mirror of
https://github.com/torvalds/linux.git
synced 2024-12-11 13:41:55 +00:00
2613eab119
This new selector keeps an exponential moving average of the service time for each path (losely defined as delta between start_io and end_io), and uses this along with the number of inflight requests to estimate future service time for a path. Since we don't have a prober to account for temporally slow paths, re-try "slow" paths every once in a while (num_paths * historical_service_time). To account for fast paths transitioning to slow, if a path has not completed any request within (num_paths * historical_service_time), limit the number of outstanding requests. To account for low volume situations where number of inflight IOs would be zero, the last finish time of each path is factored in. Signed-off-by: Khazhismel Kumykov <khazhy@google.com> Co-developed-by: Gabriel Krisman Bertazi <krisman@collabora.com> Signed-off-by: Gabriel Krisman Bertazi <krisman@collabora.com> Signed-off-by: Mike Snitzer <snitzer@redhat.com>
562 lines
14 KiB
C
562 lines
14 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Historical Service Time
|
|
*
|
|
* Keeps a time-weighted exponential moving average of the historical
|
|
* service time. Estimates future service time based on the historical
|
|
* service time and the number of outstanding requests.
|
|
*
|
|
* Marks paths stale if they have not finished within hst *
|
|
* num_paths. If a path is stale and unused, we will send a single
|
|
* request to probe in case the path has improved. This situation
|
|
* generally arises if the path is so much worse than others that it
|
|
* will never have the best estimated service time, or if the entire
|
|
* multipath device is unused. If a path is stale and in use, limit the
|
|
* number of requests it can receive with the assumption that the path
|
|
* has become degraded.
|
|
*
|
|
* To avoid repeatedly calculating exponents for time weighting, times
|
|
* are split into HST_WEIGHT_COUNT buckets each (1 >> HST_BUCKET_SHIFT)
|
|
* ns, and the weighting is pre-calculated.
|
|
*
|
|
*/
|
|
|
|
#include "dm.h"
|
|
#include "dm-path-selector.h"
|
|
|
|
#include <linux/blkdev.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/module.h>
|
|
|
|
|
|
#define DM_MSG_PREFIX "multipath historical-service-time"
|
|
#define HST_MIN_IO 1
|
|
#define HST_VERSION "0.1.1"
|
|
|
|
#define HST_FIXED_SHIFT 10 /* 10 bits of decimal precision */
|
|
#define HST_FIXED_MAX (ULLONG_MAX >> HST_FIXED_SHIFT)
|
|
#define HST_FIXED_1 (1 << HST_FIXED_SHIFT)
|
|
#define HST_FIXED_95 972
|
|
#define HST_MAX_INFLIGHT HST_FIXED_1
|
|
#define HST_BUCKET_SHIFT 24 /* Buckets are ~ 16ms */
|
|
#define HST_WEIGHT_COUNT 64ULL
|
|
|
|
struct selector {
|
|
struct list_head valid_paths;
|
|
struct list_head failed_paths;
|
|
int valid_count;
|
|
spinlock_t lock;
|
|
|
|
unsigned int weights[HST_WEIGHT_COUNT];
|
|
unsigned int threshold_multiplier;
|
|
};
|
|
|
|
struct path_info {
|
|
struct list_head list;
|
|
struct dm_path *path;
|
|
unsigned int repeat_count;
|
|
|
|
spinlock_t lock;
|
|
|
|
u64 historical_service_time; /* Fixed point */
|
|
|
|
u64 stale_after;
|
|
u64 last_finish;
|
|
|
|
u64 outstanding;
|
|
};
|
|
|
|
/**
|
|
* fixed_power - compute: x^n, in O(log n) time
|
|
*
|
|
* @x: base of the power
|
|
* @frac_bits: fractional bits of @x
|
|
* @n: power to raise @x to.
|
|
*
|
|
* By exploiting the relation between the definition of the natural power
|
|
* function: x^n := x*x*...*x (x multiplied by itself for n times), and
|
|
* the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
|
|
* (where: n_i \elem {0, 1}, the binary vector representing n),
|
|
* we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
|
|
* of course trivially computable in O(log_2 n), the length of our binary
|
|
* vector.
|
|
*
|
|
* (see: kernel/sched/loadavg.c)
|
|
*/
|
|
static u64 fixed_power(u64 x, unsigned int frac_bits, unsigned int n)
|
|
{
|
|
unsigned long result = 1UL << frac_bits;
|
|
|
|
if (n) {
|
|
for (;;) {
|
|
if (n & 1) {
|
|
result *= x;
|
|
result += 1UL << (frac_bits - 1);
|
|
result >>= frac_bits;
|
|
}
|
|
n >>= 1;
|
|
if (!n)
|
|
break;
|
|
x *= x;
|
|
x += 1UL << (frac_bits - 1);
|
|
x >>= frac_bits;
|
|
}
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* Calculate the next value of an exponential moving average
|
|
* a_1 = a_0 * e + a * (1 - e)
|
|
*
|
|
* @last: [0, ULLONG_MAX >> HST_FIXED_SHIFT]
|
|
* @next: [0, ULLONG_MAX >> HST_FIXED_SHIFT]
|
|
* @weight: [0, HST_FIXED_1]
|
|
*
|
|
* Note:
|
|
* To account for multiple periods in the same calculation,
|
|
* a_n = a_0 * e^n + a * (1 - e^n),
|
|
* so call fixed_ema(last, next, pow(weight, N))
|
|
*/
|
|
static u64 fixed_ema(u64 last, u64 next, u64 weight)
|
|
{
|
|
last *= weight;
|
|
last += next * (HST_FIXED_1 - weight);
|
|
last += 1ULL << (HST_FIXED_SHIFT - 1);
|
|
return last >> HST_FIXED_SHIFT;
|
|
}
|
|
|
|
static struct selector *alloc_selector(void)
|
|
{
|
|
struct selector *s = kmalloc(sizeof(*s), GFP_KERNEL);
|
|
|
|
if (s) {
|
|
INIT_LIST_HEAD(&s->valid_paths);
|
|
INIT_LIST_HEAD(&s->failed_paths);
|
|
spin_lock_init(&s->lock);
|
|
s->valid_count = 0;
|
|
}
|
|
|
|
return s;
|
|
}
|
|
|
|
/*
|
|
* Get the weight for a given time span.
|
|
*/
|
|
static u64 hst_weight(struct path_selector *ps, u64 delta)
|
|
{
|
|
struct selector *s = ps->context;
|
|
int bucket = clamp(delta >> HST_BUCKET_SHIFT, 0ULL,
|
|
HST_WEIGHT_COUNT - 1);
|
|
|
|
return s->weights[bucket];
|
|
}
|
|
|
|
/*
|
|
* Set up the weights array.
|
|
*
|
|
* weights[len-1] = 0
|
|
* weights[n] = base ^ (n + 1)
|
|
*/
|
|
static void hst_set_weights(struct path_selector *ps, unsigned int base)
|
|
{
|
|
struct selector *s = ps->context;
|
|
int i;
|
|
|
|
if (base >= HST_FIXED_1)
|
|
return;
|
|
|
|
for (i = 0; i < HST_WEIGHT_COUNT - 1; i++)
|
|
s->weights[i] = fixed_power(base, HST_FIXED_SHIFT, i + 1);
|
|
s->weights[HST_WEIGHT_COUNT - 1] = 0;
|
|
}
|
|
|
|
static int hst_create(struct path_selector *ps, unsigned int argc, char **argv)
|
|
{
|
|
struct selector *s;
|
|
unsigned int base_weight = HST_FIXED_95;
|
|
unsigned int threshold_multiplier = 0;
|
|
char dummy;
|
|
|
|
/*
|
|
* Arguments: [<base_weight> [<threshold_multiplier>]]
|
|
* <base_weight>: Base weight for ema [0, 1024) 10-bit fixed point. A
|
|
* value of 0 will completely ignore any history.
|
|
* If not given, default (HST_FIXED_95) is used.
|
|
* <threshold_multiplier>: Minimum threshold multiplier for paths to
|
|
* be considered different. That is, a path is
|
|
* considered different iff (p1 > N * p2) where p1
|
|
* is the path with higher service time. A threshold
|
|
* of 1 or 0 has no effect. Defaults to 0.
|
|
*/
|
|
if (argc > 2)
|
|
return -EINVAL;
|
|
|
|
if (argc && (sscanf(argv[0], "%u%c", &base_weight, &dummy) != 1 ||
|
|
base_weight >= HST_FIXED_1)) {
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (argc > 1 && (sscanf(argv[1], "%u%c",
|
|
&threshold_multiplier, &dummy) != 1)) {
|
|
return -EINVAL;
|
|
}
|
|
|
|
s = alloc_selector();
|
|
if (!s)
|
|
return -ENOMEM;
|
|
|
|
ps->context = s;
|
|
|
|
hst_set_weights(ps, base_weight);
|
|
s->threshold_multiplier = threshold_multiplier;
|
|
return 0;
|
|
}
|
|
|
|
static void free_paths(struct list_head *paths)
|
|
{
|
|
struct path_info *pi, *next;
|
|
|
|
list_for_each_entry_safe(pi, next, paths, list) {
|
|
list_del(&pi->list);
|
|
kfree(pi);
|
|
}
|
|
}
|
|
|
|
static void hst_destroy(struct path_selector *ps)
|
|
{
|
|
struct selector *s = ps->context;
|
|
|
|
free_paths(&s->valid_paths);
|
|
free_paths(&s->failed_paths);
|
|
kfree(s);
|
|
ps->context = NULL;
|
|
}
|
|
|
|
static int hst_status(struct path_selector *ps, struct dm_path *path,
|
|
status_type_t type, char *result, unsigned int maxlen)
|
|
{
|
|
unsigned int sz = 0;
|
|
struct path_info *pi;
|
|
|
|
if (!path) {
|
|
struct selector *s = ps->context;
|
|
|
|
DMEMIT("2 %u %u ", s->weights[0], s->threshold_multiplier);
|
|
} else {
|
|
pi = path->pscontext;
|
|
|
|
switch (type) {
|
|
case STATUSTYPE_INFO:
|
|
DMEMIT("%llu %llu %llu ", pi->historical_service_time,
|
|
pi->outstanding, pi->stale_after);
|
|
break;
|
|
case STATUSTYPE_TABLE:
|
|
DMEMIT("0 ");
|
|
break;
|
|
}
|
|
}
|
|
|
|
return sz;
|
|
}
|
|
|
|
static int hst_add_path(struct path_selector *ps, struct dm_path *path,
|
|
int argc, char **argv, char **error)
|
|
{
|
|
struct selector *s = ps->context;
|
|
struct path_info *pi;
|
|
unsigned int repeat_count = HST_MIN_IO;
|
|
char dummy;
|
|
unsigned long flags;
|
|
|
|
/*
|
|
* Arguments: [<repeat_count>]
|
|
* <repeat_count>: The number of I/Os before switching path.
|
|
* If not given, default (HST_MIN_IO) is used.
|
|
*/
|
|
if (argc > 1) {
|
|
*error = "historical-service-time ps: incorrect number of arguments";
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (argc && (sscanf(argv[0], "%u%c", &repeat_count, &dummy) != 1)) {
|
|
*error = "historical-service-time ps: invalid repeat count";
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* allocate the path */
|
|
pi = kmalloc(sizeof(*pi), GFP_KERNEL);
|
|
if (!pi) {
|
|
*error = "historical-service-time ps: Error allocating path context";
|
|
return -ENOMEM;
|
|
}
|
|
|
|
pi->path = path;
|
|
pi->repeat_count = repeat_count;
|
|
|
|
pi->historical_service_time = HST_FIXED_1;
|
|
|
|
spin_lock_init(&pi->lock);
|
|
pi->outstanding = 0;
|
|
|
|
pi->stale_after = 0;
|
|
pi->last_finish = 0;
|
|
|
|
path->pscontext = pi;
|
|
|
|
spin_lock_irqsave(&s->lock, flags);
|
|
list_add_tail(&pi->list, &s->valid_paths);
|
|
s->valid_count++;
|
|
spin_unlock_irqrestore(&s->lock, flags);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void hst_fail_path(struct path_selector *ps, struct dm_path *path)
|
|
{
|
|
struct selector *s = ps->context;
|
|
struct path_info *pi = path->pscontext;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&s->lock, flags);
|
|
list_move(&pi->list, &s->failed_paths);
|
|
s->valid_count--;
|
|
spin_unlock_irqrestore(&s->lock, flags);
|
|
}
|
|
|
|
static int hst_reinstate_path(struct path_selector *ps, struct dm_path *path)
|
|
{
|
|
struct selector *s = ps->context;
|
|
struct path_info *pi = path->pscontext;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&s->lock, flags);
|
|
list_move_tail(&pi->list, &s->valid_paths);
|
|
s->valid_count++;
|
|
spin_unlock_irqrestore(&s->lock, flags);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void hst_fill_compare(struct path_info *pi, u64 *hst,
|
|
u64 *out, u64 *stale)
|
|
{
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&pi->lock, flags);
|
|
*hst = pi->historical_service_time;
|
|
*out = pi->outstanding;
|
|
*stale = pi->stale_after;
|
|
spin_unlock_irqrestore(&pi->lock, flags);
|
|
}
|
|
|
|
/*
|
|
* Compare the estimated service time of 2 paths, pi1 and pi2,
|
|
* for the incoming I/O.
|
|
*
|
|
* Returns:
|
|
* < 0 : pi1 is better
|
|
* 0 : no difference between pi1 and pi2
|
|
* > 0 : pi2 is better
|
|
*
|
|
*/
|
|
static long long hst_compare(struct path_info *pi1, struct path_info *pi2,
|
|
u64 time_now, struct path_selector *ps)
|
|
{
|
|
struct selector *s = ps->context;
|
|
u64 hst1, hst2;
|
|
long long out1, out2, stale1, stale2;
|
|
int pi2_better, over_threshold;
|
|
|
|
hst_fill_compare(pi1, &hst1, &out1, &stale1);
|
|
hst_fill_compare(pi2, &hst2, &out2, &stale2);
|
|
|
|
/* Check here if estimated latency for two paths are too similar.
|
|
* If this is the case, we skip extra calculation and just compare
|
|
* outstanding requests. In this case, any unloaded paths will
|
|
* be preferred.
|
|
*/
|
|
if (hst1 > hst2)
|
|
over_threshold = hst1 > (s->threshold_multiplier * hst2);
|
|
else
|
|
over_threshold = hst2 > (s->threshold_multiplier * hst1);
|
|
|
|
if (!over_threshold)
|
|
return out1 - out2;
|
|
|
|
/*
|
|
* If an unloaded path is stale, choose it. If both paths are unloaded,
|
|
* choose path that is the most stale.
|
|
* (If one path is loaded, choose the other)
|
|
*/
|
|
if ((!out1 && stale1 < time_now) || (!out2 && stale2 < time_now) ||
|
|
(!out1 && !out2))
|
|
return (!out2 * stale1) - (!out1 * stale2);
|
|
|
|
/* Compare estimated service time. If outstanding is the same, we
|
|
* don't need to multiply
|
|
*/
|
|
if (out1 == out2) {
|
|
pi2_better = hst1 > hst2;
|
|
} else {
|
|
/* Potential overflow with out >= 1024 */
|
|
if (unlikely(out1 >= HST_MAX_INFLIGHT ||
|
|
out2 >= HST_MAX_INFLIGHT)) {
|
|
/* If over 1023 in-flights, we may overflow if hst
|
|
* is at max. (With this shift we still overflow at
|
|
* 1048576 in-flights, which is high enough).
|
|
*/
|
|
hst1 >>= HST_FIXED_SHIFT;
|
|
hst2 >>= HST_FIXED_SHIFT;
|
|
}
|
|
pi2_better = (1 + out1) * hst1 > (1 + out2) * hst2;
|
|
}
|
|
|
|
/* In the case that the 'winner' is stale, limit to equal usage. */
|
|
if (pi2_better) {
|
|
if (stale2 < time_now)
|
|
return out1 - out2;
|
|
return 1;
|
|
}
|
|
if (stale1 < time_now)
|
|
return out1 - out2;
|
|
return -1;
|
|
}
|
|
|
|
static struct dm_path *hst_select_path(struct path_selector *ps,
|
|
size_t nr_bytes)
|
|
{
|
|
struct selector *s = ps->context;
|
|
struct path_info *pi = NULL, *best = NULL;
|
|
u64 time_now = sched_clock();
|
|
struct dm_path *ret = NULL;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&s->lock, flags);
|
|
if (list_empty(&s->valid_paths))
|
|
goto out;
|
|
|
|
list_for_each_entry(pi, &s->valid_paths, list) {
|
|
if (!best || (hst_compare(pi, best, time_now, ps) < 0))
|
|
best = pi;
|
|
}
|
|
|
|
if (!best)
|
|
goto out;
|
|
|
|
/* Move last used path to end (least preferred in case of ties) */
|
|
list_move_tail(&best->list, &s->valid_paths);
|
|
|
|
ret = best->path;
|
|
|
|
out:
|
|
spin_unlock_irqrestore(&s->lock, flags);
|
|
return ret;
|
|
}
|
|
|
|
static int hst_start_io(struct path_selector *ps, struct dm_path *path,
|
|
size_t nr_bytes)
|
|
{
|
|
struct path_info *pi = path->pscontext;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&pi->lock, flags);
|
|
pi->outstanding++;
|
|
spin_unlock_irqrestore(&pi->lock, flags);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static u64 path_service_time(struct path_info *pi, u64 start_time)
|
|
{
|
|
u64 sched_now = ktime_get_ns();
|
|
|
|
/* if a previous disk request has finished after this IO was
|
|
* sent to the hardware, pretend the submission happened
|
|
* serially.
|
|
*/
|
|
if (time_after64(pi->last_finish, start_time))
|
|
start_time = pi->last_finish;
|
|
|
|
pi->last_finish = sched_now;
|
|
if (time_before64(sched_now, start_time))
|
|
return 0;
|
|
|
|
return sched_now - start_time;
|
|
}
|
|
|
|
static int hst_end_io(struct path_selector *ps, struct dm_path *path,
|
|
size_t nr_bytes, u64 start_time)
|
|
{
|
|
struct path_info *pi = path->pscontext;
|
|
struct selector *s = ps->context;
|
|
unsigned long flags;
|
|
u64 st;
|
|
|
|
spin_lock_irqsave(&pi->lock, flags);
|
|
|
|
st = path_service_time(pi, start_time);
|
|
pi->outstanding--;
|
|
pi->historical_service_time =
|
|
fixed_ema(pi->historical_service_time,
|
|
min(st * HST_FIXED_1, HST_FIXED_MAX),
|
|
hst_weight(ps, st));
|
|
|
|
/*
|
|
* On request end, mark path as fresh. If a path hasn't
|
|
* finished any requests within the fresh period, the estimated
|
|
* service time is considered too optimistic and we limit the
|
|
* maximum requests on that path.
|
|
*/
|
|
pi->stale_after = pi->last_finish +
|
|
(s->valid_count * (pi->historical_service_time >> HST_FIXED_SHIFT));
|
|
|
|
spin_unlock_irqrestore(&pi->lock, flags);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct path_selector_type hst_ps = {
|
|
.name = "historical-service-time",
|
|
.module = THIS_MODULE,
|
|
.table_args = 1,
|
|
.info_args = 3,
|
|
.create = hst_create,
|
|
.destroy = hst_destroy,
|
|
.status = hst_status,
|
|
.add_path = hst_add_path,
|
|
.fail_path = hst_fail_path,
|
|
.reinstate_path = hst_reinstate_path,
|
|
.select_path = hst_select_path,
|
|
.start_io = hst_start_io,
|
|
.end_io = hst_end_io,
|
|
};
|
|
|
|
static int __init dm_hst_init(void)
|
|
{
|
|
int r = dm_register_path_selector(&hst_ps);
|
|
|
|
if (r < 0)
|
|
DMERR("register failed %d", r);
|
|
|
|
DMINFO("version " HST_VERSION " loaded");
|
|
|
|
return r;
|
|
}
|
|
|
|
static void __exit dm_hst_exit(void)
|
|
{
|
|
int r = dm_unregister_path_selector(&hst_ps);
|
|
|
|
if (r < 0)
|
|
DMERR("unregister failed %d", r);
|
|
}
|
|
|
|
module_init(dm_hst_init);
|
|
module_exit(dm_hst_exit);
|
|
|
|
MODULE_DESCRIPTION(DM_NAME " measured service time oriented path selector");
|
|
MODULE_AUTHOR("Khazhismel Kumykov <khazhy@google.com>");
|
|
MODULE_LICENSE("GPL");
|