mirror of
https://github.com/torvalds/linux.git
synced 2024-11-27 06:31:52 +00:00
de31c3ca81
Kprobes and jump label were having a race between mutexes that was fixed by reordering the jump label. But this reordering moved the jump label mutex into a preempt disable location. This patch does a little fiddling to move the grabbing of the jump label mutex from inside the preempt disable section and still keep the order correct between the mutex and the kprobes lock. Reported-by: Ingo Molnar <mingo@elte.hu> Acked-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com> Cc: Jason Baron <jbaron@redhat.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2046 lines
50 KiB
C
2046 lines
50 KiB
C
/*
|
|
* Kernel Probes (KProbes)
|
|
* kernel/kprobes.c
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
|
*
|
|
* Copyright (C) IBM Corporation, 2002, 2004
|
|
*
|
|
* 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
|
|
* Probes initial implementation (includes suggestions from
|
|
* Rusty Russell).
|
|
* 2004-Aug Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
|
|
* hlists and exceptions notifier as suggested by Andi Kleen.
|
|
* 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
|
|
* interface to access function arguments.
|
|
* 2004-Sep Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
|
|
* exceptions notifier to be first on the priority list.
|
|
* 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston
|
|
* <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
|
|
* <prasanna@in.ibm.com> added function-return probes.
|
|
*/
|
|
#include <linux/kprobes.h>
|
|
#include <linux/hash.h>
|
|
#include <linux/init.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/stddef.h>
|
|
#include <linux/module.h>
|
|
#include <linux/moduleloader.h>
|
|
#include <linux/kallsyms.h>
|
|
#include <linux/freezer.h>
|
|
#include <linux/seq_file.h>
|
|
#include <linux/debugfs.h>
|
|
#include <linux/sysctl.h>
|
|
#include <linux/kdebug.h>
|
|
#include <linux/memory.h>
|
|
#include <linux/ftrace.h>
|
|
#include <linux/cpu.h>
|
|
#include <linux/jump_label.h>
|
|
|
|
#include <asm-generic/sections.h>
|
|
#include <asm/cacheflush.h>
|
|
#include <asm/errno.h>
|
|
#include <asm/uaccess.h>
|
|
|
|
#define KPROBE_HASH_BITS 6
|
|
#define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
|
|
|
|
|
|
/*
|
|
* Some oddball architectures like 64bit powerpc have function descriptors
|
|
* so this must be overridable.
|
|
*/
|
|
#ifndef kprobe_lookup_name
|
|
#define kprobe_lookup_name(name, addr) \
|
|
addr = ((kprobe_opcode_t *)(kallsyms_lookup_name(name)))
|
|
#endif
|
|
|
|
static int kprobes_initialized;
|
|
static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
|
|
static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
|
|
|
|
/* NOTE: change this value only with kprobe_mutex held */
|
|
static bool kprobes_all_disarmed;
|
|
|
|
/* This protects kprobe_table and optimizing_list */
|
|
static DEFINE_MUTEX(kprobe_mutex);
|
|
static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
|
|
static struct {
|
|
spinlock_t lock ____cacheline_aligned_in_smp;
|
|
} kretprobe_table_locks[KPROBE_TABLE_SIZE];
|
|
|
|
static spinlock_t *kretprobe_table_lock_ptr(unsigned long hash)
|
|
{
|
|
return &(kretprobe_table_locks[hash].lock);
|
|
}
|
|
|
|
/*
|
|
* Normally, functions that we'd want to prohibit kprobes in, are marked
|
|
* __kprobes. But, there are cases where such functions already belong to
|
|
* a different section (__sched for preempt_schedule)
|
|
*
|
|
* For such cases, we now have a blacklist
|
|
*/
|
|
static struct kprobe_blackpoint kprobe_blacklist[] = {
|
|
{"preempt_schedule",},
|
|
{"native_get_debugreg",},
|
|
{"irq_entries_start",},
|
|
{"common_interrupt",},
|
|
{"mcount",}, /* mcount can be called from everywhere */
|
|
{NULL} /* Terminator */
|
|
};
|
|
|
|
#ifdef __ARCH_WANT_KPROBES_INSN_SLOT
|
|
/*
|
|
* kprobe->ainsn.insn points to the copy of the instruction to be
|
|
* single-stepped. x86_64, POWER4 and above have no-exec support and
|
|
* stepping on the instruction on a vmalloced/kmalloced/data page
|
|
* is a recipe for disaster
|
|
*/
|
|
struct kprobe_insn_page {
|
|
struct list_head list;
|
|
kprobe_opcode_t *insns; /* Page of instruction slots */
|
|
int nused;
|
|
int ngarbage;
|
|
char slot_used[];
|
|
};
|
|
|
|
#define KPROBE_INSN_PAGE_SIZE(slots) \
|
|
(offsetof(struct kprobe_insn_page, slot_used) + \
|
|
(sizeof(char) * (slots)))
|
|
|
|
struct kprobe_insn_cache {
|
|
struct list_head pages; /* list of kprobe_insn_page */
|
|
size_t insn_size; /* size of instruction slot */
|
|
int nr_garbage;
|
|
};
|
|
|
|
static int slots_per_page(struct kprobe_insn_cache *c)
|
|
{
|
|
return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
|
|
}
|
|
|
|
enum kprobe_slot_state {
|
|
SLOT_CLEAN = 0,
|
|
SLOT_DIRTY = 1,
|
|
SLOT_USED = 2,
|
|
};
|
|
|
|
static DEFINE_MUTEX(kprobe_insn_mutex); /* Protects kprobe_insn_slots */
|
|
static struct kprobe_insn_cache kprobe_insn_slots = {
|
|
.pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
|
|
.insn_size = MAX_INSN_SIZE,
|
|
.nr_garbage = 0,
|
|
};
|
|
static int __kprobes collect_garbage_slots(struct kprobe_insn_cache *c);
|
|
|
|
/**
|
|
* __get_insn_slot() - Find a slot on an executable page for an instruction.
|
|
* We allocate an executable page if there's no room on existing ones.
|
|
*/
|
|
static kprobe_opcode_t __kprobes *__get_insn_slot(struct kprobe_insn_cache *c)
|
|
{
|
|
struct kprobe_insn_page *kip;
|
|
|
|
retry:
|
|
list_for_each_entry(kip, &c->pages, list) {
|
|
if (kip->nused < slots_per_page(c)) {
|
|
int i;
|
|
for (i = 0; i < slots_per_page(c); i++) {
|
|
if (kip->slot_used[i] == SLOT_CLEAN) {
|
|
kip->slot_used[i] = SLOT_USED;
|
|
kip->nused++;
|
|
return kip->insns + (i * c->insn_size);
|
|
}
|
|
}
|
|
/* kip->nused is broken. Fix it. */
|
|
kip->nused = slots_per_page(c);
|
|
WARN_ON(1);
|
|
}
|
|
}
|
|
|
|
/* If there are any garbage slots, collect it and try again. */
|
|
if (c->nr_garbage && collect_garbage_slots(c) == 0)
|
|
goto retry;
|
|
|
|
/* All out of space. Need to allocate a new page. */
|
|
kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
|
|
if (!kip)
|
|
return NULL;
|
|
|
|
/*
|
|
* Use module_alloc so this page is within +/- 2GB of where the
|
|
* kernel image and loaded module images reside. This is required
|
|
* so x86_64 can correctly handle the %rip-relative fixups.
|
|
*/
|
|
kip->insns = module_alloc(PAGE_SIZE);
|
|
if (!kip->insns) {
|
|
kfree(kip);
|
|
return NULL;
|
|
}
|
|
INIT_LIST_HEAD(&kip->list);
|
|
memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
|
|
kip->slot_used[0] = SLOT_USED;
|
|
kip->nused = 1;
|
|
kip->ngarbage = 0;
|
|
list_add(&kip->list, &c->pages);
|
|
return kip->insns;
|
|
}
|
|
|
|
|
|
kprobe_opcode_t __kprobes *get_insn_slot(void)
|
|
{
|
|
kprobe_opcode_t *ret = NULL;
|
|
|
|
mutex_lock(&kprobe_insn_mutex);
|
|
ret = __get_insn_slot(&kprobe_insn_slots);
|
|
mutex_unlock(&kprobe_insn_mutex);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* Return 1 if all garbages are collected, otherwise 0. */
|
|
static int __kprobes collect_one_slot(struct kprobe_insn_page *kip, int idx)
|
|
{
|
|
kip->slot_used[idx] = SLOT_CLEAN;
|
|
kip->nused--;
|
|
if (kip->nused == 0) {
|
|
/*
|
|
* Page is no longer in use. Free it unless
|
|
* it's the last one. We keep the last one
|
|
* so as not to have to set it up again the
|
|
* next time somebody inserts a probe.
|
|
*/
|
|
if (!list_is_singular(&kip->list)) {
|
|
list_del(&kip->list);
|
|
module_free(NULL, kip->insns);
|
|
kfree(kip);
|
|
}
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int __kprobes collect_garbage_slots(struct kprobe_insn_cache *c)
|
|
{
|
|
struct kprobe_insn_page *kip, *next;
|
|
|
|
/* Ensure no-one is interrupted on the garbages */
|
|
synchronize_sched();
|
|
|
|
list_for_each_entry_safe(kip, next, &c->pages, list) {
|
|
int i;
|
|
if (kip->ngarbage == 0)
|
|
continue;
|
|
kip->ngarbage = 0; /* we will collect all garbages */
|
|
for (i = 0; i < slots_per_page(c); i++) {
|
|
if (kip->slot_used[i] == SLOT_DIRTY &&
|
|
collect_one_slot(kip, i))
|
|
break;
|
|
}
|
|
}
|
|
c->nr_garbage = 0;
|
|
return 0;
|
|
}
|
|
|
|
static void __kprobes __free_insn_slot(struct kprobe_insn_cache *c,
|
|
kprobe_opcode_t *slot, int dirty)
|
|
{
|
|
struct kprobe_insn_page *kip;
|
|
|
|
list_for_each_entry(kip, &c->pages, list) {
|
|
long idx = ((long)slot - (long)kip->insns) /
|
|
(c->insn_size * sizeof(kprobe_opcode_t));
|
|
if (idx >= 0 && idx < slots_per_page(c)) {
|
|
WARN_ON(kip->slot_used[idx] != SLOT_USED);
|
|
if (dirty) {
|
|
kip->slot_used[idx] = SLOT_DIRTY;
|
|
kip->ngarbage++;
|
|
if (++c->nr_garbage > slots_per_page(c))
|
|
collect_garbage_slots(c);
|
|
} else
|
|
collect_one_slot(kip, idx);
|
|
return;
|
|
}
|
|
}
|
|
/* Could not free this slot. */
|
|
WARN_ON(1);
|
|
}
|
|
|
|
void __kprobes free_insn_slot(kprobe_opcode_t * slot, int dirty)
|
|
{
|
|
mutex_lock(&kprobe_insn_mutex);
|
|
__free_insn_slot(&kprobe_insn_slots, slot, dirty);
|
|
mutex_unlock(&kprobe_insn_mutex);
|
|
}
|
|
#ifdef CONFIG_OPTPROBES
|
|
/* For optimized_kprobe buffer */
|
|
static DEFINE_MUTEX(kprobe_optinsn_mutex); /* Protects kprobe_optinsn_slots */
|
|
static struct kprobe_insn_cache kprobe_optinsn_slots = {
|
|
.pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
|
|
/* .insn_size is initialized later */
|
|
.nr_garbage = 0,
|
|
};
|
|
/* Get a slot for optimized_kprobe buffer */
|
|
kprobe_opcode_t __kprobes *get_optinsn_slot(void)
|
|
{
|
|
kprobe_opcode_t *ret = NULL;
|
|
|
|
mutex_lock(&kprobe_optinsn_mutex);
|
|
ret = __get_insn_slot(&kprobe_optinsn_slots);
|
|
mutex_unlock(&kprobe_optinsn_mutex);
|
|
|
|
return ret;
|
|
}
|
|
|
|
void __kprobes free_optinsn_slot(kprobe_opcode_t * slot, int dirty)
|
|
{
|
|
mutex_lock(&kprobe_optinsn_mutex);
|
|
__free_insn_slot(&kprobe_optinsn_slots, slot, dirty);
|
|
mutex_unlock(&kprobe_optinsn_mutex);
|
|
}
|
|
#endif
|
|
#endif
|
|
|
|
/* We have preemption disabled.. so it is safe to use __ versions */
|
|
static inline void set_kprobe_instance(struct kprobe *kp)
|
|
{
|
|
__get_cpu_var(kprobe_instance) = kp;
|
|
}
|
|
|
|
static inline void reset_kprobe_instance(void)
|
|
{
|
|
__get_cpu_var(kprobe_instance) = NULL;
|
|
}
|
|
|
|
/*
|
|
* This routine is called either:
|
|
* - under the kprobe_mutex - during kprobe_[un]register()
|
|
* OR
|
|
* - with preemption disabled - from arch/xxx/kernel/kprobes.c
|
|
*/
|
|
struct kprobe __kprobes *get_kprobe(void *addr)
|
|
{
|
|
struct hlist_head *head;
|
|
struct hlist_node *node;
|
|
struct kprobe *p;
|
|
|
|
head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
|
|
hlist_for_each_entry_rcu(p, node, head, hlist) {
|
|
if (p->addr == addr)
|
|
return p;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static int __kprobes aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
|
|
|
|
/* Return true if the kprobe is an aggregator */
|
|
static inline int kprobe_aggrprobe(struct kprobe *p)
|
|
{
|
|
return p->pre_handler == aggr_pre_handler;
|
|
}
|
|
|
|
/*
|
|
* Keep all fields in the kprobe consistent
|
|
*/
|
|
static inline void copy_kprobe(struct kprobe *old_p, struct kprobe *p)
|
|
{
|
|
memcpy(&p->opcode, &old_p->opcode, sizeof(kprobe_opcode_t));
|
|
memcpy(&p->ainsn, &old_p->ainsn, sizeof(struct arch_specific_insn));
|
|
}
|
|
|
|
#ifdef CONFIG_OPTPROBES
|
|
/* NOTE: change this value only with kprobe_mutex held */
|
|
static bool kprobes_allow_optimization;
|
|
|
|
/*
|
|
* Call all pre_handler on the list, but ignores its return value.
|
|
* This must be called from arch-dep optimized caller.
|
|
*/
|
|
void __kprobes opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
|
|
{
|
|
struct kprobe *kp;
|
|
|
|
list_for_each_entry_rcu(kp, &p->list, list) {
|
|
if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
|
|
set_kprobe_instance(kp);
|
|
kp->pre_handler(kp, regs);
|
|
}
|
|
reset_kprobe_instance();
|
|
}
|
|
}
|
|
|
|
/* Return true(!0) if the kprobe is ready for optimization. */
|
|
static inline int kprobe_optready(struct kprobe *p)
|
|
{
|
|
struct optimized_kprobe *op;
|
|
|
|
if (kprobe_aggrprobe(p)) {
|
|
op = container_of(p, struct optimized_kprobe, kp);
|
|
return arch_prepared_optinsn(&op->optinsn);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Return an optimized kprobe whose optimizing code replaces
|
|
* instructions including addr (exclude breakpoint).
|
|
*/
|
|
static struct kprobe *__kprobes get_optimized_kprobe(unsigned long addr)
|
|
{
|
|
int i;
|
|
struct kprobe *p = NULL;
|
|
struct optimized_kprobe *op;
|
|
|
|
/* Don't check i == 0, since that is a breakpoint case. */
|
|
for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++)
|
|
p = get_kprobe((void *)(addr - i));
|
|
|
|
if (p && kprobe_optready(p)) {
|
|
op = container_of(p, struct optimized_kprobe, kp);
|
|
if (arch_within_optimized_kprobe(op, addr))
|
|
return p;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/* Optimization staging list, protected by kprobe_mutex */
|
|
static LIST_HEAD(optimizing_list);
|
|
|
|
static void kprobe_optimizer(struct work_struct *work);
|
|
static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
|
|
#define OPTIMIZE_DELAY 5
|
|
|
|
/* Kprobe jump optimizer */
|
|
static __kprobes void kprobe_optimizer(struct work_struct *work)
|
|
{
|
|
struct optimized_kprobe *op, *tmp;
|
|
|
|
/* Lock modules while optimizing kprobes */
|
|
mutex_lock(&module_mutex);
|
|
mutex_lock(&kprobe_mutex);
|
|
if (kprobes_all_disarmed || !kprobes_allow_optimization)
|
|
goto end;
|
|
|
|
/*
|
|
* Wait for quiesence period to ensure all running interrupts
|
|
* are done. Because optprobe may modify multiple instructions
|
|
* there is a chance that Nth instruction is interrupted. In that
|
|
* case, running interrupt can return to 2nd-Nth byte of jump
|
|
* instruction. This wait is for avoiding it.
|
|
*/
|
|
synchronize_sched();
|
|
|
|
/*
|
|
* The optimization/unoptimization refers online_cpus via
|
|
* stop_machine() and cpu-hotplug modifies online_cpus.
|
|
* And same time, text_mutex will be held in cpu-hotplug and here.
|
|
* This combination can cause a deadlock (cpu-hotplug try to lock
|
|
* text_mutex but stop_machine can not be done because online_cpus
|
|
* has been changed)
|
|
* To avoid this deadlock, we need to call get_online_cpus()
|
|
* for preventing cpu-hotplug outside of text_mutex locking.
|
|
*/
|
|
get_online_cpus();
|
|
mutex_lock(&text_mutex);
|
|
list_for_each_entry_safe(op, tmp, &optimizing_list, list) {
|
|
WARN_ON(kprobe_disabled(&op->kp));
|
|
if (arch_optimize_kprobe(op) < 0)
|
|
op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
|
|
list_del_init(&op->list);
|
|
}
|
|
mutex_unlock(&text_mutex);
|
|
put_online_cpus();
|
|
end:
|
|
mutex_unlock(&kprobe_mutex);
|
|
mutex_unlock(&module_mutex);
|
|
}
|
|
|
|
/* Optimize kprobe if p is ready to be optimized */
|
|
static __kprobes void optimize_kprobe(struct kprobe *p)
|
|
{
|
|
struct optimized_kprobe *op;
|
|
|
|
/* Check if the kprobe is disabled or not ready for optimization. */
|
|
if (!kprobe_optready(p) || !kprobes_allow_optimization ||
|
|
(kprobe_disabled(p) || kprobes_all_disarmed))
|
|
return;
|
|
|
|
/* Both of break_handler and post_handler are not supported. */
|
|
if (p->break_handler || p->post_handler)
|
|
return;
|
|
|
|
op = container_of(p, struct optimized_kprobe, kp);
|
|
|
|
/* Check there is no other kprobes at the optimized instructions */
|
|
if (arch_check_optimized_kprobe(op) < 0)
|
|
return;
|
|
|
|
/* Check if it is already optimized. */
|
|
if (op->kp.flags & KPROBE_FLAG_OPTIMIZED)
|
|
return;
|
|
|
|
op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
|
|
list_add(&op->list, &optimizing_list);
|
|
if (!delayed_work_pending(&optimizing_work))
|
|
schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
|
|
}
|
|
|
|
/* Unoptimize a kprobe if p is optimized */
|
|
static __kprobes void unoptimize_kprobe(struct kprobe *p)
|
|
{
|
|
struct optimized_kprobe *op;
|
|
|
|
if ((p->flags & KPROBE_FLAG_OPTIMIZED) && kprobe_aggrprobe(p)) {
|
|
op = container_of(p, struct optimized_kprobe, kp);
|
|
if (!list_empty(&op->list))
|
|
/* Dequeue from the optimization queue */
|
|
list_del_init(&op->list);
|
|
else
|
|
/* Replace jump with break */
|
|
arch_unoptimize_kprobe(op);
|
|
op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
|
|
}
|
|
}
|
|
|
|
/* Remove optimized instructions */
|
|
static void __kprobes kill_optimized_kprobe(struct kprobe *p)
|
|
{
|
|
struct optimized_kprobe *op;
|
|
|
|
op = container_of(p, struct optimized_kprobe, kp);
|
|
if (!list_empty(&op->list)) {
|
|
/* Dequeue from the optimization queue */
|
|
list_del_init(&op->list);
|
|
op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
|
|
}
|
|
/* Don't unoptimize, because the target code will be freed. */
|
|
arch_remove_optimized_kprobe(op);
|
|
}
|
|
|
|
/* Try to prepare optimized instructions */
|
|
static __kprobes void prepare_optimized_kprobe(struct kprobe *p)
|
|
{
|
|
struct optimized_kprobe *op;
|
|
|
|
op = container_of(p, struct optimized_kprobe, kp);
|
|
arch_prepare_optimized_kprobe(op);
|
|
}
|
|
|
|
/* Free optimized instructions and optimized_kprobe */
|
|
static __kprobes void free_aggr_kprobe(struct kprobe *p)
|
|
{
|
|
struct optimized_kprobe *op;
|
|
|
|
op = container_of(p, struct optimized_kprobe, kp);
|
|
arch_remove_optimized_kprobe(op);
|
|
kfree(op);
|
|
}
|
|
|
|
/* Allocate new optimized_kprobe and try to prepare optimized instructions */
|
|
static __kprobes struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
|
|
{
|
|
struct optimized_kprobe *op;
|
|
|
|
op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
|
|
if (!op)
|
|
return NULL;
|
|
|
|
INIT_LIST_HEAD(&op->list);
|
|
op->kp.addr = p->addr;
|
|
arch_prepare_optimized_kprobe(op);
|
|
|
|
return &op->kp;
|
|
}
|
|
|
|
static void __kprobes init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
|
|
|
|
/*
|
|
* Prepare an optimized_kprobe and optimize it
|
|
* NOTE: p must be a normal registered kprobe
|
|
*/
|
|
static __kprobes void try_to_optimize_kprobe(struct kprobe *p)
|
|
{
|
|
struct kprobe *ap;
|
|
struct optimized_kprobe *op;
|
|
|
|
ap = alloc_aggr_kprobe(p);
|
|
if (!ap)
|
|
return;
|
|
|
|
op = container_of(ap, struct optimized_kprobe, kp);
|
|
if (!arch_prepared_optinsn(&op->optinsn)) {
|
|
/* If failed to setup optimizing, fallback to kprobe */
|
|
free_aggr_kprobe(ap);
|
|
return;
|
|
}
|
|
|
|
init_aggr_kprobe(ap, p);
|
|
optimize_kprobe(ap);
|
|
}
|
|
|
|
#ifdef CONFIG_SYSCTL
|
|
/* This should be called with kprobe_mutex locked */
|
|
static void __kprobes optimize_all_kprobes(void)
|
|
{
|
|
struct hlist_head *head;
|
|
struct hlist_node *node;
|
|
struct kprobe *p;
|
|
unsigned int i;
|
|
|
|
/* If optimization is already allowed, just return */
|
|
if (kprobes_allow_optimization)
|
|
return;
|
|
|
|
kprobes_allow_optimization = true;
|
|
for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
|
|
head = &kprobe_table[i];
|
|
hlist_for_each_entry_rcu(p, node, head, hlist)
|
|
if (!kprobe_disabled(p))
|
|
optimize_kprobe(p);
|
|
}
|
|
printk(KERN_INFO "Kprobes globally optimized\n");
|
|
}
|
|
|
|
/* This should be called with kprobe_mutex locked */
|
|
static void __kprobes unoptimize_all_kprobes(void)
|
|
{
|
|
struct hlist_head *head;
|
|
struct hlist_node *node;
|
|
struct kprobe *p;
|
|
unsigned int i;
|
|
|
|
/* If optimization is already prohibited, just return */
|
|
if (!kprobes_allow_optimization)
|
|
return;
|
|
|
|
kprobes_allow_optimization = false;
|
|
printk(KERN_INFO "Kprobes globally unoptimized\n");
|
|
get_online_cpus(); /* For avoiding text_mutex deadlock */
|
|
mutex_lock(&text_mutex);
|
|
for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
|
|
head = &kprobe_table[i];
|
|
hlist_for_each_entry_rcu(p, node, head, hlist) {
|
|
if (!kprobe_disabled(p))
|
|
unoptimize_kprobe(p);
|
|
}
|
|
}
|
|
|
|
mutex_unlock(&text_mutex);
|
|
put_online_cpus();
|
|
/* Allow all currently running kprobes to complete */
|
|
synchronize_sched();
|
|
}
|
|
|
|
int sysctl_kprobes_optimization;
|
|
int proc_kprobes_optimization_handler(struct ctl_table *table, int write,
|
|
void __user *buffer, size_t *length,
|
|
loff_t *ppos)
|
|
{
|
|
int ret;
|
|
|
|
mutex_lock(&kprobe_mutex);
|
|
sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
|
|
ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
|
|
|
|
if (sysctl_kprobes_optimization)
|
|
optimize_all_kprobes();
|
|
else
|
|
unoptimize_all_kprobes();
|
|
mutex_unlock(&kprobe_mutex);
|
|
|
|
return ret;
|
|
}
|
|
#endif /* CONFIG_SYSCTL */
|
|
|
|
static void __kprobes __arm_kprobe(struct kprobe *p)
|
|
{
|
|
struct kprobe *old_p;
|
|
|
|
/* Check collision with other optimized kprobes */
|
|
old_p = get_optimized_kprobe((unsigned long)p->addr);
|
|
if (unlikely(old_p))
|
|
unoptimize_kprobe(old_p); /* Fallback to unoptimized kprobe */
|
|
|
|
arch_arm_kprobe(p);
|
|
optimize_kprobe(p); /* Try to optimize (add kprobe to a list) */
|
|
}
|
|
|
|
static void __kprobes __disarm_kprobe(struct kprobe *p)
|
|
{
|
|
struct kprobe *old_p;
|
|
|
|
unoptimize_kprobe(p); /* Try to unoptimize */
|
|
arch_disarm_kprobe(p);
|
|
|
|
/* If another kprobe was blocked, optimize it. */
|
|
old_p = get_optimized_kprobe((unsigned long)p->addr);
|
|
if (unlikely(old_p))
|
|
optimize_kprobe(old_p);
|
|
}
|
|
|
|
#else /* !CONFIG_OPTPROBES */
|
|
|
|
#define optimize_kprobe(p) do {} while (0)
|
|
#define unoptimize_kprobe(p) do {} while (0)
|
|
#define kill_optimized_kprobe(p) do {} while (0)
|
|
#define prepare_optimized_kprobe(p) do {} while (0)
|
|
#define try_to_optimize_kprobe(p) do {} while (0)
|
|
#define __arm_kprobe(p) arch_arm_kprobe(p)
|
|
#define __disarm_kprobe(p) arch_disarm_kprobe(p)
|
|
|
|
static __kprobes void free_aggr_kprobe(struct kprobe *p)
|
|
{
|
|
kfree(p);
|
|
}
|
|
|
|
static __kprobes struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
|
|
{
|
|
return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
|
|
}
|
|
#endif /* CONFIG_OPTPROBES */
|
|
|
|
/* Arm a kprobe with text_mutex */
|
|
static void __kprobes arm_kprobe(struct kprobe *kp)
|
|
{
|
|
/*
|
|
* Here, since __arm_kprobe() doesn't use stop_machine(),
|
|
* this doesn't cause deadlock on text_mutex. So, we don't
|
|
* need get_online_cpus().
|
|
*/
|
|
mutex_lock(&text_mutex);
|
|
__arm_kprobe(kp);
|
|
mutex_unlock(&text_mutex);
|
|
}
|
|
|
|
/* Disarm a kprobe with text_mutex */
|
|
static void __kprobes disarm_kprobe(struct kprobe *kp)
|
|
{
|
|
get_online_cpus(); /* For avoiding text_mutex deadlock */
|
|
mutex_lock(&text_mutex);
|
|
__disarm_kprobe(kp);
|
|
mutex_unlock(&text_mutex);
|
|
put_online_cpus();
|
|
}
|
|
|
|
/*
|
|
* Aggregate handlers for multiple kprobes support - these handlers
|
|
* take care of invoking the individual kprobe handlers on p->list
|
|
*/
|
|
static int __kprobes aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
|
|
{
|
|
struct kprobe *kp;
|
|
|
|
list_for_each_entry_rcu(kp, &p->list, list) {
|
|
if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
|
|
set_kprobe_instance(kp);
|
|
if (kp->pre_handler(kp, regs))
|
|
return 1;
|
|
}
|
|
reset_kprobe_instance();
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void __kprobes aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
|
|
unsigned long flags)
|
|
{
|
|
struct kprobe *kp;
|
|
|
|
list_for_each_entry_rcu(kp, &p->list, list) {
|
|
if (kp->post_handler && likely(!kprobe_disabled(kp))) {
|
|
set_kprobe_instance(kp);
|
|
kp->post_handler(kp, regs, flags);
|
|
reset_kprobe_instance();
|
|
}
|
|
}
|
|
}
|
|
|
|
static int __kprobes aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
|
|
int trapnr)
|
|
{
|
|
struct kprobe *cur = __get_cpu_var(kprobe_instance);
|
|
|
|
/*
|
|
* if we faulted "during" the execution of a user specified
|
|
* probe handler, invoke just that probe's fault handler
|
|
*/
|
|
if (cur && cur->fault_handler) {
|
|
if (cur->fault_handler(cur, regs, trapnr))
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int __kprobes aggr_break_handler(struct kprobe *p, struct pt_regs *regs)
|
|
{
|
|
struct kprobe *cur = __get_cpu_var(kprobe_instance);
|
|
int ret = 0;
|
|
|
|
if (cur && cur->break_handler) {
|
|
if (cur->break_handler(cur, regs))
|
|
ret = 1;
|
|
}
|
|
reset_kprobe_instance();
|
|
return ret;
|
|
}
|
|
|
|
/* Walks the list and increments nmissed count for multiprobe case */
|
|
void __kprobes kprobes_inc_nmissed_count(struct kprobe *p)
|
|
{
|
|
struct kprobe *kp;
|
|
if (!kprobe_aggrprobe(p)) {
|
|
p->nmissed++;
|
|
} else {
|
|
list_for_each_entry_rcu(kp, &p->list, list)
|
|
kp->nmissed++;
|
|
}
|
|
return;
|
|
}
|
|
|
|
void __kprobes recycle_rp_inst(struct kretprobe_instance *ri,
|
|
struct hlist_head *head)
|
|
{
|
|
struct kretprobe *rp = ri->rp;
|
|
|
|
/* remove rp inst off the rprobe_inst_table */
|
|
hlist_del(&ri->hlist);
|
|
INIT_HLIST_NODE(&ri->hlist);
|
|
if (likely(rp)) {
|
|
spin_lock(&rp->lock);
|
|
hlist_add_head(&ri->hlist, &rp->free_instances);
|
|
spin_unlock(&rp->lock);
|
|
} else
|
|
/* Unregistering */
|
|
hlist_add_head(&ri->hlist, head);
|
|
}
|
|
|
|
void __kprobes kretprobe_hash_lock(struct task_struct *tsk,
|
|
struct hlist_head **head, unsigned long *flags)
|
|
__acquires(hlist_lock)
|
|
{
|
|
unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
|
|
spinlock_t *hlist_lock;
|
|
|
|
*head = &kretprobe_inst_table[hash];
|
|
hlist_lock = kretprobe_table_lock_ptr(hash);
|
|
spin_lock_irqsave(hlist_lock, *flags);
|
|
}
|
|
|
|
static void __kprobes kretprobe_table_lock(unsigned long hash,
|
|
unsigned long *flags)
|
|
__acquires(hlist_lock)
|
|
{
|
|
spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
|
|
spin_lock_irqsave(hlist_lock, *flags);
|
|
}
|
|
|
|
void __kprobes kretprobe_hash_unlock(struct task_struct *tsk,
|
|
unsigned long *flags)
|
|
__releases(hlist_lock)
|
|
{
|
|
unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
|
|
spinlock_t *hlist_lock;
|
|
|
|
hlist_lock = kretprobe_table_lock_ptr(hash);
|
|
spin_unlock_irqrestore(hlist_lock, *flags);
|
|
}
|
|
|
|
static void __kprobes kretprobe_table_unlock(unsigned long hash,
|
|
unsigned long *flags)
|
|
__releases(hlist_lock)
|
|
{
|
|
spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
|
|
spin_unlock_irqrestore(hlist_lock, *flags);
|
|
}
|
|
|
|
/*
|
|
* This function is called from finish_task_switch when task tk becomes dead,
|
|
* so that we can recycle any function-return probe instances associated
|
|
* with this task. These left over instances represent probed functions
|
|
* that have been called but will never return.
|
|
*/
|
|
void __kprobes kprobe_flush_task(struct task_struct *tk)
|
|
{
|
|
struct kretprobe_instance *ri;
|
|
struct hlist_head *head, empty_rp;
|
|
struct hlist_node *node, *tmp;
|
|
unsigned long hash, flags = 0;
|
|
|
|
if (unlikely(!kprobes_initialized))
|
|
/* Early boot. kretprobe_table_locks not yet initialized. */
|
|
return;
|
|
|
|
hash = hash_ptr(tk, KPROBE_HASH_BITS);
|
|
head = &kretprobe_inst_table[hash];
|
|
kretprobe_table_lock(hash, &flags);
|
|
hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
|
|
if (ri->task == tk)
|
|
recycle_rp_inst(ri, &empty_rp);
|
|
}
|
|
kretprobe_table_unlock(hash, &flags);
|
|
INIT_HLIST_HEAD(&empty_rp);
|
|
hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
|
|
hlist_del(&ri->hlist);
|
|
kfree(ri);
|
|
}
|
|
}
|
|
|
|
static inline void free_rp_inst(struct kretprobe *rp)
|
|
{
|
|
struct kretprobe_instance *ri;
|
|
struct hlist_node *pos, *next;
|
|
|
|
hlist_for_each_entry_safe(ri, pos, next, &rp->free_instances, hlist) {
|
|
hlist_del(&ri->hlist);
|
|
kfree(ri);
|
|
}
|
|
}
|
|
|
|
static void __kprobes cleanup_rp_inst(struct kretprobe *rp)
|
|
{
|
|
unsigned long flags, hash;
|
|
struct kretprobe_instance *ri;
|
|
struct hlist_node *pos, *next;
|
|
struct hlist_head *head;
|
|
|
|
/* No race here */
|
|
for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) {
|
|
kretprobe_table_lock(hash, &flags);
|
|
head = &kretprobe_inst_table[hash];
|
|
hlist_for_each_entry_safe(ri, pos, next, head, hlist) {
|
|
if (ri->rp == rp)
|
|
ri->rp = NULL;
|
|
}
|
|
kretprobe_table_unlock(hash, &flags);
|
|
}
|
|
free_rp_inst(rp);
|
|
}
|
|
|
|
/*
|
|
* Add the new probe to ap->list. Fail if this is the
|
|
* second jprobe at the address - two jprobes can't coexist
|
|
*/
|
|
static int __kprobes add_new_kprobe(struct kprobe *ap, struct kprobe *p)
|
|
{
|
|
BUG_ON(kprobe_gone(ap) || kprobe_gone(p));
|
|
|
|
if (p->break_handler || p->post_handler)
|
|
unoptimize_kprobe(ap); /* Fall back to normal kprobe */
|
|
|
|
if (p->break_handler) {
|
|
if (ap->break_handler)
|
|
return -EEXIST;
|
|
list_add_tail_rcu(&p->list, &ap->list);
|
|
ap->break_handler = aggr_break_handler;
|
|
} else
|
|
list_add_rcu(&p->list, &ap->list);
|
|
if (p->post_handler && !ap->post_handler)
|
|
ap->post_handler = aggr_post_handler;
|
|
|
|
if (kprobe_disabled(ap) && !kprobe_disabled(p)) {
|
|
ap->flags &= ~KPROBE_FLAG_DISABLED;
|
|
if (!kprobes_all_disarmed)
|
|
/* Arm the breakpoint again. */
|
|
__arm_kprobe(ap);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Fill in the required fields of the "manager kprobe". Replace the
|
|
* earlier kprobe in the hlist with the manager kprobe
|
|
*/
|
|
static void __kprobes init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
|
|
{
|
|
/* Copy p's insn slot to ap */
|
|
copy_kprobe(p, ap);
|
|
flush_insn_slot(ap);
|
|
ap->addr = p->addr;
|
|
ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
|
|
ap->pre_handler = aggr_pre_handler;
|
|
ap->fault_handler = aggr_fault_handler;
|
|
/* We don't care the kprobe which has gone. */
|
|
if (p->post_handler && !kprobe_gone(p))
|
|
ap->post_handler = aggr_post_handler;
|
|
if (p->break_handler && !kprobe_gone(p))
|
|
ap->break_handler = aggr_break_handler;
|
|
|
|
INIT_LIST_HEAD(&ap->list);
|
|
INIT_HLIST_NODE(&ap->hlist);
|
|
|
|
list_add_rcu(&p->list, &ap->list);
|
|
hlist_replace_rcu(&p->hlist, &ap->hlist);
|
|
}
|
|
|
|
/*
|
|
* This is the second or subsequent kprobe at the address - handle
|
|
* the intricacies
|
|
*/
|
|
static int __kprobes register_aggr_kprobe(struct kprobe *old_p,
|
|
struct kprobe *p)
|
|
{
|
|
int ret = 0;
|
|
struct kprobe *ap = old_p;
|
|
|
|
if (!kprobe_aggrprobe(old_p)) {
|
|
/* If old_p is not an aggr_kprobe, create new aggr_kprobe. */
|
|
ap = alloc_aggr_kprobe(old_p);
|
|
if (!ap)
|
|
return -ENOMEM;
|
|
init_aggr_kprobe(ap, old_p);
|
|
}
|
|
|
|
if (kprobe_gone(ap)) {
|
|
/*
|
|
* Attempting to insert new probe at the same location that
|
|
* had a probe in the module vaddr area which already
|
|
* freed. So, the instruction slot has already been
|
|
* released. We need a new slot for the new probe.
|
|
*/
|
|
ret = arch_prepare_kprobe(ap);
|
|
if (ret)
|
|
/*
|
|
* Even if fail to allocate new slot, don't need to
|
|
* free aggr_probe. It will be used next time, or
|
|
* freed by unregister_kprobe.
|
|
*/
|
|
return ret;
|
|
|
|
/* Prepare optimized instructions if possible. */
|
|
prepare_optimized_kprobe(ap);
|
|
|
|
/*
|
|
* Clear gone flag to prevent allocating new slot again, and
|
|
* set disabled flag because it is not armed yet.
|
|
*/
|
|
ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
|
|
| KPROBE_FLAG_DISABLED;
|
|
}
|
|
|
|
/* Copy ap's insn slot to p */
|
|
copy_kprobe(ap, p);
|
|
return add_new_kprobe(ap, p);
|
|
}
|
|
|
|
/* Try to disable aggr_kprobe, and return 1 if succeeded.*/
|
|
static int __kprobes try_to_disable_aggr_kprobe(struct kprobe *p)
|
|
{
|
|
struct kprobe *kp;
|
|
|
|
list_for_each_entry_rcu(kp, &p->list, list) {
|
|
if (!kprobe_disabled(kp))
|
|
/*
|
|
* There is an active probe on the list.
|
|
* We can't disable aggr_kprobe.
|
|
*/
|
|
return 0;
|
|
}
|
|
p->flags |= KPROBE_FLAG_DISABLED;
|
|
return 1;
|
|
}
|
|
|
|
static int __kprobes in_kprobes_functions(unsigned long addr)
|
|
{
|
|
struct kprobe_blackpoint *kb;
|
|
|
|
if (addr >= (unsigned long)__kprobes_text_start &&
|
|
addr < (unsigned long)__kprobes_text_end)
|
|
return -EINVAL;
|
|
/*
|
|
* If there exists a kprobe_blacklist, verify and
|
|
* fail any probe registration in the prohibited area
|
|
*/
|
|
for (kb = kprobe_blacklist; kb->name != NULL; kb++) {
|
|
if (kb->start_addr) {
|
|
if (addr >= kb->start_addr &&
|
|
addr < (kb->start_addr + kb->range))
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* If we have a symbol_name argument, look it up and add the offset field
|
|
* to it. This way, we can specify a relative address to a symbol.
|
|
*/
|
|
static kprobe_opcode_t __kprobes *kprobe_addr(struct kprobe *p)
|
|
{
|
|
kprobe_opcode_t *addr = p->addr;
|
|
if (p->symbol_name) {
|
|
if (addr)
|
|
return NULL;
|
|
kprobe_lookup_name(p->symbol_name, addr);
|
|
}
|
|
|
|
if (!addr)
|
|
return NULL;
|
|
return (kprobe_opcode_t *)(((char *)addr) + p->offset);
|
|
}
|
|
|
|
/* Check passed kprobe is valid and return kprobe in kprobe_table. */
|
|
static struct kprobe * __kprobes __get_valid_kprobe(struct kprobe *p)
|
|
{
|
|
struct kprobe *old_p, *list_p;
|
|
|
|
old_p = get_kprobe(p->addr);
|
|
if (unlikely(!old_p))
|
|
return NULL;
|
|
|
|
if (p != old_p) {
|
|
list_for_each_entry_rcu(list_p, &old_p->list, list)
|
|
if (list_p == p)
|
|
/* kprobe p is a valid probe */
|
|
goto valid;
|
|
return NULL;
|
|
}
|
|
valid:
|
|
return old_p;
|
|
}
|
|
|
|
/* Return error if the kprobe is being re-registered */
|
|
static inline int check_kprobe_rereg(struct kprobe *p)
|
|
{
|
|
int ret = 0;
|
|
struct kprobe *old_p;
|
|
|
|
mutex_lock(&kprobe_mutex);
|
|
old_p = __get_valid_kprobe(p);
|
|
if (old_p)
|
|
ret = -EINVAL;
|
|
mutex_unlock(&kprobe_mutex);
|
|
return ret;
|
|
}
|
|
|
|
int __kprobes register_kprobe(struct kprobe *p)
|
|
{
|
|
int ret = 0;
|
|
struct kprobe *old_p;
|
|
struct module *probed_mod;
|
|
kprobe_opcode_t *addr;
|
|
|
|
addr = kprobe_addr(p);
|
|
if (!addr)
|
|
return -EINVAL;
|
|
p->addr = addr;
|
|
|
|
ret = check_kprobe_rereg(p);
|
|
if (ret)
|
|
return ret;
|
|
|
|
jump_label_lock();
|
|
preempt_disable();
|
|
if (!kernel_text_address((unsigned long) p->addr) ||
|
|
in_kprobes_functions((unsigned long) p->addr) ||
|
|
ftrace_text_reserved(p->addr, p->addr) ||
|
|
jump_label_text_reserved(p->addr, p->addr))
|
|
goto fail_with_jump_label;
|
|
|
|
/* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
|
|
p->flags &= KPROBE_FLAG_DISABLED;
|
|
|
|
/*
|
|
* Check if are we probing a module.
|
|
*/
|
|
probed_mod = __module_text_address((unsigned long) p->addr);
|
|
if (probed_mod) {
|
|
/*
|
|
* We must hold a refcount of the probed module while updating
|
|
* its code to prohibit unexpected unloading.
|
|
*/
|
|
if (unlikely(!try_module_get(probed_mod)))
|
|
goto fail_with_jump_label;
|
|
|
|
/*
|
|
* If the module freed .init.text, we couldn't insert
|
|
* kprobes in there.
|
|
*/
|
|
if (within_module_init((unsigned long)p->addr, probed_mod) &&
|
|
probed_mod->state != MODULE_STATE_COMING) {
|
|
module_put(probed_mod);
|
|
goto fail_with_jump_label;
|
|
}
|
|
}
|
|
preempt_enable();
|
|
jump_label_unlock();
|
|
|
|
p->nmissed = 0;
|
|
INIT_LIST_HEAD(&p->list);
|
|
mutex_lock(&kprobe_mutex);
|
|
|
|
jump_label_lock(); /* needed to call jump_label_text_reserved() */
|
|
|
|
get_online_cpus(); /* For avoiding text_mutex deadlock. */
|
|
mutex_lock(&text_mutex);
|
|
|
|
old_p = get_kprobe(p->addr);
|
|
if (old_p) {
|
|
/* Since this may unoptimize old_p, locking text_mutex. */
|
|
ret = register_aggr_kprobe(old_p, p);
|
|
goto out;
|
|
}
|
|
|
|
ret = arch_prepare_kprobe(p);
|
|
if (ret)
|
|
goto out;
|
|
|
|
INIT_HLIST_NODE(&p->hlist);
|
|
hlist_add_head_rcu(&p->hlist,
|
|
&kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
|
|
|
|
if (!kprobes_all_disarmed && !kprobe_disabled(p))
|
|
__arm_kprobe(p);
|
|
|
|
/* Try to optimize kprobe */
|
|
try_to_optimize_kprobe(p);
|
|
|
|
out:
|
|
mutex_unlock(&text_mutex);
|
|
put_online_cpus();
|
|
jump_label_unlock();
|
|
mutex_unlock(&kprobe_mutex);
|
|
|
|
if (probed_mod)
|
|
module_put(probed_mod);
|
|
|
|
return ret;
|
|
|
|
fail_with_jump_label:
|
|
preempt_enable();
|
|
jump_label_unlock();
|
|
return -EINVAL;
|
|
}
|
|
EXPORT_SYMBOL_GPL(register_kprobe);
|
|
|
|
/*
|
|
* Unregister a kprobe without a scheduler synchronization.
|
|
*/
|
|
static int __kprobes __unregister_kprobe_top(struct kprobe *p)
|
|
{
|
|
struct kprobe *old_p, *list_p;
|
|
|
|
old_p = __get_valid_kprobe(p);
|
|
if (old_p == NULL)
|
|
return -EINVAL;
|
|
|
|
if (old_p == p ||
|
|
(kprobe_aggrprobe(old_p) &&
|
|
list_is_singular(&old_p->list))) {
|
|
/*
|
|
* Only probe on the hash list. Disarm only if kprobes are
|
|
* enabled and not gone - otherwise, the breakpoint would
|
|
* already have been removed. We save on flushing icache.
|
|
*/
|
|
if (!kprobes_all_disarmed && !kprobe_disabled(old_p))
|
|
disarm_kprobe(old_p);
|
|
hlist_del_rcu(&old_p->hlist);
|
|
} else {
|
|
if (p->break_handler && !kprobe_gone(p))
|
|
old_p->break_handler = NULL;
|
|
if (p->post_handler && !kprobe_gone(p)) {
|
|
list_for_each_entry_rcu(list_p, &old_p->list, list) {
|
|
if ((list_p != p) && (list_p->post_handler))
|
|
goto noclean;
|
|
}
|
|
old_p->post_handler = NULL;
|
|
}
|
|
noclean:
|
|
list_del_rcu(&p->list);
|
|
if (!kprobe_disabled(old_p)) {
|
|
try_to_disable_aggr_kprobe(old_p);
|
|
if (!kprobes_all_disarmed) {
|
|
if (kprobe_disabled(old_p))
|
|
disarm_kprobe(old_p);
|
|
else
|
|
/* Try to optimize this probe again */
|
|
optimize_kprobe(old_p);
|
|
}
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void __kprobes __unregister_kprobe_bottom(struct kprobe *p)
|
|
{
|
|
struct kprobe *old_p;
|
|
|
|
if (list_empty(&p->list))
|
|
arch_remove_kprobe(p);
|
|
else if (list_is_singular(&p->list)) {
|
|
/* "p" is the last child of an aggr_kprobe */
|
|
old_p = list_entry(p->list.next, struct kprobe, list);
|
|
list_del(&p->list);
|
|
arch_remove_kprobe(old_p);
|
|
free_aggr_kprobe(old_p);
|
|
}
|
|
}
|
|
|
|
int __kprobes register_kprobes(struct kprobe **kps, int num)
|
|
{
|
|
int i, ret = 0;
|
|
|
|
if (num <= 0)
|
|
return -EINVAL;
|
|
for (i = 0; i < num; i++) {
|
|
ret = register_kprobe(kps[i]);
|
|
if (ret < 0) {
|
|
if (i > 0)
|
|
unregister_kprobes(kps, i);
|
|
break;
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(register_kprobes);
|
|
|
|
void __kprobes unregister_kprobe(struct kprobe *p)
|
|
{
|
|
unregister_kprobes(&p, 1);
|
|
}
|
|
EXPORT_SYMBOL_GPL(unregister_kprobe);
|
|
|
|
void __kprobes unregister_kprobes(struct kprobe **kps, int num)
|
|
{
|
|
int i;
|
|
|
|
if (num <= 0)
|
|
return;
|
|
mutex_lock(&kprobe_mutex);
|
|
for (i = 0; i < num; i++)
|
|
if (__unregister_kprobe_top(kps[i]) < 0)
|
|
kps[i]->addr = NULL;
|
|
mutex_unlock(&kprobe_mutex);
|
|
|
|
synchronize_sched();
|
|
for (i = 0; i < num; i++)
|
|
if (kps[i]->addr)
|
|
__unregister_kprobe_bottom(kps[i]);
|
|
}
|
|
EXPORT_SYMBOL_GPL(unregister_kprobes);
|
|
|
|
static struct notifier_block kprobe_exceptions_nb = {
|
|
.notifier_call = kprobe_exceptions_notify,
|
|
.priority = 0x7fffffff /* we need to be notified first */
|
|
};
|
|
|
|
unsigned long __weak arch_deref_entry_point(void *entry)
|
|
{
|
|
return (unsigned long)entry;
|
|
}
|
|
|
|
int __kprobes register_jprobes(struct jprobe **jps, int num)
|
|
{
|
|
struct jprobe *jp;
|
|
int ret = 0, i;
|
|
|
|
if (num <= 0)
|
|
return -EINVAL;
|
|
for (i = 0; i < num; i++) {
|
|
unsigned long addr, offset;
|
|
jp = jps[i];
|
|
addr = arch_deref_entry_point(jp->entry);
|
|
|
|
/* Verify probepoint is a function entry point */
|
|
if (kallsyms_lookup_size_offset(addr, NULL, &offset) &&
|
|
offset == 0) {
|
|
jp->kp.pre_handler = setjmp_pre_handler;
|
|
jp->kp.break_handler = longjmp_break_handler;
|
|
ret = register_kprobe(&jp->kp);
|
|
} else
|
|
ret = -EINVAL;
|
|
|
|
if (ret < 0) {
|
|
if (i > 0)
|
|
unregister_jprobes(jps, i);
|
|
break;
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(register_jprobes);
|
|
|
|
int __kprobes register_jprobe(struct jprobe *jp)
|
|
{
|
|
return register_jprobes(&jp, 1);
|
|
}
|
|
EXPORT_SYMBOL_GPL(register_jprobe);
|
|
|
|
void __kprobes unregister_jprobe(struct jprobe *jp)
|
|
{
|
|
unregister_jprobes(&jp, 1);
|
|
}
|
|
EXPORT_SYMBOL_GPL(unregister_jprobe);
|
|
|
|
void __kprobes unregister_jprobes(struct jprobe **jps, int num)
|
|
{
|
|
int i;
|
|
|
|
if (num <= 0)
|
|
return;
|
|
mutex_lock(&kprobe_mutex);
|
|
for (i = 0; i < num; i++)
|
|
if (__unregister_kprobe_top(&jps[i]->kp) < 0)
|
|
jps[i]->kp.addr = NULL;
|
|
mutex_unlock(&kprobe_mutex);
|
|
|
|
synchronize_sched();
|
|
for (i = 0; i < num; i++) {
|
|
if (jps[i]->kp.addr)
|
|
__unregister_kprobe_bottom(&jps[i]->kp);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(unregister_jprobes);
|
|
|
|
#ifdef CONFIG_KRETPROBES
|
|
/*
|
|
* This kprobe pre_handler is registered with every kretprobe. When probe
|
|
* hits it will set up the return probe.
|
|
*/
|
|
static int __kprobes pre_handler_kretprobe(struct kprobe *p,
|
|
struct pt_regs *regs)
|
|
{
|
|
struct kretprobe *rp = container_of(p, struct kretprobe, kp);
|
|
unsigned long hash, flags = 0;
|
|
struct kretprobe_instance *ri;
|
|
|
|
/*TODO: consider to only swap the RA after the last pre_handler fired */
|
|
hash = hash_ptr(current, KPROBE_HASH_BITS);
|
|
spin_lock_irqsave(&rp->lock, flags);
|
|
if (!hlist_empty(&rp->free_instances)) {
|
|
ri = hlist_entry(rp->free_instances.first,
|
|
struct kretprobe_instance, hlist);
|
|
hlist_del(&ri->hlist);
|
|
spin_unlock_irqrestore(&rp->lock, flags);
|
|
|
|
ri->rp = rp;
|
|
ri->task = current;
|
|
|
|
if (rp->entry_handler && rp->entry_handler(ri, regs))
|
|
return 0;
|
|
|
|
arch_prepare_kretprobe(ri, regs);
|
|
|
|
/* XXX(hch): why is there no hlist_move_head? */
|
|
INIT_HLIST_NODE(&ri->hlist);
|
|
kretprobe_table_lock(hash, &flags);
|
|
hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]);
|
|
kretprobe_table_unlock(hash, &flags);
|
|
} else {
|
|
rp->nmissed++;
|
|
spin_unlock_irqrestore(&rp->lock, flags);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int __kprobes register_kretprobe(struct kretprobe *rp)
|
|
{
|
|
int ret = 0;
|
|
struct kretprobe_instance *inst;
|
|
int i;
|
|
void *addr;
|
|
|
|
if (kretprobe_blacklist_size) {
|
|
addr = kprobe_addr(&rp->kp);
|
|
if (!addr)
|
|
return -EINVAL;
|
|
|
|
for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
|
|
if (kretprobe_blacklist[i].addr == addr)
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
rp->kp.pre_handler = pre_handler_kretprobe;
|
|
rp->kp.post_handler = NULL;
|
|
rp->kp.fault_handler = NULL;
|
|
rp->kp.break_handler = NULL;
|
|
|
|
/* Pre-allocate memory for max kretprobe instances */
|
|
if (rp->maxactive <= 0) {
|
|
#ifdef CONFIG_PREEMPT
|
|
rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
|
|
#else
|
|
rp->maxactive = num_possible_cpus();
|
|
#endif
|
|
}
|
|
spin_lock_init(&rp->lock);
|
|
INIT_HLIST_HEAD(&rp->free_instances);
|
|
for (i = 0; i < rp->maxactive; i++) {
|
|
inst = kmalloc(sizeof(struct kretprobe_instance) +
|
|
rp->data_size, GFP_KERNEL);
|
|
if (inst == NULL) {
|
|
free_rp_inst(rp);
|
|
return -ENOMEM;
|
|
}
|
|
INIT_HLIST_NODE(&inst->hlist);
|
|
hlist_add_head(&inst->hlist, &rp->free_instances);
|
|
}
|
|
|
|
rp->nmissed = 0;
|
|
/* Establish function entry probe point */
|
|
ret = register_kprobe(&rp->kp);
|
|
if (ret != 0)
|
|
free_rp_inst(rp);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(register_kretprobe);
|
|
|
|
int __kprobes register_kretprobes(struct kretprobe **rps, int num)
|
|
{
|
|
int ret = 0, i;
|
|
|
|
if (num <= 0)
|
|
return -EINVAL;
|
|
for (i = 0; i < num; i++) {
|
|
ret = register_kretprobe(rps[i]);
|
|
if (ret < 0) {
|
|
if (i > 0)
|
|
unregister_kretprobes(rps, i);
|
|
break;
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(register_kretprobes);
|
|
|
|
void __kprobes unregister_kretprobe(struct kretprobe *rp)
|
|
{
|
|
unregister_kretprobes(&rp, 1);
|
|
}
|
|
EXPORT_SYMBOL_GPL(unregister_kretprobe);
|
|
|
|
void __kprobes unregister_kretprobes(struct kretprobe **rps, int num)
|
|
{
|
|
int i;
|
|
|
|
if (num <= 0)
|
|
return;
|
|
mutex_lock(&kprobe_mutex);
|
|
for (i = 0; i < num; i++)
|
|
if (__unregister_kprobe_top(&rps[i]->kp) < 0)
|
|
rps[i]->kp.addr = NULL;
|
|
mutex_unlock(&kprobe_mutex);
|
|
|
|
synchronize_sched();
|
|
for (i = 0; i < num; i++) {
|
|
if (rps[i]->kp.addr) {
|
|
__unregister_kprobe_bottom(&rps[i]->kp);
|
|
cleanup_rp_inst(rps[i]);
|
|
}
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(unregister_kretprobes);
|
|
|
|
#else /* CONFIG_KRETPROBES */
|
|
int __kprobes register_kretprobe(struct kretprobe *rp)
|
|
{
|
|
return -ENOSYS;
|
|
}
|
|
EXPORT_SYMBOL_GPL(register_kretprobe);
|
|
|
|
int __kprobes register_kretprobes(struct kretprobe **rps, int num)
|
|
{
|
|
return -ENOSYS;
|
|
}
|
|
EXPORT_SYMBOL_GPL(register_kretprobes);
|
|
|
|
void __kprobes unregister_kretprobe(struct kretprobe *rp)
|
|
{
|
|
}
|
|
EXPORT_SYMBOL_GPL(unregister_kretprobe);
|
|
|
|
void __kprobes unregister_kretprobes(struct kretprobe **rps, int num)
|
|
{
|
|
}
|
|
EXPORT_SYMBOL_GPL(unregister_kretprobes);
|
|
|
|
static int __kprobes pre_handler_kretprobe(struct kprobe *p,
|
|
struct pt_regs *regs)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
#endif /* CONFIG_KRETPROBES */
|
|
|
|
/* Set the kprobe gone and remove its instruction buffer. */
|
|
static void __kprobes kill_kprobe(struct kprobe *p)
|
|
{
|
|
struct kprobe *kp;
|
|
|
|
p->flags |= KPROBE_FLAG_GONE;
|
|
if (kprobe_aggrprobe(p)) {
|
|
/*
|
|
* If this is an aggr_kprobe, we have to list all the
|
|
* chained probes and mark them GONE.
|
|
*/
|
|
list_for_each_entry_rcu(kp, &p->list, list)
|
|
kp->flags |= KPROBE_FLAG_GONE;
|
|
p->post_handler = NULL;
|
|
p->break_handler = NULL;
|
|
kill_optimized_kprobe(p);
|
|
}
|
|
/*
|
|
* Here, we can remove insn_slot safely, because no thread calls
|
|
* the original probed function (which will be freed soon) any more.
|
|
*/
|
|
arch_remove_kprobe(p);
|
|
}
|
|
|
|
/* Disable one kprobe */
|
|
int __kprobes disable_kprobe(struct kprobe *kp)
|
|
{
|
|
int ret = 0;
|
|
struct kprobe *p;
|
|
|
|
mutex_lock(&kprobe_mutex);
|
|
|
|
/* Check whether specified probe is valid. */
|
|
p = __get_valid_kprobe(kp);
|
|
if (unlikely(p == NULL)) {
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
/* If the probe is already disabled (or gone), just return */
|
|
if (kprobe_disabled(kp))
|
|
goto out;
|
|
|
|
kp->flags |= KPROBE_FLAG_DISABLED;
|
|
if (p != kp)
|
|
/* When kp != p, p is always enabled. */
|
|
try_to_disable_aggr_kprobe(p);
|
|
|
|
if (!kprobes_all_disarmed && kprobe_disabled(p))
|
|
disarm_kprobe(p);
|
|
out:
|
|
mutex_unlock(&kprobe_mutex);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(disable_kprobe);
|
|
|
|
/* Enable one kprobe */
|
|
int __kprobes enable_kprobe(struct kprobe *kp)
|
|
{
|
|
int ret = 0;
|
|
struct kprobe *p;
|
|
|
|
mutex_lock(&kprobe_mutex);
|
|
|
|
/* Check whether specified probe is valid. */
|
|
p = __get_valid_kprobe(kp);
|
|
if (unlikely(p == NULL)) {
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
if (kprobe_gone(kp)) {
|
|
/* This kprobe has gone, we couldn't enable it. */
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
if (p != kp)
|
|
kp->flags &= ~KPROBE_FLAG_DISABLED;
|
|
|
|
if (!kprobes_all_disarmed && kprobe_disabled(p)) {
|
|
p->flags &= ~KPROBE_FLAG_DISABLED;
|
|
arm_kprobe(p);
|
|
}
|
|
out:
|
|
mutex_unlock(&kprobe_mutex);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(enable_kprobe);
|
|
|
|
void __kprobes dump_kprobe(struct kprobe *kp)
|
|
{
|
|
printk(KERN_WARNING "Dumping kprobe:\n");
|
|
printk(KERN_WARNING "Name: %s\nAddress: %p\nOffset: %x\n",
|
|
kp->symbol_name, kp->addr, kp->offset);
|
|
}
|
|
|
|
/* Module notifier call back, checking kprobes on the module */
|
|
static int __kprobes kprobes_module_callback(struct notifier_block *nb,
|
|
unsigned long val, void *data)
|
|
{
|
|
struct module *mod = data;
|
|
struct hlist_head *head;
|
|
struct hlist_node *node;
|
|
struct kprobe *p;
|
|
unsigned int i;
|
|
int checkcore = (val == MODULE_STATE_GOING);
|
|
|
|
if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
|
|
return NOTIFY_DONE;
|
|
|
|
/*
|
|
* When MODULE_STATE_GOING was notified, both of module .text and
|
|
* .init.text sections would be freed. When MODULE_STATE_LIVE was
|
|
* notified, only .init.text section would be freed. We need to
|
|
* disable kprobes which have been inserted in the sections.
|
|
*/
|
|
mutex_lock(&kprobe_mutex);
|
|
for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
|
|
head = &kprobe_table[i];
|
|
hlist_for_each_entry_rcu(p, node, head, hlist)
|
|
if (within_module_init((unsigned long)p->addr, mod) ||
|
|
(checkcore &&
|
|
within_module_core((unsigned long)p->addr, mod))) {
|
|
/*
|
|
* The vaddr this probe is installed will soon
|
|
* be vfreed buy not synced to disk. Hence,
|
|
* disarming the breakpoint isn't needed.
|
|
*/
|
|
kill_kprobe(p);
|
|
}
|
|
}
|
|
mutex_unlock(&kprobe_mutex);
|
|
return NOTIFY_DONE;
|
|
}
|
|
|
|
static struct notifier_block kprobe_module_nb = {
|
|
.notifier_call = kprobes_module_callback,
|
|
.priority = 0
|
|
};
|
|
|
|
static int __init init_kprobes(void)
|
|
{
|
|
int i, err = 0;
|
|
unsigned long offset = 0, size = 0;
|
|
char *modname, namebuf[128];
|
|
const char *symbol_name;
|
|
void *addr;
|
|
struct kprobe_blackpoint *kb;
|
|
|
|
/* FIXME allocate the probe table, currently defined statically */
|
|
/* initialize all list heads */
|
|
for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
|
|
INIT_HLIST_HEAD(&kprobe_table[i]);
|
|
INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
|
|
spin_lock_init(&(kretprobe_table_locks[i].lock));
|
|
}
|
|
|
|
/*
|
|
* Lookup and populate the kprobe_blacklist.
|
|
*
|
|
* Unlike the kretprobe blacklist, we'll need to determine
|
|
* the range of addresses that belong to the said functions,
|
|
* since a kprobe need not necessarily be at the beginning
|
|
* of a function.
|
|
*/
|
|
for (kb = kprobe_blacklist; kb->name != NULL; kb++) {
|
|
kprobe_lookup_name(kb->name, addr);
|
|
if (!addr)
|
|
continue;
|
|
|
|
kb->start_addr = (unsigned long)addr;
|
|
symbol_name = kallsyms_lookup(kb->start_addr,
|
|
&size, &offset, &modname, namebuf);
|
|
if (!symbol_name)
|
|
kb->range = 0;
|
|
else
|
|
kb->range = size;
|
|
}
|
|
|
|
if (kretprobe_blacklist_size) {
|
|
/* lookup the function address from its name */
|
|
for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
|
|
kprobe_lookup_name(kretprobe_blacklist[i].name,
|
|
kretprobe_blacklist[i].addr);
|
|
if (!kretprobe_blacklist[i].addr)
|
|
printk("kretprobe: lookup failed: %s\n",
|
|
kretprobe_blacklist[i].name);
|
|
}
|
|
}
|
|
|
|
#if defined(CONFIG_OPTPROBES)
|
|
#if defined(__ARCH_WANT_KPROBES_INSN_SLOT)
|
|
/* Init kprobe_optinsn_slots */
|
|
kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
|
|
#endif
|
|
/* By default, kprobes can be optimized */
|
|
kprobes_allow_optimization = true;
|
|
#endif
|
|
|
|
/* By default, kprobes are armed */
|
|
kprobes_all_disarmed = false;
|
|
|
|
err = arch_init_kprobes();
|
|
if (!err)
|
|
err = register_die_notifier(&kprobe_exceptions_nb);
|
|
if (!err)
|
|
err = register_module_notifier(&kprobe_module_nb);
|
|
|
|
kprobes_initialized = (err == 0);
|
|
|
|
if (!err)
|
|
init_test_probes();
|
|
return err;
|
|
}
|
|
|
|
#ifdef CONFIG_DEBUG_FS
|
|
static void __kprobes report_probe(struct seq_file *pi, struct kprobe *p,
|
|
const char *sym, int offset, char *modname, struct kprobe *pp)
|
|
{
|
|
char *kprobe_type;
|
|
|
|
if (p->pre_handler == pre_handler_kretprobe)
|
|
kprobe_type = "r";
|
|
else if (p->pre_handler == setjmp_pre_handler)
|
|
kprobe_type = "j";
|
|
else
|
|
kprobe_type = "k";
|
|
|
|
if (sym)
|
|
seq_printf(pi, "%p %s %s+0x%x %s ",
|
|
p->addr, kprobe_type, sym, offset,
|
|
(modname ? modname : " "));
|
|
else
|
|
seq_printf(pi, "%p %s %p ",
|
|
p->addr, kprobe_type, p->addr);
|
|
|
|
if (!pp)
|
|
pp = p;
|
|
seq_printf(pi, "%s%s%s\n",
|
|
(kprobe_gone(p) ? "[GONE]" : ""),
|
|
((kprobe_disabled(p) && !kprobe_gone(p)) ? "[DISABLED]" : ""),
|
|
(kprobe_optimized(pp) ? "[OPTIMIZED]" : ""));
|
|
}
|
|
|
|
static void __kprobes *kprobe_seq_start(struct seq_file *f, loff_t *pos)
|
|
{
|
|
return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
|
|
}
|
|
|
|
static void __kprobes *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
|
|
{
|
|
(*pos)++;
|
|
if (*pos >= KPROBE_TABLE_SIZE)
|
|
return NULL;
|
|
return pos;
|
|
}
|
|
|
|
static void __kprobes kprobe_seq_stop(struct seq_file *f, void *v)
|
|
{
|
|
/* Nothing to do */
|
|
}
|
|
|
|
static int __kprobes show_kprobe_addr(struct seq_file *pi, void *v)
|
|
{
|
|
struct hlist_head *head;
|
|
struct hlist_node *node;
|
|
struct kprobe *p, *kp;
|
|
const char *sym = NULL;
|
|
unsigned int i = *(loff_t *) v;
|
|
unsigned long offset = 0;
|
|
char *modname, namebuf[128];
|
|
|
|
head = &kprobe_table[i];
|
|
preempt_disable();
|
|
hlist_for_each_entry_rcu(p, node, head, hlist) {
|
|
sym = kallsyms_lookup((unsigned long)p->addr, NULL,
|
|
&offset, &modname, namebuf);
|
|
if (kprobe_aggrprobe(p)) {
|
|
list_for_each_entry_rcu(kp, &p->list, list)
|
|
report_probe(pi, kp, sym, offset, modname, p);
|
|
} else
|
|
report_probe(pi, p, sym, offset, modname, NULL);
|
|
}
|
|
preempt_enable();
|
|
return 0;
|
|
}
|
|
|
|
static const struct seq_operations kprobes_seq_ops = {
|
|
.start = kprobe_seq_start,
|
|
.next = kprobe_seq_next,
|
|
.stop = kprobe_seq_stop,
|
|
.show = show_kprobe_addr
|
|
};
|
|
|
|
static int __kprobes kprobes_open(struct inode *inode, struct file *filp)
|
|
{
|
|
return seq_open(filp, &kprobes_seq_ops);
|
|
}
|
|
|
|
static const struct file_operations debugfs_kprobes_operations = {
|
|
.open = kprobes_open,
|
|
.read = seq_read,
|
|
.llseek = seq_lseek,
|
|
.release = seq_release,
|
|
};
|
|
|
|
static void __kprobes arm_all_kprobes(void)
|
|
{
|
|
struct hlist_head *head;
|
|
struct hlist_node *node;
|
|
struct kprobe *p;
|
|
unsigned int i;
|
|
|
|
mutex_lock(&kprobe_mutex);
|
|
|
|
/* If kprobes are armed, just return */
|
|
if (!kprobes_all_disarmed)
|
|
goto already_enabled;
|
|
|
|
/* Arming kprobes doesn't optimize kprobe itself */
|
|
mutex_lock(&text_mutex);
|
|
for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
|
|
head = &kprobe_table[i];
|
|
hlist_for_each_entry_rcu(p, node, head, hlist)
|
|
if (!kprobe_disabled(p))
|
|
__arm_kprobe(p);
|
|
}
|
|
mutex_unlock(&text_mutex);
|
|
|
|
kprobes_all_disarmed = false;
|
|
printk(KERN_INFO "Kprobes globally enabled\n");
|
|
|
|
already_enabled:
|
|
mutex_unlock(&kprobe_mutex);
|
|
return;
|
|
}
|
|
|
|
static void __kprobes disarm_all_kprobes(void)
|
|
{
|
|
struct hlist_head *head;
|
|
struct hlist_node *node;
|
|
struct kprobe *p;
|
|
unsigned int i;
|
|
|
|
mutex_lock(&kprobe_mutex);
|
|
|
|
/* If kprobes are already disarmed, just return */
|
|
if (kprobes_all_disarmed)
|
|
goto already_disabled;
|
|
|
|
kprobes_all_disarmed = true;
|
|
printk(KERN_INFO "Kprobes globally disabled\n");
|
|
|
|
/*
|
|
* Here we call get_online_cpus() for avoiding text_mutex deadlock,
|
|
* because disarming may also unoptimize kprobes.
|
|
*/
|
|
get_online_cpus();
|
|
mutex_lock(&text_mutex);
|
|
for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
|
|
head = &kprobe_table[i];
|
|
hlist_for_each_entry_rcu(p, node, head, hlist) {
|
|
if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p))
|
|
__disarm_kprobe(p);
|
|
}
|
|
}
|
|
|
|
mutex_unlock(&text_mutex);
|
|
put_online_cpus();
|
|
mutex_unlock(&kprobe_mutex);
|
|
/* Allow all currently running kprobes to complete */
|
|
synchronize_sched();
|
|
return;
|
|
|
|
already_disabled:
|
|
mutex_unlock(&kprobe_mutex);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* XXX: The debugfs bool file interface doesn't allow for callbacks
|
|
* when the bool state is switched. We can reuse that facility when
|
|
* available
|
|
*/
|
|
static ssize_t read_enabled_file_bool(struct file *file,
|
|
char __user *user_buf, size_t count, loff_t *ppos)
|
|
{
|
|
char buf[3];
|
|
|
|
if (!kprobes_all_disarmed)
|
|
buf[0] = '1';
|
|
else
|
|
buf[0] = '0';
|
|
buf[1] = '\n';
|
|
buf[2] = 0x00;
|
|
return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
|
|
}
|
|
|
|
static ssize_t write_enabled_file_bool(struct file *file,
|
|
const char __user *user_buf, size_t count, loff_t *ppos)
|
|
{
|
|
char buf[32];
|
|
int buf_size;
|
|
|
|
buf_size = min(count, (sizeof(buf)-1));
|
|
if (copy_from_user(buf, user_buf, buf_size))
|
|
return -EFAULT;
|
|
|
|
switch (buf[0]) {
|
|
case 'y':
|
|
case 'Y':
|
|
case '1':
|
|
arm_all_kprobes();
|
|
break;
|
|
case 'n':
|
|
case 'N':
|
|
case '0':
|
|
disarm_all_kprobes();
|
|
break;
|
|
}
|
|
|
|
return count;
|
|
}
|
|
|
|
static const struct file_operations fops_kp = {
|
|
.read = read_enabled_file_bool,
|
|
.write = write_enabled_file_bool,
|
|
.llseek = default_llseek,
|
|
};
|
|
|
|
static int __kprobes debugfs_kprobe_init(void)
|
|
{
|
|
struct dentry *dir, *file;
|
|
unsigned int value = 1;
|
|
|
|
dir = debugfs_create_dir("kprobes", NULL);
|
|
if (!dir)
|
|
return -ENOMEM;
|
|
|
|
file = debugfs_create_file("list", 0444, dir, NULL,
|
|
&debugfs_kprobes_operations);
|
|
if (!file) {
|
|
debugfs_remove(dir);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
file = debugfs_create_file("enabled", 0600, dir,
|
|
&value, &fops_kp);
|
|
if (!file) {
|
|
debugfs_remove(dir);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
late_initcall(debugfs_kprobe_init);
|
|
#endif /* CONFIG_DEBUG_FS */
|
|
|
|
module_init(init_kprobes);
|
|
|
|
/* defined in arch/.../kernel/kprobes.c */
|
|
EXPORT_SYMBOL_GPL(jprobe_return);
|