjust the page_size_mask for small range to go with
* big page size instead small one if nearby are ram too.
*/
static void __ref adjust_range_page_size_mask(struct map_range *mr,
int nr_range)
{
int i;
for (i = 0; i < nr_range; i++) {
if ((page_size_mask & (1<<PG_LEVEL_2M)) &&
!(mr[i].page_size_mask & (1<<PG_LEVEL_2M))) {
unsigned long start = round_down(mr[i].start, PMD_SIZE);
unsigned long end = round_up(mr[i].end, PMD_SIZE);
#ifdef CONFIG_X86_32
if ((end >> PAGE_SHIFT) > max_low_pfn)
continue;
#endif
if (memblock_is_region_memory(start, end - start))
mr[i].page_size_mask |= 1<<PG_LEVEL_2M;
}
if ((page_size_mask & (1<<PG_LEVEL_1G)) &&
!(mr[i].page_size_mask & (1<<PG_LEVEL_1G))) {
unsigned long start = round_down(mr[i].start, PUD_SIZE);
unsigned long end = round_up(mr[i].end, PUD_SIZE);
if (memblock_is_region_memory(start, end - start))
mr[i].page_size_mask |= 1<<PG_LEVEL_1G;
}
}
}
static const char *page_size_string(struct map_range *mr)
{
static const char str_1g[] = "1G";
static const char str_2m[] = "2M";
static const char str_4m[] = "4M";
static const char str_4k[] = "4k";
if (mr->page_size_mask & (1<<PG_LEVEL_1G))
return str_1g;
/*
* 32-bit without PAE has a 4M large page size.
* PG_LEVEL_2M is misnamed, but we can at least
* print out the right size in the string.
*/
if (IS_ENABLED(CONFIG_X86_32) &&
!IS_ENABLED(CONFIG_X86_PAE) &&
mr->page_size_mask & (1<<PG_LEVEL_2M))
return str_4m;
if (mr->page_size_mask & (1<<PG_LEVEL_2M))
return str_2m;
return str_4k;
}
static int __meminit split_mem_range(struct map_range *mr, int nr_range,
unsigned long start,
unsigned long end)
{
unsigned long start_pfn, end_pfn, limit_pfn;
unsigned long pfn;
int i;
limit_pfn = PFN_DOWN(end);
/* head if not big page alignment ? */
pfn = start_pfn = PFN_DOWN(start);
#ifdef CONFIG_X86_32
/*
* Don't use a large page for the first 2/4MB of memory
* because there are often fixed size MTRRs in there
* and overlapping MTRRs into large pages can cause
* slowdowns.
*/
if (pfn == 0)
end_pfn = PFN_DOWN(PMD_SIZE);
else
end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
#else /* CONFIG_X86_64 */
end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
#endif
if (end_pfn > limit_pfn)
end_pfn = limit_pfn;
if (start_pfn < end_pfn) {
nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
pfn = end_pfn;
}
/* big page (2M) range */
start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
#ifdef CONFIG_X86_32
end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
#else /* CONFIG_X86_64 */
end_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
if (end_pfn > round_down(limit_pfn, PFN_DOWN(PMD_SIZE)))
end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
#endif
if (start_pfn < end_pfn) {
nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
page_size_mask & (1<<PG_LEVEL_2M));
pfn = end_pfn;
}
#ifdef CONFIG_X86_64
/* big page (1G) range */
start_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
end_pfn = round_down(limit_pfn, PFN_DOWN(PUD_SIZE));
if (start_pfn < end_pfn) {
nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
page_size_mask &
((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G)));
pfn = end_pfn;
}
/* tail is not big page (1G) alignment */
start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
if (start_pfn < end_pfn) {
nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
page_size_mask & (1<<PG_LEVEL_2M));
pfn = end_pfn;
}
#endif
/* tail is not big page (2M) alignment */
start_pfn = pfn;
end_pfn = limit_pfn;
nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
if (!after_bootmem)
adjust_range_page_size_mask(mr, nr_range);
/* try to merge same page size and continuous */
for (i = 0; nr_range > 1 && i < nr_range - 1; i++) {
unsigned long old_start;
if (mr[i].end != mr[i+1].start ||
mr[i].page_size_mask != mr[i+1].page_size_mask)
continue;
/* move it */
old_start = mr[i].start;
memmove(&mr[i], &mr[i+1],
(nr_range - 1 - i) * sizeof(struct map_range));
mr[i--].start = old_start;
nr_range--;
}
for (i = 0; i < nr_range; i++)
pr_debug(" [mem %#010lx-%#010lx] page %s\n",
mr[i].start, mr[i].end - 1,
page_size_string(&mr[i]));
return nr_range;
}
struct range pfn_mapped[E820_MAX_ENTRIES];
int nr_pfn_mapped;
static void add_pfn_range_mapped(unsigned long start_pfn, unsigned long end_pfn)
{
nr_pfn_mapped = add_range_with_merge(pfn_mapped, E820_MAX_ENTRIES,
nr_pfn_mapped, start_pfn, end_pfn);
nr_pfn_mapped = clean_sort_range(pfn_mapped, E820_MAX_ENTRIES);
max_pfn_mapped = max(max_pfn_mapped, end_pfn);
if (start_pfn < (1UL<<(32-PAGE_SHIFT)))
max_low_pfn_mapped = max(max_low_pfn_mapped,
min(end_pfn, 1UL<<(32-PAGE_SHIFT)));
}
bool pfn_range_is_mapped(unsigned long start_pfn, unsigned long end_pfn)
{
int i;
for (i = 0; i < nr_pfn_mapped; i++)
if ((start_pfn >= pfn_mapped[i].start) &&
(end_pfn <= pfn_mapped[i].end))
return true;
return false;
}
/*
* Setup the direct mapping of the physical memory at PAGE_OFFSET.
* This runs before bootmem is initialized and gets pages directly from
* the physical memory. To access them they are temporarily mapped.
*/
unsigned long __ref init_memory_mapping(unsigned long start,
unsigned long end, pgprot_t prot)
{
struct map_range mr[NR_RANGE_MR];
unsigned long ret = 0;
int nr_range, i;
pr_debug("init_memory_mapping: [mem %#010lx-%#010lx]\n",
start, end - 1);
memset(mr, 0, sizeof(mr));
nr_range = split_mem_range(mr, 0, start, end);
for (i = 0; i < nr_range; i++)
ret = kernel_physical_mapping_init(mr[i].start, mr[i].end,
mr[i].page_size_mask,
prot);
add_pfn_range_mapped(start >> PAGE_SHIFT, ret >> PAGE_SHIFT);
return ret >> PAGE_SHIFT;
}
/*
* We need to iterate through the E820 memory map and create direct mappings
* for only E820_TYPE_RAM and E820_KERN_RESERVED regions. We cannot simply
* create direct mappings for all pfns from [0 to max_low_pfn) and
* [4GB to max_pfn) because of possible memory holes in high addresses
* that cannot be marked as UC by fixed/variable range MTRRs.
* Depending on the alignment of E820 ranges, this may possibly result
* in using smaller size (i.e. 4K instead of 2M or 1G) page tables.
*
* init_mem_mapping() calls init_range_memory_mapping() with big range.
* That range would have hole in the middle or ends, and only ram parts
* will be mapped in init_range_memory_mapping().
*/
static unsigned long __init init_range_memory_mapping(
unsigned long r_start,
unsigned long r_end)
{
unsigned long start_pfn, end_pfn;
unsigned long mapped_ram_size = 0;
int i;
for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
u64 start = clamp_val(PFN_PHYS(start_pfn), r_start, r_end);
u64 end = clamp_val(PFN_PHYS(end_pfn), r_start, r_end);
if (start >= end)
continue;
/*
* if it is overlapping with brk pgt, we need to
* alloc pgt buf from memblock instead.
*/
can_use_brk_pgt = max(start, (u64)pgt_buf_end<<PAGE_SHIFT) >=
min(end, (u64)pgt_buf_top<<PAGE_SHIFT);
init_memory_mapping(start, end, PAGE_KERNEL);
mapped_ram_size += end - start;
can_use_brk_pgt = true;
}
return mapped_ram_size;
}
static unsigned long __init get_new_step_size(unsigned long step_size)
{
/*
* Initial mapped size is PMD_SIZE (2M).
* We can not set step_size to be PUD_SIZE (1G) yet.
* In worse case, when we cross the 1G boundary, and
* PG_LEVEL_2M is not set, we will need 1+1+512 pages (2M + 8k)
* to map 1G range with PTE. Hence we use one less than the
* difference of page table level shifts.
*
* Don't need to worry about overflow in the top-down case, on 32bit,
* when step_size is 0, round_down() returns 0 for start, and that
* turns it into 0x100000000ULL.
* In the bottom-up case, round_up(x, 0) returns 0 though too, which
* needs to be taken into consideration by the code below.
*/
return step_size << (PMD_SHIFT - PAGE_SHIFT - 1);
}
/**
* memory_map_top_down - Map [map_start, map_end) top down
* @map_start: start address of the target memory range
* @map_end: end address of the target memory range
*
* This function will setup direct mapping for memory range
* [map_start, map_end) in top-down. That said, the page tables
* will be allocated at the end of the memory, and we map the
* memory in top-down.
*/
static void __init memory_map_top_down(unsigned long map_start,
unsigned long map_end)
{
unsigned long real_end, last_start;
unsigned long step_size;
unsigned long addr;
unsigned long mapped_ram_size = 0;
/*
* Systems that have many reserved areas near top of the memory,
* e.g. QEMU with less than 1G RAM and EFI enabled, or Xen, will
* require lots of 4K mappings which may exhaust pgt_buf.
* Start with top-most PMD_SIZE range aligned at PMD_SIZE to ensure
* there is enough mapped memory that can be allocated from
* memblock.
*/
addr = memblock_phys_alloc_range(PMD_SIZE, PMD_SIZE, map_start,
map_end);
memblock_phys_free(addr, PMD_SIZE);
real_end = addr + PMD_SIZE;
/* step_size need to be small so pgt_buf from BRK could cover it */
step_size = PMD_SIZE;
max_pfn_mapped = 0; /* will get exact value next */
min_pfn_mapped = real_end >> PAGE_SHIFT;
last_start = real_end;
/*
* We start from the top (end of memory) and go to the bottom.
* The memblock_find_in_range() gets us a block of RAM from the
* end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
* for page table.
*/
while (last_start > map_start) {
unsigned long start;
if (last_start > step_size) {
start = round_down(last_start - 1, step_size);
if (start < map_start)
start = map_start;
} else
start = map_start;
mapped_ram_size += init_range_memory_mapping(start,
last_start);
last_start = start;
min_pfn_mapped = last_start >> PAGE_SHIFT;
if (mapped_ram_size >= step_size)
step_size = get_new_step_size(step_size);
}
if (real_end < map_end)
init_range_memory_mapping(real_end, map_end);
}
/**
* memory_map_bottom_up - Map [map_start, map_end) bottom up
* @map_start: start address of the target memory range
* @map_end: end address of the target memory range
*
* This function will setup direct mapping for memory range
* [map_start, map_end) in bottom-up. Since we have limited the
* bottom-up allocation above the kernel, the page tables will
* be allocated just above the kernel and we map the memory
* in [map_start, map_end) in bottom-up.
*/
static void __init memory_map_bottom_up(unsigned long map_start,
unsigned long map_end)
{
unsigned long next, start;
unsigned long mapped_ram_size = 0;
/* step_size need to be small so pgt_buf from BRK could cover it */
unsigned long step_size = PMD_SIZE;
start = map_start;
min_pfn_mapped = start >> PAGE_SHIFT;
/*
* We start from the bottom (@map_start) and go to the top (@map_end).
* The memblock_find_in_range() gets us a block of RAM from the
* end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
* for page table.
*/
while (start < map_end) {
if (step_size && map_end - start > step_size) {
next = round_up(start + 1, step_size);
if (next > map_end)
next = map_end;
} else {
next = map_end;
}
mapped_ram_size += init_range_memory_mapping(start, next);
start = next;
if (mapped_ram_size >= step_size)
step_size = get_new_step_size(step_size);
}
}
/*
* The real mode trampoline, which is required for bootstrapping CPUs
* occupies only a small area under the low 1MB. See reserve_real_mode()
* for details.
*
* If KASLR is disabled the first PGD entry of the direct mapping is copied
* to map the real mode trampoline.
*
* If KASLR is enabled, copy only the PUD which covers the low 1MB
* area. This limits the randomization granularity to 1GB for both 4-level
* and 5-level paging.
*/
static void __init init_trampoline(void)
{
#ifdef CONFIG_X86_64
if (!kaslr_memory_enabled())
trampoline_pgd_entry = init_top_pgt[pgd_index(__PAGE_OFFSET)];
else
init_trampoline_kaslr();
#endif
}
void __init init_mem_mapping(void)
{
unsigned long end;
pti_check_boottime_disable();
probe_page_size_mask();
setup_pcid();
#ifdef CONFIG_X86_64
end = max_pfn << PAGE_SHIFT;
#else
end = max_low_pfn << PAGE_SHIFT;
#endif
/* the ISA range is always mapped regardless of memory holes */
init_memory_mapping(0, ISA_END_ADDRESS, PAGE_KERNEL);
/* Init the trampoline, possibly with KASLR memory offset */
init_trampoline();
/*
* If the allocation is in bottom-up direction, we setup direct mapping
* in bottom-up, otherwise we setup direct mapping in top-down.
*/
if (memblock_bottom_up()) {
unsigned long kernel_end = __pa_symbol(_end);
/*
* we need two separate calls here. This is because we want to
* allocate page tables above the kernel. So we first map
* [kernel_end, end) to make memory above the kernel be mapped
* as soon as possible. And then use page tables allocated above
* the kernel to map [ISA_END_ADDRESS, kernel_end).
*/
memory_map_bottom_up(kernel_end, end);
memory_map_bottom_up(ISA_END_ADDRESS, kernel_end);
} else {
memory_map_top_down(ISA_END_ADDRESS, end);
}
#ifdef CONFIG_X86_64
if (max_pfn > max_low_pfn) {
/* can we preserve max_low_pfn ?*/
max_low_pfn = max_pfn;
}
#else
early_ioremap_page_table_range_init();
#endif
load_cr3(swapper_pg_dir);
__flush_tlb_all();
x86_init.hyper.init_mem_mapping();
early_memtest(0, max_pfn_mapped << PAGE_SHIFT);
}
/*
* Initialize an mm_struct to be used during poking and a pointer to be used
* during patching.
*/
void __init poking_init(void)
{
spinlock_t *ptl;
pte_t *ptep;
poking_mm = copy_init_mm();
BUG_ON(!poking_mm);
/*
* Randomize the poking address, but make sure that the following page
* will be mapped at the same PMD. We need 2 pages, so find space for 3,
* and adjust the address if the PMD ends after the first one.
*/
poking_addr = TASK_UNMAPPED_BASE;
if (IS_ENABLED(CONFIG_RANDOMIZE_BASE))
poking_addr += (kaslr_get_random_long("Poking") & PAGE_MASK) %
(TASK_SIZE - TASK_UNMAPPED_BASE - 3 * PAGE_SIZE);
if (((poking_addr + PAGE_SIZE) & ~PMD_MASK) == 0)
poking_addr += PAGE_SIZE;
/*
* We need to trigger the allocation of the page-tables that will be
* needed for poking now. Later, poking may be performed in an atomic
* section, which might cause allocation to fail.
*/
ptep = get_locked_pte(poking_mm, poking_addr, &ptl);
BUG_ON(!ptep);
pte_unmap_unlock(ptep, ptl);
}
/*
* devmem_is_allowed() checks to see if /dev/mem access to a certain address
* is valid. The argument is a physical page number.
*
* On x86, access has to be given to the first megabyte of RAM because that
* area traditionally contains BIOS code and data regions used by X, dosemu,
* and similar apps. Since they map the entire memory range, the whole range
* must be allowed (for mapping), but any areas that would otherwise be
* disallowed are flagged as being "zero filled" instead of rejected.
* Access has to be given to non-kernel-ram areas as well, these contain the
* PCI mmio resources as well as potential bios/acpi data regions.
*/
int devmem_is_allowed(unsigned long pagenr)
{
if (region_intersects(PFN_PHYS(pagenr), PAGE_SIZE,
IORESOURCE_SYSTEM_RAM, IORES_DESC_NONE)
!= REGION_DISJOINT) {
/*
* For disallowed memory regions in the low 1MB range,
* request that the page be shown as all zeros.
*/
if (pagenr < 256)
return 2;
return 0;
}
/*
* This must follow RAM test, since System RAM is considered a
* restricted resource under CONFIG_STRICT_IOMEM.
*/
if (iomem_is_exclusive(pagenr << PAGE_SHIFT)) {
/* Low 1MB bypasses iomem restrictions. */
if (pagenr < 256)
return 1;
return 0;
}
return 1;
}
void free_init_pages(const char *what, unsigned long begin, unsigned long end)
{
unsigned long begin_aligned, end_aligned;
/* Make sure boundaries are page aligned */
begin_aligned = PAGE_ALIGN(begin);
end_aligned = end & PAGE_MASK;
if (WARN_ON(begin_aligned != begin || end_aligned != end)) {
begin = begin_aligned;
end = end_aligned;
}
if (begin >= end)
return;
/*
* If debugging page accesses then do not free this memory but
* mark them not present - any buggy init-section access will
* create a kernel page fault:
*/
if (debug_pagealloc_enabled()) {
pr_info("debug: unmapping init [mem %#010lx-%#010lx]\n",
begin, end - 1);
/*
* Inform kmemleak about the hole in the memory since the
* corresponding pages will be unmapped.
*/
kmemleak_free_part((void *)begin, end - begin);
set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
} else {
/*
* We just marked the kernel text read only above, now that
* we are going to free part of that, we need to make that
* writeable and non-executable first.
*/
set_memory_nx(begin, (end - begin) >> PAGE_SHIFT);
set_memory_rw(begin, (end - begin) >> PAGE_SHIFT);
free_reserved_area((void *)begin, (void *)end,
POISON_FREE_INITMEM, what);
}
}
/*
* begin/end can be in the direct map or the "high kernel mapping"
* used for the kernel image only. free_init_pages() will do the
* right thing for either kind of address.
*/
void free_kernel_image_pages(const char *what, void *begin, void *end)
{
unsigned long begin_ul = (unsigned long)begin;
unsigned long end_ul = (unsigned long)end;
unsigned long len_pages = (end_ul - begin_ul) >> PAGE_SHIFT;
free_init_pages(what, begin_ul, end_ul);
/*
* PTI maps some of the kernel into userspace. For performance,
* this includes some kernel areas that do not contain secrets.
* Those areas might be adjacent to the parts of the kernel image
* being freed, which may contain secrets. Remove the "high kernel
* image mapping" for these freed areas, ensuring they are not even
* potentially vulnerable to Meltdown regardless of the specific
* optimizations PTI is currently using.
*
* The "noalias" prevents unmapping the direct map alias which is
* needed to access the freed pages.
*
* This is only valid for 64bit kernels. 32bit has only one mapping
* which can't be treated in this way for obvious reasons.
*/
if (IS_ENABLED(CONFIG_X86_64) && cpu_feature_enabled(X86_FEATURE_PTI))
set_memory_np_noalias(begin_ul, len_pages);
}
void __ref free_initmem(void)
{
e820__reallocate_tables();
mem_encrypt_free_decrypted_mem();
free_kernel_image_pages("unused kernel image (initmem)",
&__init_begin, &__init_end);
}
#ifdef CONFIG_BLK_DEV_INITRD
void __init free_initrd_mem(unsigned long start, unsigned long end)
{
/*
* end could be not aligned, and We can not align that,
* decompressor could be confused by aligned initrd_end
* We already reserve the end partial page before in
* - i386_start_kernel()
* - x86_64_start_kernel()
* - relocate_initrd()
* So here We can do PAGE_ALIGN() safely to get partial page to be freed
*/
free_init_pages("initrd", start, PAGE_ALIGN(end));
}
#endif
/*
* Calculate the precise size of the DMA zone (first 16 MB of RAM),
* and pass it to the MM layer - to help it set zone watermarks more
* accurately.
*
* Done on 64-bit systems only for the time being, although 32-bit systems
* might benefit from this as well.
*/
void __init memblock_find_dma_reserve(void)
{
#ifdef CONFIG_X86_64
u64 nr_pages = 0, nr_free_pages = 0;
unsigned long start_pfn, end_pfn;
phys_addr_t start_addr, end_addr;
int i;
u64 u;
/*
* Iterate over all memory ranges (free and reserved ones alike),
* to calculate the total number of pages in the first 16 MB of RAM:
*/
nr_pages = 0;
for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
start_pfn = min(start_pfn, MAX_DMA_PFN);
end_pfn = min(end_pfn, MAX_DMA_PFN);
nr_pages += end_pfn - start_pfn;
}
/*
* Iterate over free memory ranges to calculate the number of free
* pages in the DMA zone, while not counting potential partial
* pages at the beginning or the end of the range:
*/
nr_free_pages = 0;
for_each_free_mem_range(u, NUMA_NO_NODE, MEMBLOCK_NONE, &start_addr, &end_addr, NULL) {
start_pfn = min_t(unsigned long, PFN_UP(start_addr), MAX_DMA_PFN);
end_pfn = min_t(unsigned long, PFN_DOWN(end_addr), MAX_DMA_PFN);
if (start_pfn < end_pfn)
nr_free_pages += end_pfn - start_pfn;
}
set_dma_reserve(nr_pages - nr_free_pages);
#endif
}
void __init zone_sizes_init(void)
{
unsigned long max_zone_pfns[MAX_NR_ZONES];
memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
#ifdef CONFIG_ZONE_DMA
max_zone_pfns[ZONE_DMA] = min(MAX_DMA_PFN, max_low_pfn);
#endif
#ifdef CONFIG_ZONE_DMA32
max_zone_pfns[ZONE_DMA32] = min(MAX_DMA32_PFN, max_low_pfn);
#endif
max_zone_pfns[ZONE_NORMAL] = max_low_pfn;
#ifdef CONFIG_HIGHMEM
max_zone_pfns[ZONE_HIGHMEM] = max_pfn;
#endif
free_area_init(max_zone_pfns);
}
__visible DEFINE_PER_CPU_ALIGNED(struct tlb_state, cpu_tlbstate) = {
.loaded_mm = &init_mm,
.next_asid = 1,
.cr4 = ~0UL, /* fail hard if we screw up cr4 shadow initialization */
};
void update_cache_mode_entry(unsigned entry, enum page_cache_mode cache)
{
/* entry 0 MUST be WB (hardwired to speed up translations) */
BUG_ON(!entry && cache != _PAGE_CACHE_MODE_WB);
__cachemode2pte_tbl[cache] = __cm_idx2pte(entry);
__pte2cachemode_tbl[entry] = cache;
}
#ifdef CONFIG_SWAP
unsigned long max_swapfile_size(void)
{
unsigned long pages;
pages = generic_max_swapfile_size();
if (boot_cpu_has_bug(X86_BUG_L1TF) && l1tf_mitigation != L1TF_MITIGATION_OFF) {
/* Limit the swap file size to MAX_PA/2 for L1TF workaround */
unsigned long long l1tf_limit = l1tf_pfn_limit();
/*
* We encode swap offsets also with 3 bits below those for pfn
* which makes the usable limit higher.
*/
#if CONFIG_PGTABLE_LEVELS > 2
l1tf_limit <<= PAGE_SHIFT - SWP_OFFSET_FIRST_BIT;
#endif
pages = min_t(unsigned long long, l1tf_limit, pages);
}
return pages;
}
#endif