linux/fs/ext4/extents_status.c
Baokun Li 4a2d98447b ext4: using nofail preallocation in ext4_es_insert_delayed_block()
Similar to in ext4_es_remove_extent(), we use a no-fail preallocation
to avoid inconsistencies, except that here we may have to preallocate
two extent_status.

Suggested-by: Jan Kara <jack@suse.cz>
Signed-off-by: Baokun Li <libaokun1@huawei.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Link: https://lore.kernel.org/r/20230424033846.4732-8-libaokun1@huawei.com
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
2023-06-26 19:35:12 -04:00

2229 lines
61 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* fs/ext4/extents_status.c
*
* Written by Yongqiang Yang <xiaoqiangnk@gmail.com>
* Modified by
* Allison Henderson <achender@linux.vnet.ibm.com>
* Hugh Dickins <hughd@google.com>
* Zheng Liu <wenqing.lz@taobao.com>
*
* Ext4 extents status tree core functions.
*/
#include <linux/list_sort.h>
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
#include "ext4.h"
#include <trace/events/ext4.h>
/*
* According to previous discussion in Ext4 Developer Workshop, we
* will introduce a new structure called io tree to track all extent
* status in order to solve some problems that we have met
* (e.g. Reservation space warning), and provide extent-level locking.
* Delay extent tree is the first step to achieve this goal. It is
* original built by Yongqiang Yang. At that time it is called delay
* extent tree, whose goal is only track delayed extents in memory to
* simplify the implementation of fiemap and bigalloc, and introduce
* lseek SEEK_DATA/SEEK_HOLE support. That is why it is still called
* delay extent tree at the first commit. But for better understand
* what it does, it has been rename to extent status tree.
*
* Step1:
* Currently the first step has been done. All delayed extents are
* tracked in the tree. It maintains the delayed extent when a delayed
* allocation is issued, and the delayed extent is written out or
* invalidated. Therefore the implementation of fiemap and bigalloc
* are simplified, and SEEK_DATA/SEEK_HOLE are introduced.
*
* The following comment describes the implemenmtation of extent
* status tree and future works.
*
* Step2:
* In this step all extent status are tracked by extent status tree.
* Thus, we can first try to lookup a block mapping in this tree before
* finding it in extent tree. Hence, single extent cache can be removed
* because extent status tree can do a better job. Extents in status
* tree are loaded on-demand. Therefore, the extent status tree may not
* contain all of the extents in a file. Meanwhile we define a shrinker
* to reclaim memory from extent status tree because fragmented extent
* tree will make status tree cost too much memory. written/unwritten/-
* hole extents in the tree will be reclaimed by this shrinker when we
* are under high memory pressure. Delayed extents will not be
* reclimed because fiemap, bigalloc, and seek_data/hole need it.
*/
/*
* Extent status tree implementation for ext4.
*
*
* ==========================================================================
* Extent status tree tracks all extent status.
*
* 1. Why we need to implement extent status tree?
*
* Without extent status tree, ext4 identifies a delayed extent by looking
* up page cache, this has several deficiencies - complicated, buggy,
* and inefficient code.
*
* FIEMAP, SEEK_HOLE/DATA, bigalloc, and writeout all need to know if a
* block or a range of blocks are belonged to a delayed extent.
*
* Let us have a look at how they do without extent status tree.
* -- FIEMAP
* FIEMAP looks up page cache to identify delayed allocations from holes.
*
* -- SEEK_HOLE/DATA
* SEEK_HOLE/DATA has the same problem as FIEMAP.
*
* -- bigalloc
* bigalloc looks up page cache to figure out if a block is
* already under delayed allocation or not to determine whether
* quota reserving is needed for the cluster.
*
* -- writeout
* Writeout looks up whole page cache to see if a buffer is
* mapped, If there are not very many delayed buffers, then it is
* time consuming.
*
* With extent status tree implementation, FIEMAP, SEEK_HOLE/DATA,
* bigalloc and writeout can figure out if a block or a range of
* blocks is under delayed allocation(belonged to a delayed extent) or
* not by searching the extent tree.
*
*
* ==========================================================================
* 2. Ext4 extent status tree impelmentation
*
* -- extent
* A extent is a range of blocks which are contiguous logically and
* physically. Unlike extent in extent tree, this extent in ext4 is
* a in-memory struct, there is no corresponding on-disk data. There
* is no limit on length of extent, so an extent can contain as many
* blocks as they are contiguous logically and physically.
*
* -- extent status tree
* Every inode has an extent status tree and all allocation blocks
* are added to the tree with different status. The extent in the
* tree are ordered by logical block no.
*
* -- operations on a extent status tree
* There are three important operations on a delayed extent tree: find
* next extent, adding a extent(a range of blocks) and removing a extent.
*
* -- race on a extent status tree
* Extent status tree is protected by inode->i_es_lock.
*
* -- memory consumption
* Fragmented extent tree will make extent status tree cost too much
* memory. Hence, we will reclaim written/unwritten/hole extents from
* the tree under a heavy memory pressure.
*
*
* ==========================================================================
* 3. Performance analysis
*
* -- overhead
* 1. There is a cache extent for write access, so if writes are
* not very random, adding space operaions are in O(1) time.
*
* -- gain
* 2. Code is much simpler, more readable, more maintainable and
* more efficient.
*
*
* ==========================================================================
* 4. TODO list
*
* -- Refactor delayed space reservation
*
* -- Extent-level locking
*/
static struct kmem_cache *ext4_es_cachep;
static struct kmem_cache *ext4_pending_cachep;
static int __es_insert_extent(struct inode *inode, struct extent_status *newes,
struct extent_status *prealloc);
static int __es_remove_extent(struct inode *inode, ext4_lblk_t lblk,
ext4_lblk_t end, int *reserved,
struct extent_status *prealloc);
static int es_reclaim_extents(struct ext4_inode_info *ei, int *nr_to_scan);
static int __es_shrink(struct ext4_sb_info *sbi, int nr_to_scan,
struct ext4_inode_info *locked_ei);
static void __revise_pending(struct inode *inode, ext4_lblk_t lblk,
ext4_lblk_t len);
int __init ext4_init_es(void)
{
ext4_es_cachep = KMEM_CACHE(extent_status, SLAB_RECLAIM_ACCOUNT);
if (ext4_es_cachep == NULL)
return -ENOMEM;
return 0;
}
void ext4_exit_es(void)
{
kmem_cache_destroy(ext4_es_cachep);
}
void ext4_es_init_tree(struct ext4_es_tree *tree)
{
tree->root = RB_ROOT;
tree->cache_es = NULL;
}
#ifdef ES_DEBUG__
static void ext4_es_print_tree(struct inode *inode)
{
struct ext4_es_tree *tree;
struct rb_node *node;
printk(KERN_DEBUG "status extents for inode %lu:", inode->i_ino);
tree = &EXT4_I(inode)->i_es_tree;
node = rb_first(&tree->root);
while (node) {
struct extent_status *es;
es = rb_entry(node, struct extent_status, rb_node);
printk(KERN_DEBUG " [%u/%u) %llu %x",
es->es_lblk, es->es_len,
ext4_es_pblock(es), ext4_es_status(es));
node = rb_next(node);
}
printk(KERN_DEBUG "\n");
}
#else
#define ext4_es_print_tree(inode)
#endif
static inline ext4_lblk_t ext4_es_end(struct extent_status *es)
{
BUG_ON(es->es_lblk + es->es_len < es->es_lblk);
return es->es_lblk + es->es_len - 1;
}
/*
* search through the tree for an delayed extent with a given offset. If
* it can't be found, try to find next extent.
*/
static struct extent_status *__es_tree_search(struct rb_root *root,
ext4_lblk_t lblk)
{
struct rb_node *node = root->rb_node;
struct extent_status *es = NULL;
while (node) {
es = rb_entry(node, struct extent_status, rb_node);
if (lblk < es->es_lblk)
node = node->rb_left;
else if (lblk > ext4_es_end(es))
node = node->rb_right;
else
return es;
}
if (es && lblk < es->es_lblk)
return es;
if (es && lblk > ext4_es_end(es)) {
node = rb_next(&es->rb_node);
return node ? rb_entry(node, struct extent_status, rb_node) :
NULL;
}
return NULL;
}
/*
* ext4_es_find_extent_range - find extent with specified status within block
* range or next extent following block range in
* extents status tree
*
* @inode - file containing the range
* @matching_fn - pointer to function that matches extents with desired status
* @lblk - logical block defining start of range
* @end - logical block defining end of range
* @es - extent found, if any
*
* Find the first extent within the block range specified by @lblk and @end
* in the extents status tree that satisfies @matching_fn. If a match
* is found, it's returned in @es. If not, and a matching extent is found
* beyond the block range, it's returned in @es. If no match is found, an
* extent is returned in @es whose es_lblk, es_len, and es_pblk components
* are 0.
*/
static void __es_find_extent_range(struct inode *inode,
int (*matching_fn)(struct extent_status *es),
ext4_lblk_t lblk, ext4_lblk_t end,
struct extent_status *es)
{
struct ext4_es_tree *tree = NULL;
struct extent_status *es1 = NULL;
struct rb_node *node;
WARN_ON(es == NULL);
WARN_ON(end < lblk);
tree = &EXT4_I(inode)->i_es_tree;
/* see if the extent has been cached */
es->es_lblk = es->es_len = es->es_pblk = 0;
es1 = READ_ONCE(tree->cache_es);
if (es1 && in_range(lblk, es1->es_lblk, es1->es_len)) {
es_debug("%u cached by [%u/%u) %llu %x\n",
lblk, es1->es_lblk, es1->es_len,
ext4_es_pblock(es1), ext4_es_status(es1));
goto out;
}
es1 = __es_tree_search(&tree->root, lblk);
out:
if (es1 && !matching_fn(es1)) {
while ((node = rb_next(&es1->rb_node)) != NULL) {
es1 = rb_entry(node, struct extent_status, rb_node);
if (es1->es_lblk > end) {
es1 = NULL;
break;
}
if (matching_fn(es1))
break;
}
}
if (es1 && matching_fn(es1)) {
WRITE_ONCE(tree->cache_es, es1);
es->es_lblk = es1->es_lblk;
es->es_len = es1->es_len;
es->es_pblk = es1->es_pblk;
}
}
/*
* Locking for __es_find_extent_range() for external use
*/
void ext4_es_find_extent_range(struct inode *inode,
int (*matching_fn)(struct extent_status *es),
ext4_lblk_t lblk, ext4_lblk_t end,
struct extent_status *es)
{
if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
return;
trace_ext4_es_find_extent_range_enter(inode, lblk);
read_lock(&EXT4_I(inode)->i_es_lock);
__es_find_extent_range(inode, matching_fn, lblk, end, es);
read_unlock(&EXT4_I(inode)->i_es_lock);
trace_ext4_es_find_extent_range_exit(inode, es);
}
/*
* __es_scan_range - search block range for block with specified status
* in extents status tree
*
* @inode - file containing the range
* @matching_fn - pointer to function that matches extents with desired status
* @lblk - logical block defining start of range
* @end - logical block defining end of range
*
* Returns true if at least one block in the specified block range satisfies
* the criterion specified by @matching_fn, and false if not. If at least
* one extent has the specified status, then there is at least one block
* in the cluster with that status. Should only be called by code that has
* taken i_es_lock.
*/
static bool __es_scan_range(struct inode *inode,
int (*matching_fn)(struct extent_status *es),
ext4_lblk_t start, ext4_lblk_t end)
{
struct extent_status es;
__es_find_extent_range(inode, matching_fn, start, end, &es);
if (es.es_len == 0)
return false; /* no matching extent in the tree */
else if (es.es_lblk <= start &&
start < es.es_lblk + es.es_len)
return true;
else if (start <= es.es_lblk && es.es_lblk <= end)
return true;
else
return false;
}
/*
* Locking for __es_scan_range() for external use
*/
bool ext4_es_scan_range(struct inode *inode,
int (*matching_fn)(struct extent_status *es),
ext4_lblk_t lblk, ext4_lblk_t end)
{
bool ret;
if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
return false;
read_lock(&EXT4_I(inode)->i_es_lock);
ret = __es_scan_range(inode, matching_fn, lblk, end);
read_unlock(&EXT4_I(inode)->i_es_lock);
return ret;
}
/*
* __es_scan_clu - search cluster for block with specified status in
* extents status tree
*
* @inode - file containing the cluster
* @matching_fn - pointer to function that matches extents with desired status
* @lblk - logical block in cluster to be searched
*
* Returns true if at least one extent in the cluster containing @lblk
* satisfies the criterion specified by @matching_fn, and false if not. If at
* least one extent has the specified status, then there is at least one block
* in the cluster with that status. Should only be called by code that has
* taken i_es_lock.
*/
static bool __es_scan_clu(struct inode *inode,
int (*matching_fn)(struct extent_status *es),
ext4_lblk_t lblk)
{
struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
ext4_lblk_t lblk_start, lblk_end;
lblk_start = EXT4_LBLK_CMASK(sbi, lblk);
lblk_end = lblk_start + sbi->s_cluster_ratio - 1;
return __es_scan_range(inode, matching_fn, lblk_start, lblk_end);
}
/*
* Locking for __es_scan_clu() for external use
*/
bool ext4_es_scan_clu(struct inode *inode,
int (*matching_fn)(struct extent_status *es),
ext4_lblk_t lblk)
{
bool ret;
if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
return false;
read_lock(&EXT4_I(inode)->i_es_lock);
ret = __es_scan_clu(inode, matching_fn, lblk);
read_unlock(&EXT4_I(inode)->i_es_lock);
return ret;
}
static void ext4_es_list_add(struct inode *inode)
{
struct ext4_inode_info *ei = EXT4_I(inode);
struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
if (!list_empty(&ei->i_es_list))
return;
spin_lock(&sbi->s_es_lock);
if (list_empty(&ei->i_es_list)) {
list_add_tail(&ei->i_es_list, &sbi->s_es_list);
sbi->s_es_nr_inode++;
}
spin_unlock(&sbi->s_es_lock);
}
static void ext4_es_list_del(struct inode *inode)
{
struct ext4_inode_info *ei = EXT4_I(inode);
struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
spin_lock(&sbi->s_es_lock);
if (!list_empty(&ei->i_es_list)) {
list_del_init(&ei->i_es_list);
sbi->s_es_nr_inode--;
WARN_ON_ONCE(sbi->s_es_nr_inode < 0);
}
spin_unlock(&sbi->s_es_lock);
}
/*
* Returns true if we cannot fail to allocate memory for this extent_status
* entry and cannot reclaim it until its status changes.
*/
static inline bool ext4_es_must_keep(struct extent_status *es)
{
/* fiemap, bigalloc, and seek_data/hole need to use it. */
if (ext4_es_is_delayed(es))
return true;
return false;
}
static inline struct extent_status *__es_alloc_extent(bool nofail)
{
if (!nofail)
return kmem_cache_alloc(ext4_es_cachep, GFP_ATOMIC);
return kmem_cache_zalloc(ext4_es_cachep, GFP_KERNEL | __GFP_NOFAIL);
}
static void ext4_es_init_extent(struct inode *inode, struct extent_status *es,
ext4_lblk_t lblk, ext4_lblk_t len, ext4_fsblk_t pblk)
{
es->es_lblk = lblk;
es->es_len = len;
es->es_pblk = pblk;
/* We never try to reclaim a must kept extent, so we don't count it. */
if (!ext4_es_must_keep(es)) {
if (!EXT4_I(inode)->i_es_shk_nr++)
ext4_es_list_add(inode);
percpu_counter_inc(&EXT4_SB(inode->i_sb)->
s_es_stats.es_stats_shk_cnt);
}
EXT4_I(inode)->i_es_all_nr++;
percpu_counter_inc(&EXT4_SB(inode->i_sb)->s_es_stats.es_stats_all_cnt);
}
static inline void __es_free_extent(struct extent_status *es)
{
kmem_cache_free(ext4_es_cachep, es);
}
static void ext4_es_free_extent(struct inode *inode, struct extent_status *es)
{
EXT4_I(inode)->i_es_all_nr--;
percpu_counter_dec(&EXT4_SB(inode->i_sb)->s_es_stats.es_stats_all_cnt);
/* Decrease the shrink counter when we can reclaim the extent. */
if (!ext4_es_must_keep(es)) {
BUG_ON(EXT4_I(inode)->i_es_shk_nr == 0);
if (!--EXT4_I(inode)->i_es_shk_nr)
ext4_es_list_del(inode);
percpu_counter_dec(&EXT4_SB(inode->i_sb)->
s_es_stats.es_stats_shk_cnt);
}
__es_free_extent(es);
}
/*
* Check whether or not two extents can be merged
* Condition:
* - logical block number is contiguous
* - physical block number is contiguous
* - status is equal
*/
static int ext4_es_can_be_merged(struct extent_status *es1,
struct extent_status *es2)
{
if (ext4_es_type(es1) != ext4_es_type(es2))
return 0;
if (((__u64) es1->es_len) + es2->es_len > EXT_MAX_BLOCKS) {
pr_warn("ES assertion failed when merging extents. "
"The sum of lengths of es1 (%d) and es2 (%d) "
"is bigger than allowed file size (%d)\n",
es1->es_len, es2->es_len, EXT_MAX_BLOCKS);
WARN_ON(1);
return 0;
}
if (((__u64) es1->es_lblk) + es1->es_len != es2->es_lblk)
return 0;
if ((ext4_es_is_written(es1) || ext4_es_is_unwritten(es1)) &&
(ext4_es_pblock(es1) + es1->es_len == ext4_es_pblock(es2)))
return 1;
if (ext4_es_is_hole(es1))
return 1;
/* we need to check delayed extent is without unwritten status */
if (ext4_es_is_delayed(es1) && !ext4_es_is_unwritten(es1))
return 1;
return 0;
}
static struct extent_status *
ext4_es_try_to_merge_left(struct inode *inode, struct extent_status *es)
{
struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
struct extent_status *es1;
struct rb_node *node;
node = rb_prev(&es->rb_node);
if (!node)
return es;
es1 = rb_entry(node, struct extent_status, rb_node);
if (ext4_es_can_be_merged(es1, es)) {
es1->es_len += es->es_len;
if (ext4_es_is_referenced(es))
ext4_es_set_referenced(es1);
rb_erase(&es->rb_node, &tree->root);
ext4_es_free_extent(inode, es);
es = es1;
}
return es;
}
static struct extent_status *
ext4_es_try_to_merge_right(struct inode *inode, struct extent_status *es)
{
struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
struct extent_status *es1;
struct rb_node *node;
node = rb_next(&es->rb_node);
if (!node)
return es;
es1 = rb_entry(node, struct extent_status, rb_node);
if (ext4_es_can_be_merged(es, es1)) {
es->es_len += es1->es_len;
if (ext4_es_is_referenced(es1))
ext4_es_set_referenced(es);
rb_erase(node, &tree->root);
ext4_es_free_extent(inode, es1);
}
return es;
}
#ifdef ES_AGGRESSIVE_TEST
#include "ext4_extents.h" /* Needed when ES_AGGRESSIVE_TEST is defined */
static void ext4_es_insert_extent_ext_check(struct inode *inode,
struct extent_status *es)
{
struct ext4_ext_path *path = NULL;
struct ext4_extent *ex;
ext4_lblk_t ee_block;
ext4_fsblk_t ee_start;
unsigned short ee_len;
int depth, ee_status, es_status;
path = ext4_find_extent(inode, es->es_lblk, NULL, EXT4_EX_NOCACHE);
if (IS_ERR(path))
return;
depth = ext_depth(inode);
ex = path[depth].p_ext;
if (ex) {
ee_block = le32_to_cpu(ex->ee_block);
ee_start = ext4_ext_pblock(ex);
ee_len = ext4_ext_get_actual_len(ex);
ee_status = ext4_ext_is_unwritten(ex) ? 1 : 0;
es_status = ext4_es_is_unwritten(es) ? 1 : 0;
/*
* Make sure ex and es are not overlap when we try to insert
* a delayed/hole extent.
*/
if (!ext4_es_is_written(es) && !ext4_es_is_unwritten(es)) {
if (in_range(es->es_lblk, ee_block, ee_len)) {
pr_warn("ES insert assertion failed for "
"inode: %lu we can find an extent "
"at block [%d/%d/%llu/%c], but we "
"want to add a delayed/hole extent "
"[%d/%d/%llu/%x]\n",
inode->i_ino, ee_block, ee_len,
ee_start, ee_status ? 'u' : 'w',
es->es_lblk, es->es_len,
ext4_es_pblock(es), ext4_es_status(es));
}
goto out;
}
/*
* We don't check ee_block == es->es_lblk, etc. because es
* might be a part of whole extent, vice versa.
*/
if (es->es_lblk < ee_block ||
ext4_es_pblock(es) != ee_start + es->es_lblk - ee_block) {
pr_warn("ES insert assertion failed for inode: %lu "
"ex_status [%d/%d/%llu/%c] != "
"es_status [%d/%d/%llu/%c]\n", inode->i_ino,
ee_block, ee_len, ee_start,
ee_status ? 'u' : 'w', es->es_lblk, es->es_len,
ext4_es_pblock(es), es_status ? 'u' : 'w');
goto out;
}
if (ee_status ^ es_status) {
pr_warn("ES insert assertion failed for inode: %lu "
"ex_status [%d/%d/%llu/%c] != "
"es_status [%d/%d/%llu/%c]\n", inode->i_ino,
ee_block, ee_len, ee_start,
ee_status ? 'u' : 'w', es->es_lblk, es->es_len,
ext4_es_pblock(es), es_status ? 'u' : 'w');
}
} else {
/*
* We can't find an extent on disk. So we need to make sure
* that we don't want to add an written/unwritten extent.
*/
if (!ext4_es_is_delayed(es) && !ext4_es_is_hole(es)) {
pr_warn("ES insert assertion failed for inode: %lu "
"can't find an extent at block %d but we want "
"to add a written/unwritten extent "
"[%d/%d/%llu/%x]\n", inode->i_ino,
es->es_lblk, es->es_lblk, es->es_len,
ext4_es_pblock(es), ext4_es_status(es));
}
}
out:
ext4_free_ext_path(path);
}
static void ext4_es_insert_extent_ind_check(struct inode *inode,
struct extent_status *es)
{
struct ext4_map_blocks map;
int retval;
/*
* Here we call ext4_ind_map_blocks to lookup a block mapping because
* 'Indirect' structure is defined in indirect.c. So we couldn't
* access direct/indirect tree from outside. It is too dirty to define
* this function in indirect.c file.
*/
map.m_lblk = es->es_lblk;
map.m_len = es->es_len;
retval = ext4_ind_map_blocks(NULL, inode, &map, 0);
if (retval > 0) {
if (ext4_es_is_delayed(es) || ext4_es_is_hole(es)) {
/*
* We want to add a delayed/hole extent but this
* block has been allocated.
*/
pr_warn("ES insert assertion failed for inode: %lu "
"We can find blocks but we want to add a "
"delayed/hole extent [%d/%d/%llu/%x]\n",
inode->i_ino, es->es_lblk, es->es_len,
ext4_es_pblock(es), ext4_es_status(es));
return;
} else if (ext4_es_is_written(es)) {
if (retval != es->es_len) {
pr_warn("ES insert assertion failed for "
"inode: %lu retval %d != es_len %d\n",
inode->i_ino, retval, es->es_len);
return;
}
if (map.m_pblk != ext4_es_pblock(es)) {
pr_warn("ES insert assertion failed for "
"inode: %lu m_pblk %llu != "
"es_pblk %llu\n",
inode->i_ino, map.m_pblk,
ext4_es_pblock(es));
return;
}
} else {
/*
* We don't need to check unwritten extent because
* indirect-based file doesn't have it.
*/
BUG();
}
} else if (retval == 0) {
if (ext4_es_is_written(es)) {
pr_warn("ES insert assertion failed for inode: %lu "
"We can't find the block but we want to add "
"a written extent [%d/%d/%llu/%x]\n",
inode->i_ino, es->es_lblk, es->es_len,
ext4_es_pblock(es), ext4_es_status(es));
return;
}
}
}
static inline void ext4_es_insert_extent_check(struct inode *inode,
struct extent_status *es)
{
/*
* We don't need to worry about the race condition because
* caller takes i_data_sem locking.
*/
BUG_ON(!rwsem_is_locked(&EXT4_I(inode)->i_data_sem));
if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
ext4_es_insert_extent_ext_check(inode, es);
else
ext4_es_insert_extent_ind_check(inode, es);
}
#else
static inline void ext4_es_insert_extent_check(struct inode *inode,
struct extent_status *es)
{
}
#endif
static int __es_insert_extent(struct inode *inode, struct extent_status *newes,
struct extent_status *prealloc)
{
struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
struct rb_node **p = &tree->root.rb_node;
struct rb_node *parent = NULL;
struct extent_status *es;
while (*p) {
parent = *p;
es = rb_entry(parent, struct extent_status, rb_node);
if (newes->es_lblk < es->es_lblk) {
if (ext4_es_can_be_merged(newes, es)) {
/*
* Here we can modify es_lblk directly
* because it isn't overlapped.
*/
es->es_lblk = newes->es_lblk;
es->es_len += newes->es_len;
if (ext4_es_is_written(es) ||
ext4_es_is_unwritten(es))
ext4_es_store_pblock(es,
newes->es_pblk);
es = ext4_es_try_to_merge_left(inode, es);
goto out;
}
p = &(*p)->rb_left;
} else if (newes->es_lblk > ext4_es_end(es)) {
if (ext4_es_can_be_merged(es, newes)) {
es->es_len += newes->es_len;
es = ext4_es_try_to_merge_right(inode, es);
goto out;
}
p = &(*p)->rb_right;
} else {
BUG();
return -EINVAL;
}
}
if (prealloc)
es = prealloc;
else
es = __es_alloc_extent(false);
if (!es)
return -ENOMEM;
ext4_es_init_extent(inode, es, newes->es_lblk, newes->es_len,
newes->es_pblk);
rb_link_node(&es->rb_node, parent, p);
rb_insert_color(&es->rb_node, &tree->root);
out:
tree->cache_es = es;
return 0;
}
/*
* ext4_es_insert_extent() adds information to an inode's extent
* status tree.
*
* Return 0 on success, error code on failure.
*/
int ext4_es_insert_extent(struct inode *inode, ext4_lblk_t lblk,
ext4_lblk_t len, ext4_fsblk_t pblk,
unsigned int status)
{
struct extent_status newes;
ext4_lblk_t end = lblk + len - 1;
int err = 0;
struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
return 0;
es_debug("add [%u/%u) %llu %x to extent status tree of inode %lu\n",
lblk, len, pblk, status, inode->i_ino);
if (!len)
return 0;
BUG_ON(end < lblk);
if ((status & EXTENT_STATUS_DELAYED) &&
(status & EXTENT_STATUS_WRITTEN)) {
ext4_warning(inode->i_sb, "Inserting extent [%u/%u] as "
" delayed and written which can potentially "
" cause data loss.", lblk, len);
WARN_ON(1);
}
newes.es_lblk = lblk;
newes.es_len = len;
ext4_es_store_pblock_status(&newes, pblk, status);
trace_ext4_es_insert_extent(inode, &newes);
ext4_es_insert_extent_check(inode, &newes);
write_lock(&EXT4_I(inode)->i_es_lock);
err = __es_remove_extent(inode, lblk, end, NULL, NULL);
if (err != 0)
goto error;
retry:
err = __es_insert_extent(inode, &newes, NULL);
if (err == -ENOMEM && __es_shrink(EXT4_SB(inode->i_sb),
128, EXT4_I(inode)))
goto retry;
if (err == -ENOMEM && !ext4_es_must_keep(&newes))
err = 0;
if (sbi->s_cluster_ratio > 1 && test_opt(inode->i_sb, DELALLOC) &&
(status & EXTENT_STATUS_WRITTEN ||
status & EXTENT_STATUS_UNWRITTEN))
__revise_pending(inode, lblk, len);
error:
write_unlock(&EXT4_I(inode)->i_es_lock);
ext4_es_print_tree(inode);
return err;
}
/*
* ext4_es_cache_extent() inserts information into the extent status
* tree if and only if there isn't information about the range in
* question already.
*/
void ext4_es_cache_extent(struct inode *inode, ext4_lblk_t lblk,
ext4_lblk_t len, ext4_fsblk_t pblk,
unsigned int status)
{
struct extent_status *es;
struct extent_status newes;
ext4_lblk_t end = lblk + len - 1;
if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
return;
newes.es_lblk = lblk;
newes.es_len = len;
ext4_es_store_pblock_status(&newes, pblk, status);
trace_ext4_es_cache_extent(inode, &newes);
if (!len)
return;
BUG_ON(end < lblk);
write_lock(&EXT4_I(inode)->i_es_lock);
es = __es_tree_search(&EXT4_I(inode)->i_es_tree.root, lblk);
if (!es || es->es_lblk > end)
__es_insert_extent(inode, &newes, NULL);
write_unlock(&EXT4_I(inode)->i_es_lock);
}
/*
* ext4_es_lookup_extent() looks up an extent in extent status tree.
*
* ext4_es_lookup_extent is called by ext4_map_blocks/ext4_da_map_blocks.
*
* Return: 1 on found, 0 on not
*/
int ext4_es_lookup_extent(struct inode *inode, ext4_lblk_t lblk,
ext4_lblk_t *next_lblk,
struct extent_status *es)
{
struct ext4_es_tree *tree;
struct ext4_es_stats *stats;
struct extent_status *es1 = NULL;
struct rb_node *node;
int found = 0;
if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
return 0;
trace_ext4_es_lookup_extent_enter(inode, lblk);
es_debug("lookup extent in block %u\n", lblk);
tree = &EXT4_I(inode)->i_es_tree;
read_lock(&EXT4_I(inode)->i_es_lock);
/* find extent in cache firstly */
es->es_lblk = es->es_len = es->es_pblk = 0;
es1 = READ_ONCE(tree->cache_es);
if (es1 && in_range(lblk, es1->es_lblk, es1->es_len)) {
es_debug("%u cached by [%u/%u)\n",
lblk, es1->es_lblk, es1->es_len);
found = 1;
goto out;
}
node = tree->root.rb_node;
while (node) {
es1 = rb_entry(node, struct extent_status, rb_node);
if (lblk < es1->es_lblk)
node = node->rb_left;
else if (lblk > ext4_es_end(es1))
node = node->rb_right;
else {
found = 1;
break;
}
}
out:
stats = &EXT4_SB(inode->i_sb)->s_es_stats;
if (found) {
BUG_ON(!es1);
es->es_lblk = es1->es_lblk;
es->es_len = es1->es_len;
es->es_pblk = es1->es_pblk;
if (!ext4_es_is_referenced(es1))
ext4_es_set_referenced(es1);
percpu_counter_inc(&stats->es_stats_cache_hits);
if (next_lblk) {
node = rb_next(&es1->rb_node);
if (node) {
es1 = rb_entry(node, struct extent_status,
rb_node);
*next_lblk = es1->es_lblk;
} else
*next_lblk = 0;
}
} else {
percpu_counter_inc(&stats->es_stats_cache_misses);
}
read_unlock(&EXT4_I(inode)->i_es_lock);
trace_ext4_es_lookup_extent_exit(inode, es, found);
return found;
}
struct rsvd_count {
int ndelonly;
bool first_do_lblk_found;
ext4_lblk_t first_do_lblk;
ext4_lblk_t last_do_lblk;
struct extent_status *left_es;
bool partial;
ext4_lblk_t lclu;
};
/*
* init_rsvd - initialize reserved count data before removing block range
* in file from extent status tree
*
* @inode - file containing range
* @lblk - first block in range
* @es - pointer to first extent in range
* @rc - pointer to reserved count data
*
* Assumes es is not NULL
*/
static void init_rsvd(struct inode *inode, ext4_lblk_t lblk,
struct extent_status *es, struct rsvd_count *rc)
{
struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
struct rb_node *node;
rc->ndelonly = 0;
/*
* for bigalloc, note the first delonly block in the range has not
* been found, record the extent containing the block to the left of
* the region to be removed, if any, and note that there's no partial
* cluster to track
*/
if (sbi->s_cluster_ratio > 1) {
rc->first_do_lblk_found = false;
if (lblk > es->es_lblk) {
rc->left_es = es;
} else {
node = rb_prev(&es->rb_node);
rc->left_es = node ? rb_entry(node,
struct extent_status,
rb_node) : NULL;
}
rc->partial = false;
}
}
/*
* count_rsvd - count the clusters containing delayed and not unwritten
* (delonly) blocks in a range within an extent and add to
* the running tally in rsvd_count
*
* @inode - file containing extent
* @lblk - first block in range
* @len - length of range in blocks
* @es - pointer to extent containing clusters to be counted
* @rc - pointer to reserved count data
*
* Tracks partial clusters found at the beginning and end of extents so
* they aren't overcounted when they span adjacent extents
*/
static void count_rsvd(struct inode *inode, ext4_lblk_t lblk, long len,
struct extent_status *es, struct rsvd_count *rc)
{
struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
ext4_lblk_t i, end, nclu;
if (!ext4_es_is_delonly(es))
return;
WARN_ON(len <= 0);
if (sbi->s_cluster_ratio == 1) {
rc->ndelonly += (int) len;
return;
}
/* bigalloc */
i = (lblk < es->es_lblk) ? es->es_lblk : lblk;
end = lblk + (ext4_lblk_t) len - 1;
end = (end > ext4_es_end(es)) ? ext4_es_end(es) : end;
/* record the first block of the first delonly extent seen */
if (!rc->first_do_lblk_found) {
rc->first_do_lblk = i;
rc->first_do_lblk_found = true;
}
/* update the last lblk in the region seen so far */
rc->last_do_lblk = end;
/*
* if we're tracking a partial cluster and the current extent
* doesn't start with it, count it and stop tracking
*/
if (rc->partial && (rc->lclu != EXT4_B2C(sbi, i))) {
rc->ndelonly++;
rc->partial = false;
}
/*
* if the first cluster doesn't start on a cluster boundary but
* ends on one, count it
*/
if (EXT4_LBLK_COFF(sbi, i) != 0) {
if (end >= EXT4_LBLK_CFILL(sbi, i)) {
rc->ndelonly++;
rc->partial = false;
i = EXT4_LBLK_CFILL(sbi, i) + 1;
}
}
/*
* if the current cluster starts on a cluster boundary, count the
* number of whole delonly clusters in the extent
*/
if ((i + sbi->s_cluster_ratio - 1) <= end) {
nclu = (end - i + 1) >> sbi->s_cluster_bits;
rc->ndelonly += nclu;
i += nclu << sbi->s_cluster_bits;
}
/*
* start tracking a partial cluster if there's a partial at the end
* of the current extent and we're not already tracking one
*/
if (!rc->partial && i <= end) {
rc->partial = true;
rc->lclu = EXT4_B2C(sbi, i);
}
}
/*
* __pr_tree_search - search for a pending cluster reservation
*
* @root - root of pending reservation tree
* @lclu - logical cluster to search for
*
* Returns the pending reservation for the cluster identified by @lclu
* if found. If not, returns a reservation for the next cluster if any,
* and if not, returns NULL.
*/
static struct pending_reservation *__pr_tree_search(struct rb_root *root,
ext4_lblk_t lclu)
{
struct rb_node *node = root->rb_node;
struct pending_reservation *pr = NULL;
while (node) {
pr = rb_entry(node, struct pending_reservation, rb_node);
if (lclu < pr->lclu)
node = node->rb_left;
else if (lclu > pr->lclu)
node = node->rb_right;
else
return pr;
}
if (pr && lclu < pr->lclu)
return pr;
if (pr && lclu > pr->lclu) {
node = rb_next(&pr->rb_node);
return node ? rb_entry(node, struct pending_reservation,
rb_node) : NULL;
}
return NULL;
}
/*
* get_rsvd - calculates and returns the number of cluster reservations to be
* released when removing a block range from the extent status tree
* and releases any pending reservations within the range
*
* @inode - file containing block range
* @end - last block in range
* @right_es - pointer to extent containing next block beyond end or NULL
* @rc - pointer to reserved count data
*
* The number of reservations to be released is equal to the number of
* clusters containing delayed and not unwritten (delonly) blocks within
* the range, minus the number of clusters still containing delonly blocks
* at the ends of the range, and minus the number of pending reservations
* within the range.
*/
static unsigned int get_rsvd(struct inode *inode, ext4_lblk_t end,
struct extent_status *right_es,
struct rsvd_count *rc)
{
struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
struct pending_reservation *pr;
struct ext4_pending_tree *tree = &EXT4_I(inode)->i_pending_tree;
struct rb_node *node;
ext4_lblk_t first_lclu, last_lclu;
bool left_delonly, right_delonly, count_pending;
struct extent_status *es;
if (sbi->s_cluster_ratio > 1) {
/* count any remaining partial cluster */
if (rc->partial)
rc->ndelonly++;
if (rc->ndelonly == 0)
return 0;
first_lclu = EXT4_B2C(sbi, rc->first_do_lblk);
last_lclu = EXT4_B2C(sbi, rc->last_do_lblk);
/*
* decrease the delonly count by the number of clusters at the
* ends of the range that still contain delonly blocks -
* these clusters still need to be reserved
*/
left_delonly = right_delonly = false;
es = rc->left_es;
while (es && ext4_es_end(es) >=
EXT4_LBLK_CMASK(sbi, rc->first_do_lblk)) {
if (ext4_es_is_delonly(es)) {
rc->ndelonly--;
left_delonly = true;
break;
}
node = rb_prev(&es->rb_node);
if (!node)
break;
es = rb_entry(node, struct extent_status, rb_node);
}
if (right_es && (!left_delonly || first_lclu != last_lclu)) {
if (end < ext4_es_end(right_es)) {
es = right_es;
} else {
node = rb_next(&right_es->rb_node);
es = node ? rb_entry(node, struct extent_status,
rb_node) : NULL;
}
while (es && es->es_lblk <=
EXT4_LBLK_CFILL(sbi, rc->last_do_lblk)) {
if (ext4_es_is_delonly(es)) {
rc->ndelonly--;
right_delonly = true;
break;
}
node = rb_next(&es->rb_node);
if (!node)
break;
es = rb_entry(node, struct extent_status,
rb_node);
}
}
/*
* Determine the block range that should be searched for
* pending reservations, if any. Clusters on the ends of the
* original removed range containing delonly blocks are
* excluded. They've already been accounted for and it's not
* possible to determine if an associated pending reservation
* should be released with the information available in the
* extents status tree.
*/
if (first_lclu == last_lclu) {
if (left_delonly | right_delonly)
count_pending = false;
else
count_pending = true;
} else {
if (left_delonly)
first_lclu++;
if (right_delonly)
last_lclu--;
if (first_lclu <= last_lclu)
count_pending = true;
else
count_pending = false;
}
/*
* a pending reservation found between first_lclu and last_lclu
* represents an allocated cluster that contained at least one
* delonly block, so the delonly total must be reduced by one
* for each pending reservation found and released
*/
if (count_pending) {
pr = __pr_tree_search(&tree->root, first_lclu);
while (pr && pr->lclu <= last_lclu) {
rc->ndelonly--;
node = rb_next(&pr->rb_node);
rb_erase(&pr->rb_node, &tree->root);
kmem_cache_free(ext4_pending_cachep, pr);
if (!node)
break;
pr = rb_entry(node, struct pending_reservation,
rb_node);
}
}
}
return rc->ndelonly;
}
/*
* __es_remove_extent - removes block range from extent status tree
*
* @inode - file containing range
* @lblk - first block in range
* @end - last block in range
* @reserved - number of cluster reservations released
* @prealloc - pre-allocated es to avoid memory allocation failures
*
* If @reserved is not NULL and delayed allocation is enabled, counts
* block/cluster reservations freed by removing range and if bigalloc
* enabled cancels pending reservations as needed. Returns 0 on success,
* error code on failure.
*/
static int __es_remove_extent(struct inode *inode, ext4_lblk_t lblk,
ext4_lblk_t end, int *reserved,
struct extent_status *prealloc)
{
struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
struct rb_node *node;
struct extent_status *es;
struct extent_status orig_es;
ext4_lblk_t len1, len2;
ext4_fsblk_t block;
int err = 0;
bool count_reserved = true;
struct rsvd_count rc;
if (reserved == NULL || !test_opt(inode->i_sb, DELALLOC))
count_reserved = false;
es = __es_tree_search(&tree->root, lblk);
if (!es)
goto out;
if (es->es_lblk > end)
goto out;
/* Simply invalidate cache_es. */
tree->cache_es = NULL;
if (count_reserved)
init_rsvd(inode, lblk, es, &rc);
orig_es.es_lblk = es->es_lblk;
orig_es.es_len = es->es_len;
orig_es.es_pblk = es->es_pblk;
len1 = lblk > es->es_lblk ? lblk - es->es_lblk : 0;
len2 = ext4_es_end(es) > end ? ext4_es_end(es) - end : 0;
if (len1 > 0)
es->es_len = len1;
if (len2 > 0) {
if (len1 > 0) {
struct extent_status newes;
newes.es_lblk = end + 1;
newes.es_len = len2;
block = 0x7FDEADBEEFULL;
if (ext4_es_is_written(&orig_es) ||
ext4_es_is_unwritten(&orig_es))
block = ext4_es_pblock(&orig_es) +
orig_es.es_len - len2;
ext4_es_store_pblock_status(&newes, block,
ext4_es_status(&orig_es));
err = __es_insert_extent(inode, &newes, prealloc);
if (err) {
if (!ext4_es_must_keep(&newes))
return 0;
es->es_lblk = orig_es.es_lblk;
es->es_len = orig_es.es_len;
goto out;
}
} else {
es->es_lblk = end + 1;
es->es_len = len2;
if (ext4_es_is_written(es) ||
ext4_es_is_unwritten(es)) {
block = orig_es.es_pblk + orig_es.es_len - len2;
ext4_es_store_pblock(es, block);
}
}
if (count_reserved)
count_rsvd(inode, lblk, orig_es.es_len - len1 - len2,
&orig_es, &rc);
goto out_get_reserved;
}
if (len1 > 0) {
if (count_reserved)
count_rsvd(inode, lblk, orig_es.es_len - len1,
&orig_es, &rc);
node = rb_next(&es->rb_node);
if (node)
es = rb_entry(node, struct extent_status, rb_node);
else
es = NULL;
}
while (es && ext4_es_end(es) <= end) {
if (count_reserved)
count_rsvd(inode, es->es_lblk, es->es_len, es, &rc);
node = rb_next(&es->rb_node);
rb_erase(&es->rb_node, &tree->root);
ext4_es_free_extent(inode, es);
if (!node) {
es = NULL;
break;
}
es = rb_entry(node, struct extent_status, rb_node);
}
if (es && es->es_lblk < end + 1) {
ext4_lblk_t orig_len = es->es_len;
len1 = ext4_es_end(es) - end;
if (count_reserved)
count_rsvd(inode, es->es_lblk, orig_len - len1,
es, &rc);
es->es_lblk = end + 1;
es->es_len = len1;
if (ext4_es_is_written(es) || ext4_es_is_unwritten(es)) {
block = es->es_pblk + orig_len - len1;
ext4_es_store_pblock(es, block);
}
}
out_get_reserved:
if (count_reserved)
*reserved = get_rsvd(inode, end, es, &rc);
out:
return err;
}
/*
* ext4_es_remove_extent - removes block range from extent status tree
*
* @inode - file containing range
* @lblk - first block in range
* @len - number of blocks to remove
*
* Reduces block/cluster reservation count and for bigalloc cancels pending
* reservations as needed. Returns 0 on success, error code on failure.
*/
int ext4_es_remove_extent(struct inode *inode, ext4_lblk_t lblk,
ext4_lblk_t len)
{
ext4_lblk_t end;
int err = 0;
int reserved = 0;
struct extent_status *es = NULL;
if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
return 0;
trace_ext4_es_remove_extent(inode, lblk, len);
es_debug("remove [%u/%u) from extent status tree of inode %lu\n",
lblk, len, inode->i_ino);
if (!len)
return err;
end = lblk + len - 1;
BUG_ON(end < lblk);
retry:
if (err && !es)
es = __es_alloc_extent(true);
/*
* ext4_clear_inode() depends on us taking i_es_lock unconditionally
* so that we are sure __es_shrink() is done with the inode before it
* is reclaimed.
*/
write_lock(&EXT4_I(inode)->i_es_lock);
err = __es_remove_extent(inode, lblk, end, &reserved, es);
if (es && !es->es_len)
__es_free_extent(es);
write_unlock(&EXT4_I(inode)->i_es_lock);
if (err)
goto retry;
ext4_es_print_tree(inode);
ext4_da_release_space(inode, reserved);
return 0;
}
static int __es_shrink(struct ext4_sb_info *sbi, int nr_to_scan,
struct ext4_inode_info *locked_ei)
{
struct ext4_inode_info *ei;
struct ext4_es_stats *es_stats;
ktime_t start_time;
u64 scan_time;
int nr_to_walk;
int nr_shrunk = 0;
int retried = 0, nr_skipped = 0;
es_stats = &sbi->s_es_stats;
start_time = ktime_get();
retry:
spin_lock(&sbi->s_es_lock);
nr_to_walk = sbi->s_es_nr_inode;
while (nr_to_walk-- > 0) {
if (list_empty(&sbi->s_es_list)) {
spin_unlock(&sbi->s_es_lock);
goto out;
}
ei = list_first_entry(&sbi->s_es_list, struct ext4_inode_info,
i_es_list);
/* Move the inode to the tail */
list_move_tail(&ei->i_es_list, &sbi->s_es_list);
/*
* Normally we try hard to avoid shrinking precached inodes,
* but we will as a last resort.
*/
if (!retried && ext4_test_inode_state(&ei->vfs_inode,
EXT4_STATE_EXT_PRECACHED)) {
nr_skipped++;
continue;
}
if (ei == locked_ei || !write_trylock(&ei->i_es_lock)) {
nr_skipped++;
continue;
}
/*
* Now we hold i_es_lock which protects us from inode reclaim
* freeing inode under us
*/
spin_unlock(&sbi->s_es_lock);
nr_shrunk += es_reclaim_extents(ei, &nr_to_scan);
write_unlock(&ei->i_es_lock);
if (nr_to_scan <= 0)
goto out;
spin_lock(&sbi->s_es_lock);
}
spin_unlock(&sbi->s_es_lock);
/*
* If we skipped any inodes, and we weren't able to make any
* forward progress, try again to scan precached inodes.
*/
if ((nr_shrunk == 0) && nr_skipped && !retried) {
retried++;
goto retry;
}
if (locked_ei && nr_shrunk == 0)
nr_shrunk = es_reclaim_extents(locked_ei, &nr_to_scan);
out:
scan_time = ktime_to_ns(ktime_sub(ktime_get(), start_time));
if (likely(es_stats->es_stats_scan_time))
es_stats->es_stats_scan_time = (scan_time +
es_stats->es_stats_scan_time*3) / 4;
else
es_stats->es_stats_scan_time = scan_time;
if (scan_time > es_stats->es_stats_max_scan_time)
es_stats->es_stats_max_scan_time = scan_time;
if (likely(es_stats->es_stats_shrunk))
es_stats->es_stats_shrunk = (nr_shrunk +
es_stats->es_stats_shrunk*3) / 4;
else
es_stats->es_stats_shrunk = nr_shrunk;
trace_ext4_es_shrink(sbi->s_sb, nr_shrunk, scan_time,
nr_skipped, retried);
return nr_shrunk;
}
static unsigned long ext4_es_count(struct shrinker *shrink,
struct shrink_control *sc)
{
unsigned long nr;
struct ext4_sb_info *sbi;
sbi = container_of(shrink, struct ext4_sb_info, s_es_shrinker);
nr = percpu_counter_read_positive(&sbi->s_es_stats.es_stats_shk_cnt);
trace_ext4_es_shrink_count(sbi->s_sb, sc->nr_to_scan, nr);
return nr;
}
static unsigned long ext4_es_scan(struct shrinker *shrink,
struct shrink_control *sc)
{
struct ext4_sb_info *sbi = container_of(shrink,
struct ext4_sb_info, s_es_shrinker);
int nr_to_scan = sc->nr_to_scan;
int ret, nr_shrunk;
ret = percpu_counter_read_positive(&sbi->s_es_stats.es_stats_shk_cnt);
trace_ext4_es_shrink_scan_enter(sbi->s_sb, nr_to_scan, ret);
nr_shrunk = __es_shrink(sbi, nr_to_scan, NULL);
ret = percpu_counter_read_positive(&sbi->s_es_stats.es_stats_shk_cnt);
trace_ext4_es_shrink_scan_exit(sbi->s_sb, nr_shrunk, ret);
return nr_shrunk;
}
int ext4_seq_es_shrinker_info_show(struct seq_file *seq, void *v)
{
struct ext4_sb_info *sbi = EXT4_SB((struct super_block *) seq->private);
struct ext4_es_stats *es_stats = &sbi->s_es_stats;
struct ext4_inode_info *ei, *max = NULL;
unsigned int inode_cnt = 0;
if (v != SEQ_START_TOKEN)
return 0;
/* here we just find an inode that has the max nr. of objects */
spin_lock(&sbi->s_es_lock);
list_for_each_entry(ei, &sbi->s_es_list, i_es_list) {
inode_cnt++;
if (max && max->i_es_all_nr < ei->i_es_all_nr)
max = ei;
else if (!max)
max = ei;
}
spin_unlock(&sbi->s_es_lock);
seq_printf(seq, "stats:\n %lld objects\n %lld reclaimable objects\n",
percpu_counter_sum_positive(&es_stats->es_stats_all_cnt),
percpu_counter_sum_positive(&es_stats->es_stats_shk_cnt));
seq_printf(seq, " %lld/%lld cache hits/misses\n",
percpu_counter_sum_positive(&es_stats->es_stats_cache_hits),
percpu_counter_sum_positive(&es_stats->es_stats_cache_misses));
if (inode_cnt)
seq_printf(seq, " %d inodes on list\n", inode_cnt);
seq_printf(seq, "average:\n %llu us scan time\n",
div_u64(es_stats->es_stats_scan_time, 1000));
seq_printf(seq, " %lu shrunk objects\n", es_stats->es_stats_shrunk);
if (inode_cnt)
seq_printf(seq,
"maximum:\n %lu inode (%u objects, %u reclaimable)\n"
" %llu us max scan time\n",
max->vfs_inode.i_ino, max->i_es_all_nr, max->i_es_shk_nr,
div_u64(es_stats->es_stats_max_scan_time, 1000));
return 0;
}
int ext4_es_register_shrinker(struct ext4_sb_info *sbi)
{
int err;
/* Make sure we have enough bits for physical block number */
BUILD_BUG_ON(ES_SHIFT < 48);
INIT_LIST_HEAD(&sbi->s_es_list);
sbi->s_es_nr_inode = 0;
spin_lock_init(&sbi->s_es_lock);
sbi->s_es_stats.es_stats_shrunk = 0;
err = percpu_counter_init(&sbi->s_es_stats.es_stats_cache_hits, 0,
GFP_KERNEL);
if (err)
return err;
err = percpu_counter_init(&sbi->s_es_stats.es_stats_cache_misses, 0,
GFP_KERNEL);
if (err)
goto err1;
sbi->s_es_stats.es_stats_scan_time = 0;
sbi->s_es_stats.es_stats_max_scan_time = 0;
err = percpu_counter_init(&sbi->s_es_stats.es_stats_all_cnt, 0, GFP_KERNEL);
if (err)
goto err2;
err = percpu_counter_init(&sbi->s_es_stats.es_stats_shk_cnt, 0, GFP_KERNEL);
if (err)
goto err3;
sbi->s_es_shrinker.scan_objects = ext4_es_scan;
sbi->s_es_shrinker.count_objects = ext4_es_count;
sbi->s_es_shrinker.seeks = DEFAULT_SEEKS;
err = register_shrinker(&sbi->s_es_shrinker, "ext4-es:%s",
sbi->s_sb->s_id);
if (err)
goto err4;
return 0;
err4:
percpu_counter_destroy(&sbi->s_es_stats.es_stats_shk_cnt);
err3:
percpu_counter_destroy(&sbi->s_es_stats.es_stats_all_cnt);
err2:
percpu_counter_destroy(&sbi->s_es_stats.es_stats_cache_misses);
err1:
percpu_counter_destroy(&sbi->s_es_stats.es_stats_cache_hits);
return err;
}
void ext4_es_unregister_shrinker(struct ext4_sb_info *sbi)
{
percpu_counter_destroy(&sbi->s_es_stats.es_stats_cache_hits);
percpu_counter_destroy(&sbi->s_es_stats.es_stats_cache_misses);
percpu_counter_destroy(&sbi->s_es_stats.es_stats_all_cnt);
percpu_counter_destroy(&sbi->s_es_stats.es_stats_shk_cnt);
unregister_shrinker(&sbi->s_es_shrinker);
}
/*
* Shrink extents in given inode from ei->i_es_shrink_lblk till end. Scan at
* most *nr_to_scan extents, update *nr_to_scan accordingly.
*
* Return 0 if we hit end of tree / interval, 1 if we exhausted nr_to_scan.
* Increment *nr_shrunk by the number of reclaimed extents. Also update
* ei->i_es_shrink_lblk to where we should continue scanning.
*/
static int es_do_reclaim_extents(struct ext4_inode_info *ei, ext4_lblk_t end,
int *nr_to_scan, int *nr_shrunk)
{
struct inode *inode = &ei->vfs_inode;
struct ext4_es_tree *tree = &ei->i_es_tree;
struct extent_status *es;
struct rb_node *node;
es = __es_tree_search(&tree->root, ei->i_es_shrink_lblk);
if (!es)
goto out_wrap;
while (*nr_to_scan > 0) {
if (es->es_lblk > end) {
ei->i_es_shrink_lblk = end + 1;
return 0;
}
(*nr_to_scan)--;
node = rb_next(&es->rb_node);
if (ext4_es_must_keep(es))
goto next;
if (ext4_es_is_referenced(es)) {
ext4_es_clear_referenced(es);
goto next;
}
rb_erase(&es->rb_node, &tree->root);
ext4_es_free_extent(inode, es);
(*nr_shrunk)++;
next:
if (!node)
goto out_wrap;
es = rb_entry(node, struct extent_status, rb_node);
}
ei->i_es_shrink_lblk = es->es_lblk;
return 1;
out_wrap:
ei->i_es_shrink_lblk = 0;
return 0;
}
static int es_reclaim_extents(struct ext4_inode_info *ei, int *nr_to_scan)
{
struct inode *inode = &ei->vfs_inode;
int nr_shrunk = 0;
ext4_lblk_t start = ei->i_es_shrink_lblk;
static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
DEFAULT_RATELIMIT_BURST);
if (ei->i_es_shk_nr == 0)
return 0;
if (ext4_test_inode_state(inode, EXT4_STATE_EXT_PRECACHED) &&
__ratelimit(&_rs))
ext4_warning(inode->i_sb, "forced shrink of precached extents");
if (!es_do_reclaim_extents(ei, EXT_MAX_BLOCKS, nr_to_scan, &nr_shrunk) &&
start != 0)
es_do_reclaim_extents(ei, start - 1, nr_to_scan, &nr_shrunk);
ei->i_es_tree.cache_es = NULL;
return nr_shrunk;
}
/*
* Called to support EXT4_IOC_CLEAR_ES_CACHE. We can only remove
* discretionary entries from the extent status cache. (Some entries
* must be present for proper operations.)
*/
void ext4_clear_inode_es(struct inode *inode)
{
struct ext4_inode_info *ei = EXT4_I(inode);
struct extent_status *es;
struct ext4_es_tree *tree;
struct rb_node *node;
write_lock(&ei->i_es_lock);
tree = &EXT4_I(inode)->i_es_tree;
tree->cache_es = NULL;
node = rb_first(&tree->root);
while (node) {
es = rb_entry(node, struct extent_status, rb_node);
node = rb_next(node);
if (!ext4_es_must_keep(es)) {
rb_erase(&es->rb_node, &tree->root);
ext4_es_free_extent(inode, es);
}
}
ext4_clear_inode_state(inode, EXT4_STATE_EXT_PRECACHED);
write_unlock(&ei->i_es_lock);
}
#ifdef ES_DEBUG__
static void ext4_print_pending_tree(struct inode *inode)
{
struct ext4_pending_tree *tree;
struct rb_node *node;
struct pending_reservation *pr;
printk(KERN_DEBUG "pending reservations for inode %lu:", inode->i_ino);
tree = &EXT4_I(inode)->i_pending_tree;
node = rb_first(&tree->root);
while (node) {
pr = rb_entry(node, struct pending_reservation, rb_node);
printk(KERN_DEBUG " %u", pr->lclu);
node = rb_next(node);
}
printk(KERN_DEBUG "\n");
}
#else
#define ext4_print_pending_tree(inode)
#endif
int __init ext4_init_pending(void)
{
ext4_pending_cachep = KMEM_CACHE(pending_reservation, SLAB_RECLAIM_ACCOUNT);
if (ext4_pending_cachep == NULL)
return -ENOMEM;
return 0;
}
void ext4_exit_pending(void)
{
kmem_cache_destroy(ext4_pending_cachep);
}
void ext4_init_pending_tree(struct ext4_pending_tree *tree)
{
tree->root = RB_ROOT;
}
/*
* __get_pending - retrieve a pointer to a pending reservation
*
* @inode - file containing the pending cluster reservation
* @lclu - logical cluster of interest
*
* Returns a pointer to a pending reservation if it's a member of
* the set, and NULL if not. Must be called holding i_es_lock.
*/
static struct pending_reservation *__get_pending(struct inode *inode,
ext4_lblk_t lclu)
{
struct ext4_pending_tree *tree;
struct rb_node *node;
struct pending_reservation *pr = NULL;
tree = &EXT4_I(inode)->i_pending_tree;
node = (&tree->root)->rb_node;
while (node) {
pr = rb_entry(node, struct pending_reservation, rb_node);
if (lclu < pr->lclu)
node = node->rb_left;
else if (lclu > pr->lclu)
node = node->rb_right;
else if (lclu == pr->lclu)
return pr;
}
return NULL;
}
/*
* __insert_pending - adds a pending cluster reservation to the set of
* pending reservations
*
* @inode - file containing the cluster
* @lblk - logical block in the cluster to be added
*
* Returns 0 on successful insertion and -ENOMEM on failure. If the
* pending reservation is already in the set, returns successfully.
*/
static int __insert_pending(struct inode *inode, ext4_lblk_t lblk)
{
struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
struct ext4_pending_tree *tree = &EXT4_I(inode)->i_pending_tree;
struct rb_node **p = &tree->root.rb_node;
struct rb_node *parent = NULL;
struct pending_reservation *pr;
ext4_lblk_t lclu;
int ret = 0;
lclu = EXT4_B2C(sbi, lblk);
/* search to find parent for insertion */
while (*p) {
parent = *p;
pr = rb_entry(parent, struct pending_reservation, rb_node);
if (lclu < pr->lclu) {
p = &(*p)->rb_left;
} else if (lclu > pr->lclu) {
p = &(*p)->rb_right;
} else {
/* pending reservation already inserted */
goto out;
}
}
pr = kmem_cache_alloc(ext4_pending_cachep, GFP_ATOMIC);
if (pr == NULL) {
ret = -ENOMEM;
goto out;
}
pr->lclu = lclu;
rb_link_node(&pr->rb_node, parent, p);
rb_insert_color(&pr->rb_node, &tree->root);
out:
return ret;
}
/*
* __remove_pending - removes a pending cluster reservation from the set
* of pending reservations
*
* @inode - file containing the cluster
* @lblk - logical block in the pending cluster reservation to be removed
*
* Returns successfully if pending reservation is not a member of the set.
*/
static void __remove_pending(struct inode *inode, ext4_lblk_t lblk)
{
struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
struct pending_reservation *pr;
struct ext4_pending_tree *tree;
pr = __get_pending(inode, EXT4_B2C(sbi, lblk));
if (pr != NULL) {
tree = &EXT4_I(inode)->i_pending_tree;
rb_erase(&pr->rb_node, &tree->root);
kmem_cache_free(ext4_pending_cachep, pr);
}
}
/*
* ext4_remove_pending - removes a pending cluster reservation from the set
* of pending reservations
*
* @inode - file containing the cluster
* @lblk - logical block in the pending cluster reservation to be removed
*
* Locking for external use of __remove_pending.
*/
void ext4_remove_pending(struct inode *inode, ext4_lblk_t lblk)
{
struct ext4_inode_info *ei = EXT4_I(inode);
write_lock(&ei->i_es_lock);
__remove_pending(inode, lblk);
write_unlock(&ei->i_es_lock);
}
/*
* ext4_is_pending - determine whether a cluster has a pending reservation
* on it
*
* @inode - file containing the cluster
* @lblk - logical block in the cluster
*
* Returns true if there's a pending reservation for the cluster in the
* set of pending reservations, and false if not.
*/
bool ext4_is_pending(struct inode *inode, ext4_lblk_t lblk)
{
struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
struct ext4_inode_info *ei = EXT4_I(inode);
bool ret;
read_lock(&ei->i_es_lock);
ret = (bool)(__get_pending(inode, EXT4_B2C(sbi, lblk)) != NULL);
read_unlock(&ei->i_es_lock);
return ret;
}
/*
* ext4_es_insert_delayed_block - adds a delayed block to the extents status
* tree, adding a pending reservation where
* needed
*
* @inode - file containing the newly added block
* @lblk - logical block to be added
* @allocated - indicates whether a physical cluster has been allocated for
* the logical cluster that contains the block
*
* Returns 0 on success, negative error code on failure.
*/
int ext4_es_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk,
bool allocated)
{
struct extent_status newes;
int err1 = 0;
int err2 = 0;
struct extent_status *es1 = NULL;
struct extent_status *es2 = NULL;
if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
return 0;
es_debug("add [%u/1) delayed to extent status tree of inode %lu\n",
lblk, inode->i_ino);
newes.es_lblk = lblk;
newes.es_len = 1;
ext4_es_store_pblock_status(&newes, ~0, EXTENT_STATUS_DELAYED);
trace_ext4_es_insert_delayed_block(inode, &newes, allocated);
ext4_es_insert_extent_check(inode, &newes);
retry:
if (err1 && !es1)
es1 = __es_alloc_extent(true);
if ((err1 || err2) && !es2)
es2 = __es_alloc_extent(true);
write_lock(&EXT4_I(inode)->i_es_lock);
err1 = __es_remove_extent(inode, lblk, lblk, NULL, es1);
if (err1 != 0)
goto error;
err2 = __es_insert_extent(inode, &newes, es2);
if (err2 != 0)
goto error;
if (allocated)
__insert_pending(inode, lblk);
/* es is pre-allocated but not used, free it. */
if (es1 && !es1->es_len)
__es_free_extent(es1);
if (es2 && !es2->es_len)
__es_free_extent(es2);
error:
write_unlock(&EXT4_I(inode)->i_es_lock);
if (err1 || err2)
goto retry;
ext4_es_print_tree(inode);
ext4_print_pending_tree(inode);
return 0;
}
/*
* __es_delayed_clu - count number of clusters containing blocks that
* are delayed only
*
* @inode - file containing block range
* @start - logical block defining start of range
* @end - logical block defining end of range
*
* Returns the number of clusters containing only delayed (not delayed
* and unwritten) blocks in the range specified by @start and @end. Any
* cluster or part of a cluster within the range and containing a delayed
* and not unwritten block within the range is counted as a whole cluster.
*/
static unsigned int __es_delayed_clu(struct inode *inode, ext4_lblk_t start,
ext4_lblk_t end)
{
struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
struct extent_status *es;
struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
struct rb_node *node;
ext4_lblk_t first_lclu, last_lclu;
unsigned long long last_counted_lclu;
unsigned int n = 0;
/* guaranteed to be unequal to any ext4_lblk_t value */
last_counted_lclu = ~0ULL;
es = __es_tree_search(&tree->root, start);
while (es && (es->es_lblk <= end)) {
if (ext4_es_is_delonly(es)) {
if (es->es_lblk <= start)
first_lclu = EXT4_B2C(sbi, start);
else
first_lclu = EXT4_B2C(sbi, es->es_lblk);
if (ext4_es_end(es) >= end)
last_lclu = EXT4_B2C(sbi, end);
else
last_lclu = EXT4_B2C(sbi, ext4_es_end(es));
if (first_lclu == last_counted_lclu)
n += last_lclu - first_lclu;
else
n += last_lclu - first_lclu + 1;
last_counted_lclu = last_lclu;
}
node = rb_next(&es->rb_node);
if (!node)
break;
es = rb_entry(node, struct extent_status, rb_node);
}
return n;
}
/*
* ext4_es_delayed_clu - count number of clusters containing blocks that
* are both delayed and unwritten
*
* @inode - file containing block range
* @lblk - logical block defining start of range
* @len - number of blocks in range
*
* Locking for external use of __es_delayed_clu().
*/
unsigned int ext4_es_delayed_clu(struct inode *inode, ext4_lblk_t lblk,
ext4_lblk_t len)
{
struct ext4_inode_info *ei = EXT4_I(inode);
ext4_lblk_t end;
unsigned int n;
if (len == 0)
return 0;
end = lblk + len - 1;
WARN_ON(end < lblk);
read_lock(&ei->i_es_lock);
n = __es_delayed_clu(inode, lblk, end);
read_unlock(&ei->i_es_lock);
return n;
}
/*
* __revise_pending - makes, cancels, or leaves unchanged pending cluster
* reservations for a specified block range depending
* upon the presence or absence of delayed blocks
* outside the range within clusters at the ends of the
* range
*
* @inode - file containing the range
* @lblk - logical block defining the start of range
* @len - length of range in blocks
*
* Used after a newly allocated extent is added to the extents status tree.
* Requires that the extents in the range have either written or unwritten
* status. Must be called while holding i_es_lock.
*/
static void __revise_pending(struct inode *inode, ext4_lblk_t lblk,
ext4_lblk_t len)
{
struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
ext4_lblk_t end = lblk + len - 1;
ext4_lblk_t first, last;
bool f_del = false, l_del = false;
if (len == 0)
return;
/*
* Two cases - block range within single cluster and block range
* spanning two or more clusters. Note that a cluster belonging
* to a range starting and/or ending on a cluster boundary is treated
* as if it does not contain a delayed extent. The new range may
* have allocated space for previously delayed blocks out to the
* cluster boundary, requiring that any pre-existing pending
* reservation be canceled. Because this code only looks at blocks
* outside the range, it should revise pending reservations
* correctly even if the extent represented by the range can't be
* inserted in the extents status tree due to ENOSPC.
*/
if (EXT4_B2C(sbi, lblk) == EXT4_B2C(sbi, end)) {
first = EXT4_LBLK_CMASK(sbi, lblk);
if (first != lblk)
f_del = __es_scan_range(inode, &ext4_es_is_delonly,
first, lblk - 1);
if (f_del) {
__insert_pending(inode, first);
} else {
last = EXT4_LBLK_CMASK(sbi, end) +
sbi->s_cluster_ratio - 1;
if (last != end)
l_del = __es_scan_range(inode,
&ext4_es_is_delonly,
end + 1, last);
if (l_del)
__insert_pending(inode, last);
else
__remove_pending(inode, last);
}
} else {
first = EXT4_LBLK_CMASK(sbi, lblk);
if (first != lblk)
f_del = __es_scan_range(inode, &ext4_es_is_delonly,
first, lblk - 1);
if (f_del)
__insert_pending(inode, first);
else
__remove_pending(inode, first);
last = EXT4_LBLK_CMASK(sbi, end) + sbi->s_cluster_ratio - 1;
if (last != end)
l_del = __es_scan_range(inode, &ext4_es_is_delonly,
end + 1, last);
if (l_del)
__insert_pending(inode, last);
else
__remove_pending(inode, last);
}
}