mirror of
https://github.com/torvalds/linux.git
synced 2024-11-07 04:32:03 +00:00
768fbc1876
New IO FPGA implementation for Versatile Express boards contain MMCI (PL180) cell with FIFO extended to 128 words (512 bytes). Matt Waddel reports that this patch improves MMC performance on his vexpress system, and also fixes "mmcblk0: error -5 transferring data" errors. Signed-off-by: Pawel Moll <pawel.moll@arm.com> Tested-by: Matt Waddel <matt.waddel@linaro.org> Signed-off-by: Chris Ball <cjb@laptop.org>
1345 lines
32 KiB
C
1345 lines
32 KiB
C
/*
|
|
* linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver
|
|
*
|
|
* Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
|
|
* Copyright (C) 2010 ST-Ericsson SA
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*/
|
|
#include <linux/module.h>
|
|
#include <linux/moduleparam.h>
|
|
#include <linux/init.h>
|
|
#include <linux/ioport.h>
|
|
#include <linux/device.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/err.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/log2.h>
|
|
#include <linux/mmc/host.h>
|
|
#include <linux/mmc/card.h>
|
|
#include <linux/amba/bus.h>
|
|
#include <linux/clk.h>
|
|
#include <linux/scatterlist.h>
|
|
#include <linux/gpio.h>
|
|
#include <linux/regulator/consumer.h>
|
|
#include <linux/dmaengine.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/amba/mmci.h>
|
|
|
|
#include <asm/div64.h>
|
|
#include <asm/io.h>
|
|
#include <asm/sizes.h>
|
|
|
|
#include "mmci.h"
|
|
|
|
#define DRIVER_NAME "mmci-pl18x"
|
|
|
|
static unsigned int fmax = 515633;
|
|
|
|
/**
|
|
* struct variant_data - MMCI variant-specific quirks
|
|
* @clkreg: default value for MCICLOCK register
|
|
* @clkreg_enable: enable value for MMCICLOCK register
|
|
* @datalength_bits: number of bits in the MMCIDATALENGTH register
|
|
* @fifosize: number of bytes that can be written when MMCI_TXFIFOEMPTY
|
|
* is asserted (likewise for RX)
|
|
* @fifohalfsize: number of bytes that can be written when MCI_TXFIFOHALFEMPTY
|
|
* is asserted (likewise for RX)
|
|
* @sdio: variant supports SDIO
|
|
* @st_clkdiv: true if using a ST-specific clock divider algorithm
|
|
*/
|
|
struct variant_data {
|
|
unsigned int clkreg;
|
|
unsigned int clkreg_enable;
|
|
unsigned int datalength_bits;
|
|
unsigned int fifosize;
|
|
unsigned int fifohalfsize;
|
|
bool sdio;
|
|
bool st_clkdiv;
|
|
};
|
|
|
|
static struct variant_data variant_arm = {
|
|
.fifosize = 16 * 4,
|
|
.fifohalfsize = 8 * 4,
|
|
.datalength_bits = 16,
|
|
};
|
|
|
|
static struct variant_data variant_arm_extended_fifo = {
|
|
.fifosize = 128 * 4,
|
|
.fifohalfsize = 64 * 4,
|
|
.datalength_bits = 16,
|
|
};
|
|
|
|
static struct variant_data variant_u300 = {
|
|
.fifosize = 16 * 4,
|
|
.fifohalfsize = 8 * 4,
|
|
.clkreg_enable = 1 << 13, /* HWFCEN */
|
|
.datalength_bits = 16,
|
|
.sdio = true,
|
|
};
|
|
|
|
static struct variant_data variant_ux500 = {
|
|
.fifosize = 30 * 4,
|
|
.fifohalfsize = 8 * 4,
|
|
.clkreg = MCI_CLK_ENABLE,
|
|
.clkreg_enable = 1 << 14, /* HWFCEN */
|
|
.datalength_bits = 24,
|
|
.sdio = true,
|
|
.st_clkdiv = true,
|
|
};
|
|
|
|
/*
|
|
* This must be called with host->lock held
|
|
*/
|
|
static void mmci_set_clkreg(struct mmci_host *host, unsigned int desired)
|
|
{
|
|
struct variant_data *variant = host->variant;
|
|
u32 clk = variant->clkreg;
|
|
|
|
if (desired) {
|
|
if (desired >= host->mclk) {
|
|
clk = MCI_CLK_BYPASS;
|
|
host->cclk = host->mclk;
|
|
} else if (variant->st_clkdiv) {
|
|
/*
|
|
* DB8500 TRM says f = mclk / (clkdiv + 2)
|
|
* => clkdiv = (mclk / f) - 2
|
|
* Round the divider up so we don't exceed the max
|
|
* frequency
|
|
*/
|
|
clk = DIV_ROUND_UP(host->mclk, desired) - 2;
|
|
if (clk >= 256)
|
|
clk = 255;
|
|
host->cclk = host->mclk / (clk + 2);
|
|
} else {
|
|
/*
|
|
* PL180 TRM says f = mclk / (2 * (clkdiv + 1))
|
|
* => clkdiv = mclk / (2 * f) - 1
|
|
*/
|
|
clk = host->mclk / (2 * desired) - 1;
|
|
if (clk >= 256)
|
|
clk = 255;
|
|
host->cclk = host->mclk / (2 * (clk + 1));
|
|
}
|
|
|
|
clk |= variant->clkreg_enable;
|
|
clk |= MCI_CLK_ENABLE;
|
|
/* This hasn't proven to be worthwhile */
|
|
/* clk |= MCI_CLK_PWRSAVE; */
|
|
}
|
|
|
|
if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
|
|
clk |= MCI_4BIT_BUS;
|
|
if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
|
|
clk |= MCI_ST_8BIT_BUS;
|
|
|
|
writel(clk, host->base + MMCICLOCK);
|
|
}
|
|
|
|
static void
|
|
mmci_request_end(struct mmci_host *host, struct mmc_request *mrq)
|
|
{
|
|
writel(0, host->base + MMCICOMMAND);
|
|
|
|
BUG_ON(host->data);
|
|
|
|
host->mrq = NULL;
|
|
host->cmd = NULL;
|
|
|
|
/*
|
|
* Need to drop the host lock here; mmc_request_done may call
|
|
* back into the driver...
|
|
*/
|
|
spin_unlock(&host->lock);
|
|
mmc_request_done(host->mmc, mrq);
|
|
spin_lock(&host->lock);
|
|
}
|
|
|
|
static void mmci_set_mask1(struct mmci_host *host, unsigned int mask)
|
|
{
|
|
void __iomem *base = host->base;
|
|
|
|
if (host->singleirq) {
|
|
unsigned int mask0 = readl(base + MMCIMASK0);
|
|
|
|
mask0 &= ~MCI_IRQ1MASK;
|
|
mask0 |= mask;
|
|
|
|
writel(mask0, base + MMCIMASK0);
|
|
}
|
|
|
|
writel(mask, base + MMCIMASK1);
|
|
}
|
|
|
|
static void mmci_stop_data(struct mmci_host *host)
|
|
{
|
|
writel(0, host->base + MMCIDATACTRL);
|
|
mmci_set_mask1(host, 0);
|
|
host->data = NULL;
|
|
}
|
|
|
|
static void mmci_init_sg(struct mmci_host *host, struct mmc_data *data)
|
|
{
|
|
unsigned int flags = SG_MITER_ATOMIC;
|
|
|
|
if (data->flags & MMC_DATA_READ)
|
|
flags |= SG_MITER_TO_SG;
|
|
else
|
|
flags |= SG_MITER_FROM_SG;
|
|
|
|
sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
|
|
}
|
|
|
|
/*
|
|
* All the DMA operation mode stuff goes inside this ifdef.
|
|
* This assumes that you have a generic DMA device interface,
|
|
* no custom DMA interfaces are supported.
|
|
*/
|
|
#ifdef CONFIG_DMA_ENGINE
|
|
static void __devinit mmci_dma_setup(struct mmci_host *host)
|
|
{
|
|
struct mmci_platform_data *plat = host->plat;
|
|
const char *rxname, *txname;
|
|
dma_cap_mask_t mask;
|
|
|
|
if (!plat || !plat->dma_filter) {
|
|
dev_info(mmc_dev(host->mmc), "no DMA platform data\n");
|
|
return;
|
|
}
|
|
|
|
/* Try to acquire a generic DMA engine slave channel */
|
|
dma_cap_zero(mask);
|
|
dma_cap_set(DMA_SLAVE, mask);
|
|
|
|
/*
|
|
* If only an RX channel is specified, the driver will
|
|
* attempt to use it bidirectionally, however if it is
|
|
* is specified but cannot be located, DMA will be disabled.
|
|
*/
|
|
if (plat->dma_rx_param) {
|
|
host->dma_rx_channel = dma_request_channel(mask,
|
|
plat->dma_filter,
|
|
plat->dma_rx_param);
|
|
/* E.g if no DMA hardware is present */
|
|
if (!host->dma_rx_channel)
|
|
dev_err(mmc_dev(host->mmc), "no RX DMA channel\n");
|
|
}
|
|
|
|
if (plat->dma_tx_param) {
|
|
host->dma_tx_channel = dma_request_channel(mask,
|
|
plat->dma_filter,
|
|
plat->dma_tx_param);
|
|
if (!host->dma_tx_channel)
|
|
dev_warn(mmc_dev(host->mmc), "no TX DMA channel\n");
|
|
} else {
|
|
host->dma_tx_channel = host->dma_rx_channel;
|
|
}
|
|
|
|
if (host->dma_rx_channel)
|
|
rxname = dma_chan_name(host->dma_rx_channel);
|
|
else
|
|
rxname = "none";
|
|
|
|
if (host->dma_tx_channel)
|
|
txname = dma_chan_name(host->dma_tx_channel);
|
|
else
|
|
txname = "none";
|
|
|
|
dev_info(mmc_dev(host->mmc), "DMA channels RX %s, TX %s\n",
|
|
rxname, txname);
|
|
|
|
/*
|
|
* Limit the maximum segment size in any SG entry according to
|
|
* the parameters of the DMA engine device.
|
|
*/
|
|
if (host->dma_tx_channel) {
|
|
struct device *dev = host->dma_tx_channel->device->dev;
|
|
unsigned int max_seg_size = dma_get_max_seg_size(dev);
|
|
|
|
if (max_seg_size < host->mmc->max_seg_size)
|
|
host->mmc->max_seg_size = max_seg_size;
|
|
}
|
|
if (host->dma_rx_channel) {
|
|
struct device *dev = host->dma_rx_channel->device->dev;
|
|
unsigned int max_seg_size = dma_get_max_seg_size(dev);
|
|
|
|
if (max_seg_size < host->mmc->max_seg_size)
|
|
host->mmc->max_seg_size = max_seg_size;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* This is used in __devinit or __devexit so inline it
|
|
* so it can be discarded.
|
|
*/
|
|
static inline void mmci_dma_release(struct mmci_host *host)
|
|
{
|
|
struct mmci_platform_data *plat = host->plat;
|
|
|
|
if (host->dma_rx_channel)
|
|
dma_release_channel(host->dma_rx_channel);
|
|
if (host->dma_tx_channel && plat->dma_tx_param)
|
|
dma_release_channel(host->dma_tx_channel);
|
|
host->dma_rx_channel = host->dma_tx_channel = NULL;
|
|
}
|
|
|
|
static void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
|
|
{
|
|
struct dma_chan *chan = host->dma_current;
|
|
enum dma_data_direction dir;
|
|
u32 status;
|
|
int i;
|
|
|
|
/* Wait up to 1ms for the DMA to complete */
|
|
for (i = 0; ; i++) {
|
|
status = readl(host->base + MMCISTATUS);
|
|
if (!(status & MCI_RXDATAAVLBLMASK) || i >= 100)
|
|
break;
|
|
udelay(10);
|
|
}
|
|
|
|
/*
|
|
* Check to see whether we still have some data left in the FIFO -
|
|
* this catches DMA controllers which are unable to monitor the
|
|
* DMALBREQ and DMALSREQ signals while allowing us to DMA to non-
|
|
* contiguous buffers. On TX, we'll get a FIFO underrun error.
|
|
*/
|
|
if (status & MCI_RXDATAAVLBLMASK) {
|
|
dmaengine_terminate_all(chan);
|
|
if (!data->error)
|
|
data->error = -EIO;
|
|
}
|
|
|
|
if (data->flags & MMC_DATA_WRITE) {
|
|
dir = DMA_TO_DEVICE;
|
|
} else {
|
|
dir = DMA_FROM_DEVICE;
|
|
}
|
|
|
|
dma_unmap_sg(chan->device->dev, data->sg, data->sg_len, dir);
|
|
|
|
/*
|
|
* Use of DMA with scatter-gather is impossible.
|
|
* Give up with DMA and switch back to PIO mode.
|
|
*/
|
|
if (status & MCI_RXDATAAVLBLMASK) {
|
|
dev_err(mmc_dev(host->mmc), "buggy DMA detected. Taking evasive action.\n");
|
|
mmci_dma_release(host);
|
|
}
|
|
}
|
|
|
|
static void mmci_dma_data_error(struct mmci_host *host)
|
|
{
|
|
dev_err(mmc_dev(host->mmc), "error during DMA transfer!\n");
|
|
dmaengine_terminate_all(host->dma_current);
|
|
}
|
|
|
|
static int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
|
|
{
|
|
struct variant_data *variant = host->variant;
|
|
struct dma_slave_config conf = {
|
|
.src_addr = host->phybase + MMCIFIFO,
|
|
.dst_addr = host->phybase + MMCIFIFO,
|
|
.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
|
|
.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
|
|
.src_maxburst = variant->fifohalfsize >> 2, /* # of words */
|
|
.dst_maxburst = variant->fifohalfsize >> 2, /* # of words */
|
|
};
|
|
struct mmc_data *data = host->data;
|
|
struct dma_chan *chan;
|
|
struct dma_device *device;
|
|
struct dma_async_tx_descriptor *desc;
|
|
int nr_sg;
|
|
|
|
host->dma_current = NULL;
|
|
|
|
if (data->flags & MMC_DATA_READ) {
|
|
conf.direction = DMA_FROM_DEVICE;
|
|
chan = host->dma_rx_channel;
|
|
} else {
|
|
conf.direction = DMA_TO_DEVICE;
|
|
chan = host->dma_tx_channel;
|
|
}
|
|
|
|
/* If there's no DMA channel, fall back to PIO */
|
|
if (!chan)
|
|
return -EINVAL;
|
|
|
|
/* If less than or equal to the fifo size, don't bother with DMA */
|
|
if (host->size <= variant->fifosize)
|
|
return -EINVAL;
|
|
|
|
device = chan->device;
|
|
nr_sg = dma_map_sg(device->dev, data->sg, data->sg_len, conf.direction);
|
|
if (nr_sg == 0)
|
|
return -EINVAL;
|
|
|
|
dmaengine_slave_config(chan, &conf);
|
|
desc = device->device_prep_slave_sg(chan, data->sg, nr_sg,
|
|
conf.direction, DMA_CTRL_ACK);
|
|
if (!desc)
|
|
goto unmap_exit;
|
|
|
|
/* Okay, go for it. */
|
|
host->dma_current = chan;
|
|
|
|
dev_vdbg(mmc_dev(host->mmc),
|
|
"Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n",
|
|
data->sg_len, data->blksz, data->blocks, data->flags);
|
|
dmaengine_submit(desc);
|
|
dma_async_issue_pending(chan);
|
|
|
|
datactrl |= MCI_DPSM_DMAENABLE;
|
|
|
|
/* Trigger the DMA transfer */
|
|
writel(datactrl, host->base + MMCIDATACTRL);
|
|
|
|
/*
|
|
* Let the MMCI say when the data is ended and it's time
|
|
* to fire next DMA request. When that happens, MMCI will
|
|
* call mmci_data_end()
|
|
*/
|
|
writel(readl(host->base + MMCIMASK0) | MCI_DATAENDMASK,
|
|
host->base + MMCIMASK0);
|
|
return 0;
|
|
|
|
unmap_exit:
|
|
dmaengine_terminate_all(chan);
|
|
dma_unmap_sg(device->dev, data->sg, data->sg_len, conf.direction);
|
|
return -ENOMEM;
|
|
}
|
|
#else
|
|
/* Blank functions if the DMA engine is not available */
|
|
static inline void mmci_dma_setup(struct mmci_host *host)
|
|
{
|
|
}
|
|
|
|
static inline void mmci_dma_release(struct mmci_host *host)
|
|
{
|
|
}
|
|
|
|
static inline void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
|
|
{
|
|
}
|
|
|
|
static inline void mmci_dma_data_error(struct mmci_host *host)
|
|
{
|
|
}
|
|
|
|
static inline int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
|
|
{
|
|
return -ENOSYS;
|
|
}
|
|
#endif
|
|
|
|
static void mmci_start_data(struct mmci_host *host, struct mmc_data *data)
|
|
{
|
|
struct variant_data *variant = host->variant;
|
|
unsigned int datactrl, timeout, irqmask;
|
|
unsigned long long clks;
|
|
void __iomem *base;
|
|
int blksz_bits;
|
|
|
|
dev_dbg(mmc_dev(host->mmc), "blksz %04x blks %04x flags %08x\n",
|
|
data->blksz, data->blocks, data->flags);
|
|
|
|
host->data = data;
|
|
host->size = data->blksz * data->blocks;
|
|
data->bytes_xfered = 0;
|
|
|
|
clks = (unsigned long long)data->timeout_ns * host->cclk;
|
|
do_div(clks, 1000000000UL);
|
|
|
|
timeout = data->timeout_clks + (unsigned int)clks;
|
|
|
|
base = host->base;
|
|
writel(timeout, base + MMCIDATATIMER);
|
|
writel(host->size, base + MMCIDATALENGTH);
|
|
|
|
blksz_bits = ffs(data->blksz) - 1;
|
|
BUG_ON(1 << blksz_bits != data->blksz);
|
|
|
|
datactrl = MCI_DPSM_ENABLE | blksz_bits << 4;
|
|
|
|
if (data->flags & MMC_DATA_READ)
|
|
datactrl |= MCI_DPSM_DIRECTION;
|
|
|
|
/*
|
|
* Attempt to use DMA operation mode, if this
|
|
* should fail, fall back to PIO mode
|
|
*/
|
|
if (!mmci_dma_start_data(host, datactrl))
|
|
return;
|
|
|
|
/* IRQ mode, map the SG list for CPU reading/writing */
|
|
mmci_init_sg(host, data);
|
|
|
|
if (data->flags & MMC_DATA_READ) {
|
|
irqmask = MCI_RXFIFOHALFFULLMASK;
|
|
|
|
/*
|
|
* If we have less than the fifo 'half-full' threshold to
|
|
* transfer, trigger a PIO interrupt as soon as any data
|
|
* is available.
|
|
*/
|
|
if (host->size < variant->fifohalfsize)
|
|
irqmask |= MCI_RXDATAAVLBLMASK;
|
|
} else {
|
|
/*
|
|
* We don't actually need to include "FIFO empty" here
|
|
* since its implicit in "FIFO half empty".
|
|
*/
|
|
irqmask = MCI_TXFIFOHALFEMPTYMASK;
|
|
}
|
|
|
|
/* The ST Micro variants has a special bit to enable SDIO */
|
|
if (variant->sdio && host->mmc->card)
|
|
if (mmc_card_sdio(host->mmc->card))
|
|
datactrl |= MCI_ST_DPSM_SDIOEN;
|
|
|
|
writel(datactrl, base + MMCIDATACTRL);
|
|
writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0);
|
|
mmci_set_mask1(host, irqmask);
|
|
}
|
|
|
|
static void
|
|
mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c)
|
|
{
|
|
void __iomem *base = host->base;
|
|
|
|
dev_dbg(mmc_dev(host->mmc), "op %02x arg %08x flags %08x\n",
|
|
cmd->opcode, cmd->arg, cmd->flags);
|
|
|
|
if (readl(base + MMCICOMMAND) & MCI_CPSM_ENABLE) {
|
|
writel(0, base + MMCICOMMAND);
|
|
udelay(1);
|
|
}
|
|
|
|
c |= cmd->opcode | MCI_CPSM_ENABLE;
|
|
if (cmd->flags & MMC_RSP_PRESENT) {
|
|
if (cmd->flags & MMC_RSP_136)
|
|
c |= MCI_CPSM_LONGRSP;
|
|
c |= MCI_CPSM_RESPONSE;
|
|
}
|
|
if (/*interrupt*/0)
|
|
c |= MCI_CPSM_INTERRUPT;
|
|
|
|
host->cmd = cmd;
|
|
|
|
writel(cmd->arg, base + MMCIARGUMENT);
|
|
writel(c, base + MMCICOMMAND);
|
|
}
|
|
|
|
static void
|
|
mmci_data_irq(struct mmci_host *host, struct mmc_data *data,
|
|
unsigned int status)
|
|
{
|
|
/* First check for errors */
|
|
if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_TXUNDERRUN|MCI_RXOVERRUN)) {
|
|
u32 remain, success;
|
|
|
|
/* Terminate the DMA transfer */
|
|
if (dma_inprogress(host))
|
|
mmci_dma_data_error(host);
|
|
|
|
/*
|
|
* Calculate how far we are into the transfer. Note that
|
|
* the data counter gives the number of bytes transferred
|
|
* on the MMC bus, not on the host side. On reads, this
|
|
* can be as much as a FIFO-worth of data ahead. This
|
|
* matters for FIFO overruns only.
|
|
*/
|
|
remain = readl(host->base + MMCIDATACNT);
|
|
success = data->blksz * data->blocks - remain;
|
|
|
|
dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n",
|
|
status, success);
|
|
if (status & MCI_DATACRCFAIL) {
|
|
/* Last block was not successful */
|
|
success -= 1;
|
|
data->error = -EILSEQ;
|
|
} else if (status & MCI_DATATIMEOUT) {
|
|
data->error = -ETIMEDOUT;
|
|
} else if (status & MCI_TXUNDERRUN) {
|
|
data->error = -EIO;
|
|
} else if (status & MCI_RXOVERRUN) {
|
|
if (success > host->variant->fifosize)
|
|
success -= host->variant->fifosize;
|
|
else
|
|
success = 0;
|
|
data->error = -EIO;
|
|
}
|
|
data->bytes_xfered = round_down(success, data->blksz);
|
|
}
|
|
|
|
if (status & MCI_DATABLOCKEND)
|
|
dev_err(mmc_dev(host->mmc), "stray MCI_DATABLOCKEND interrupt\n");
|
|
|
|
if (status & MCI_DATAEND || data->error) {
|
|
if (dma_inprogress(host))
|
|
mmci_dma_unmap(host, data);
|
|
mmci_stop_data(host);
|
|
|
|
if (!data->error)
|
|
/* The error clause is handled above, success! */
|
|
data->bytes_xfered = data->blksz * data->blocks;
|
|
|
|
if (!data->stop) {
|
|
mmci_request_end(host, data->mrq);
|
|
} else {
|
|
mmci_start_command(host, data->stop, 0);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd,
|
|
unsigned int status)
|
|
{
|
|
void __iomem *base = host->base;
|
|
|
|
host->cmd = NULL;
|
|
|
|
if (status & MCI_CMDTIMEOUT) {
|
|
cmd->error = -ETIMEDOUT;
|
|
} else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) {
|
|
cmd->error = -EILSEQ;
|
|
} else {
|
|
cmd->resp[0] = readl(base + MMCIRESPONSE0);
|
|
cmd->resp[1] = readl(base + MMCIRESPONSE1);
|
|
cmd->resp[2] = readl(base + MMCIRESPONSE2);
|
|
cmd->resp[3] = readl(base + MMCIRESPONSE3);
|
|
}
|
|
|
|
if (!cmd->data || cmd->error) {
|
|
if (host->data)
|
|
mmci_stop_data(host);
|
|
mmci_request_end(host, cmd->mrq);
|
|
} else if (!(cmd->data->flags & MMC_DATA_READ)) {
|
|
mmci_start_data(host, cmd->data);
|
|
}
|
|
}
|
|
|
|
static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain)
|
|
{
|
|
void __iomem *base = host->base;
|
|
char *ptr = buffer;
|
|
u32 status;
|
|
int host_remain = host->size;
|
|
|
|
do {
|
|
int count = host_remain - (readl(base + MMCIFIFOCNT) << 2);
|
|
|
|
if (count > remain)
|
|
count = remain;
|
|
|
|
if (count <= 0)
|
|
break;
|
|
|
|
readsl(base + MMCIFIFO, ptr, count >> 2);
|
|
|
|
ptr += count;
|
|
remain -= count;
|
|
host_remain -= count;
|
|
|
|
if (remain == 0)
|
|
break;
|
|
|
|
status = readl(base + MMCISTATUS);
|
|
} while (status & MCI_RXDATAAVLBL);
|
|
|
|
return ptr - buffer;
|
|
}
|
|
|
|
static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status)
|
|
{
|
|
struct variant_data *variant = host->variant;
|
|
void __iomem *base = host->base;
|
|
char *ptr = buffer;
|
|
|
|
do {
|
|
unsigned int count, maxcnt;
|
|
|
|
maxcnt = status & MCI_TXFIFOEMPTY ?
|
|
variant->fifosize : variant->fifohalfsize;
|
|
count = min(remain, maxcnt);
|
|
|
|
/*
|
|
* The ST Micro variant for SDIO transfer sizes
|
|
* less then 8 bytes should have clock H/W flow
|
|
* control disabled.
|
|
*/
|
|
if (variant->sdio &&
|
|
mmc_card_sdio(host->mmc->card)) {
|
|
if (count < 8)
|
|
writel(readl(host->base + MMCICLOCK) &
|
|
~variant->clkreg_enable,
|
|
host->base + MMCICLOCK);
|
|
else
|
|
writel(readl(host->base + MMCICLOCK) |
|
|
variant->clkreg_enable,
|
|
host->base + MMCICLOCK);
|
|
}
|
|
|
|
/*
|
|
* SDIO especially may want to send something that is
|
|
* not divisible by 4 (as opposed to card sectors
|
|
* etc), and the FIFO only accept full 32-bit writes.
|
|
* So compensate by adding +3 on the count, a single
|
|
* byte become a 32bit write, 7 bytes will be two
|
|
* 32bit writes etc.
|
|
*/
|
|
writesl(base + MMCIFIFO, ptr, (count + 3) >> 2);
|
|
|
|
ptr += count;
|
|
remain -= count;
|
|
|
|
if (remain == 0)
|
|
break;
|
|
|
|
status = readl(base + MMCISTATUS);
|
|
} while (status & MCI_TXFIFOHALFEMPTY);
|
|
|
|
return ptr - buffer;
|
|
}
|
|
|
|
/*
|
|
* PIO data transfer IRQ handler.
|
|
*/
|
|
static irqreturn_t mmci_pio_irq(int irq, void *dev_id)
|
|
{
|
|
struct mmci_host *host = dev_id;
|
|
struct sg_mapping_iter *sg_miter = &host->sg_miter;
|
|
struct variant_data *variant = host->variant;
|
|
void __iomem *base = host->base;
|
|
unsigned long flags;
|
|
u32 status;
|
|
|
|
status = readl(base + MMCISTATUS);
|
|
|
|
dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status);
|
|
|
|
local_irq_save(flags);
|
|
|
|
do {
|
|
unsigned int remain, len;
|
|
char *buffer;
|
|
|
|
/*
|
|
* For write, we only need to test the half-empty flag
|
|
* here - if the FIFO is completely empty, then by
|
|
* definition it is more than half empty.
|
|
*
|
|
* For read, check for data available.
|
|
*/
|
|
if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL)))
|
|
break;
|
|
|
|
if (!sg_miter_next(sg_miter))
|
|
break;
|
|
|
|
buffer = sg_miter->addr;
|
|
remain = sg_miter->length;
|
|
|
|
len = 0;
|
|
if (status & MCI_RXACTIVE)
|
|
len = mmci_pio_read(host, buffer, remain);
|
|
if (status & MCI_TXACTIVE)
|
|
len = mmci_pio_write(host, buffer, remain, status);
|
|
|
|
sg_miter->consumed = len;
|
|
|
|
host->size -= len;
|
|
remain -= len;
|
|
|
|
if (remain)
|
|
break;
|
|
|
|
status = readl(base + MMCISTATUS);
|
|
} while (1);
|
|
|
|
sg_miter_stop(sg_miter);
|
|
|
|
local_irq_restore(flags);
|
|
|
|
/*
|
|
* If we have less than the fifo 'half-full' threshold to transfer,
|
|
* trigger a PIO interrupt as soon as any data is available.
|
|
*/
|
|
if (status & MCI_RXACTIVE && host->size < variant->fifohalfsize)
|
|
mmci_set_mask1(host, MCI_RXDATAAVLBLMASK);
|
|
|
|
/*
|
|
* If we run out of data, disable the data IRQs; this
|
|
* prevents a race where the FIFO becomes empty before
|
|
* the chip itself has disabled the data path, and
|
|
* stops us racing with our data end IRQ.
|
|
*/
|
|
if (host->size == 0) {
|
|
mmci_set_mask1(host, 0);
|
|
writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0);
|
|
}
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
/*
|
|
* Handle completion of command and data transfers.
|
|
*/
|
|
static irqreturn_t mmci_irq(int irq, void *dev_id)
|
|
{
|
|
struct mmci_host *host = dev_id;
|
|
u32 status;
|
|
int ret = 0;
|
|
|
|
spin_lock(&host->lock);
|
|
|
|
do {
|
|
struct mmc_command *cmd;
|
|
struct mmc_data *data;
|
|
|
|
status = readl(host->base + MMCISTATUS);
|
|
|
|
if (host->singleirq) {
|
|
if (status & readl(host->base + MMCIMASK1))
|
|
mmci_pio_irq(irq, dev_id);
|
|
|
|
status &= ~MCI_IRQ1MASK;
|
|
}
|
|
|
|
status &= readl(host->base + MMCIMASK0);
|
|
writel(status, host->base + MMCICLEAR);
|
|
|
|
dev_dbg(mmc_dev(host->mmc), "irq0 (data+cmd) %08x\n", status);
|
|
|
|
data = host->data;
|
|
if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_TXUNDERRUN|
|
|
MCI_RXOVERRUN|MCI_DATAEND|MCI_DATABLOCKEND) && data)
|
|
mmci_data_irq(host, data, status);
|
|
|
|
cmd = host->cmd;
|
|
if (status & (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT|MCI_CMDSENT|MCI_CMDRESPEND) && cmd)
|
|
mmci_cmd_irq(host, cmd, status);
|
|
|
|
ret = 1;
|
|
} while (status);
|
|
|
|
spin_unlock(&host->lock);
|
|
|
|
return IRQ_RETVAL(ret);
|
|
}
|
|
|
|
static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq)
|
|
{
|
|
struct mmci_host *host = mmc_priv(mmc);
|
|
unsigned long flags;
|
|
|
|
WARN_ON(host->mrq != NULL);
|
|
|
|
if (mrq->data && !is_power_of_2(mrq->data->blksz)) {
|
|
dev_err(mmc_dev(mmc), "unsupported block size (%d bytes)\n",
|
|
mrq->data->blksz);
|
|
mrq->cmd->error = -EINVAL;
|
|
mmc_request_done(mmc, mrq);
|
|
return;
|
|
}
|
|
|
|
spin_lock_irqsave(&host->lock, flags);
|
|
|
|
host->mrq = mrq;
|
|
|
|
if (mrq->data && mrq->data->flags & MMC_DATA_READ)
|
|
mmci_start_data(host, mrq->data);
|
|
|
|
mmci_start_command(host, mrq->cmd, 0);
|
|
|
|
spin_unlock_irqrestore(&host->lock, flags);
|
|
}
|
|
|
|
static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
|
|
{
|
|
struct mmci_host *host = mmc_priv(mmc);
|
|
u32 pwr = 0;
|
|
unsigned long flags;
|
|
int ret;
|
|
|
|
switch (ios->power_mode) {
|
|
case MMC_POWER_OFF:
|
|
if (host->vcc)
|
|
ret = mmc_regulator_set_ocr(mmc, host->vcc, 0);
|
|
break;
|
|
case MMC_POWER_UP:
|
|
if (host->vcc) {
|
|
ret = mmc_regulator_set_ocr(mmc, host->vcc, ios->vdd);
|
|
if (ret) {
|
|
dev_err(mmc_dev(mmc), "unable to set OCR\n");
|
|
/*
|
|
* The .set_ios() function in the mmc_host_ops
|
|
* struct return void, and failing to set the
|
|
* power should be rare so we print an error
|
|
* and return here.
|
|
*/
|
|
return;
|
|
}
|
|
}
|
|
if (host->plat->vdd_handler)
|
|
pwr |= host->plat->vdd_handler(mmc_dev(mmc), ios->vdd,
|
|
ios->power_mode);
|
|
/* The ST version does not have this, fall through to POWER_ON */
|
|
if (host->hw_designer != AMBA_VENDOR_ST) {
|
|
pwr |= MCI_PWR_UP;
|
|
break;
|
|
}
|
|
case MMC_POWER_ON:
|
|
pwr |= MCI_PWR_ON;
|
|
break;
|
|
}
|
|
|
|
if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN) {
|
|
if (host->hw_designer != AMBA_VENDOR_ST)
|
|
pwr |= MCI_ROD;
|
|
else {
|
|
/*
|
|
* The ST Micro variant use the ROD bit for something
|
|
* else and only has OD (Open Drain).
|
|
*/
|
|
pwr |= MCI_OD;
|
|
}
|
|
}
|
|
|
|
spin_lock_irqsave(&host->lock, flags);
|
|
|
|
mmci_set_clkreg(host, ios->clock);
|
|
|
|
if (host->pwr != pwr) {
|
|
host->pwr = pwr;
|
|
writel(pwr, host->base + MMCIPOWER);
|
|
}
|
|
|
|
spin_unlock_irqrestore(&host->lock, flags);
|
|
}
|
|
|
|
static int mmci_get_ro(struct mmc_host *mmc)
|
|
{
|
|
struct mmci_host *host = mmc_priv(mmc);
|
|
|
|
if (host->gpio_wp == -ENOSYS)
|
|
return -ENOSYS;
|
|
|
|
return gpio_get_value_cansleep(host->gpio_wp);
|
|
}
|
|
|
|
static int mmci_get_cd(struct mmc_host *mmc)
|
|
{
|
|
struct mmci_host *host = mmc_priv(mmc);
|
|
struct mmci_platform_data *plat = host->plat;
|
|
unsigned int status;
|
|
|
|
if (host->gpio_cd == -ENOSYS) {
|
|
if (!plat->status)
|
|
return 1; /* Assume always present */
|
|
|
|
status = plat->status(mmc_dev(host->mmc));
|
|
} else
|
|
status = !!gpio_get_value_cansleep(host->gpio_cd)
|
|
^ plat->cd_invert;
|
|
|
|
/*
|
|
* Use positive logic throughout - status is zero for no card,
|
|
* non-zero for card inserted.
|
|
*/
|
|
return status;
|
|
}
|
|
|
|
static irqreturn_t mmci_cd_irq(int irq, void *dev_id)
|
|
{
|
|
struct mmci_host *host = dev_id;
|
|
|
|
mmc_detect_change(host->mmc, msecs_to_jiffies(500));
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static const struct mmc_host_ops mmci_ops = {
|
|
.request = mmci_request,
|
|
.set_ios = mmci_set_ios,
|
|
.get_ro = mmci_get_ro,
|
|
.get_cd = mmci_get_cd,
|
|
};
|
|
|
|
static int __devinit mmci_probe(struct amba_device *dev,
|
|
const struct amba_id *id)
|
|
{
|
|
struct mmci_platform_data *plat = dev->dev.platform_data;
|
|
struct variant_data *variant = id->data;
|
|
struct mmci_host *host;
|
|
struct mmc_host *mmc;
|
|
int ret;
|
|
|
|
/* must have platform data */
|
|
if (!plat) {
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
ret = amba_request_regions(dev, DRIVER_NAME);
|
|
if (ret)
|
|
goto out;
|
|
|
|
mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev);
|
|
if (!mmc) {
|
|
ret = -ENOMEM;
|
|
goto rel_regions;
|
|
}
|
|
|
|
host = mmc_priv(mmc);
|
|
host->mmc = mmc;
|
|
|
|
host->gpio_wp = -ENOSYS;
|
|
host->gpio_cd = -ENOSYS;
|
|
host->gpio_cd_irq = -1;
|
|
|
|
host->hw_designer = amba_manf(dev);
|
|
host->hw_revision = amba_rev(dev);
|
|
dev_dbg(mmc_dev(mmc), "designer ID = 0x%02x\n", host->hw_designer);
|
|
dev_dbg(mmc_dev(mmc), "revision = 0x%01x\n", host->hw_revision);
|
|
|
|
host->clk = clk_get(&dev->dev, NULL);
|
|
if (IS_ERR(host->clk)) {
|
|
ret = PTR_ERR(host->clk);
|
|
host->clk = NULL;
|
|
goto host_free;
|
|
}
|
|
|
|
ret = clk_enable(host->clk);
|
|
if (ret)
|
|
goto clk_free;
|
|
|
|
host->plat = plat;
|
|
host->variant = variant;
|
|
host->mclk = clk_get_rate(host->clk);
|
|
/*
|
|
* According to the spec, mclk is max 100 MHz,
|
|
* so we try to adjust the clock down to this,
|
|
* (if possible).
|
|
*/
|
|
if (host->mclk > 100000000) {
|
|
ret = clk_set_rate(host->clk, 100000000);
|
|
if (ret < 0)
|
|
goto clk_disable;
|
|
host->mclk = clk_get_rate(host->clk);
|
|
dev_dbg(mmc_dev(mmc), "eventual mclk rate: %u Hz\n",
|
|
host->mclk);
|
|
}
|
|
host->phybase = dev->res.start;
|
|
host->base = ioremap(dev->res.start, resource_size(&dev->res));
|
|
if (!host->base) {
|
|
ret = -ENOMEM;
|
|
goto clk_disable;
|
|
}
|
|
|
|
mmc->ops = &mmci_ops;
|
|
mmc->f_min = (host->mclk + 511) / 512;
|
|
/*
|
|
* If the platform data supplies a maximum operating
|
|
* frequency, this takes precedence. Else, we fall back
|
|
* to using the module parameter, which has a (low)
|
|
* default value in case it is not specified. Either
|
|
* value must not exceed the clock rate into the block,
|
|
* of course.
|
|
*/
|
|
if (plat->f_max)
|
|
mmc->f_max = min(host->mclk, plat->f_max);
|
|
else
|
|
mmc->f_max = min(host->mclk, fmax);
|
|
dev_dbg(mmc_dev(mmc), "clocking block at %u Hz\n", mmc->f_max);
|
|
|
|
#ifdef CONFIG_REGULATOR
|
|
/* If we're using the regulator framework, try to fetch a regulator */
|
|
host->vcc = regulator_get(&dev->dev, "vmmc");
|
|
if (IS_ERR(host->vcc))
|
|
host->vcc = NULL;
|
|
else {
|
|
int mask = mmc_regulator_get_ocrmask(host->vcc);
|
|
|
|
if (mask < 0)
|
|
dev_err(&dev->dev, "error getting OCR mask (%d)\n",
|
|
mask);
|
|
else {
|
|
host->mmc->ocr_avail = (u32) mask;
|
|
if (plat->ocr_mask)
|
|
dev_warn(&dev->dev,
|
|
"Provided ocr_mask/setpower will not be used "
|
|
"(using regulator instead)\n");
|
|
}
|
|
}
|
|
#endif
|
|
/* Fall back to platform data if no regulator is found */
|
|
if (host->vcc == NULL)
|
|
mmc->ocr_avail = plat->ocr_mask;
|
|
mmc->caps = plat->capabilities;
|
|
|
|
/*
|
|
* We can do SGIO
|
|
*/
|
|
mmc->max_segs = NR_SG;
|
|
|
|
/*
|
|
* Since only a certain number of bits are valid in the data length
|
|
* register, we must ensure that we don't exceed 2^num-1 bytes in a
|
|
* single request.
|
|
*/
|
|
mmc->max_req_size = (1 << variant->datalength_bits) - 1;
|
|
|
|
/*
|
|
* Set the maximum segment size. Since we aren't doing DMA
|
|
* (yet) we are only limited by the data length register.
|
|
*/
|
|
mmc->max_seg_size = mmc->max_req_size;
|
|
|
|
/*
|
|
* Block size can be up to 2048 bytes, but must be a power of two.
|
|
*/
|
|
mmc->max_blk_size = 2048;
|
|
|
|
/*
|
|
* No limit on the number of blocks transferred.
|
|
*/
|
|
mmc->max_blk_count = mmc->max_req_size;
|
|
|
|
spin_lock_init(&host->lock);
|
|
|
|
writel(0, host->base + MMCIMASK0);
|
|
writel(0, host->base + MMCIMASK1);
|
|
writel(0xfff, host->base + MMCICLEAR);
|
|
|
|
if (gpio_is_valid(plat->gpio_cd)) {
|
|
ret = gpio_request(plat->gpio_cd, DRIVER_NAME " (cd)");
|
|
if (ret == 0)
|
|
ret = gpio_direction_input(plat->gpio_cd);
|
|
if (ret == 0)
|
|
host->gpio_cd = plat->gpio_cd;
|
|
else if (ret != -ENOSYS)
|
|
goto err_gpio_cd;
|
|
|
|
ret = request_any_context_irq(gpio_to_irq(plat->gpio_cd),
|
|
mmci_cd_irq, 0,
|
|
DRIVER_NAME " (cd)", host);
|
|
if (ret >= 0)
|
|
host->gpio_cd_irq = gpio_to_irq(plat->gpio_cd);
|
|
}
|
|
if (gpio_is_valid(plat->gpio_wp)) {
|
|
ret = gpio_request(plat->gpio_wp, DRIVER_NAME " (wp)");
|
|
if (ret == 0)
|
|
ret = gpio_direction_input(plat->gpio_wp);
|
|
if (ret == 0)
|
|
host->gpio_wp = plat->gpio_wp;
|
|
else if (ret != -ENOSYS)
|
|
goto err_gpio_wp;
|
|
}
|
|
|
|
if ((host->plat->status || host->gpio_cd != -ENOSYS)
|
|
&& host->gpio_cd_irq < 0)
|
|
mmc->caps |= MMC_CAP_NEEDS_POLL;
|
|
|
|
ret = request_irq(dev->irq[0], mmci_irq, IRQF_SHARED, DRIVER_NAME " (cmd)", host);
|
|
if (ret)
|
|
goto unmap;
|
|
|
|
if (dev->irq[1] == NO_IRQ)
|
|
host->singleirq = true;
|
|
else {
|
|
ret = request_irq(dev->irq[1], mmci_pio_irq, IRQF_SHARED,
|
|
DRIVER_NAME " (pio)", host);
|
|
if (ret)
|
|
goto irq0_free;
|
|
}
|
|
|
|
writel(MCI_IRQENABLE, host->base + MMCIMASK0);
|
|
|
|
amba_set_drvdata(dev, mmc);
|
|
|
|
dev_info(&dev->dev, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n",
|
|
mmc_hostname(mmc), amba_part(dev), amba_manf(dev),
|
|
amba_rev(dev), (unsigned long long)dev->res.start,
|
|
dev->irq[0], dev->irq[1]);
|
|
|
|
mmci_dma_setup(host);
|
|
|
|
mmc_add_host(mmc);
|
|
|
|
return 0;
|
|
|
|
irq0_free:
|
|
free_irq(dev->irq[0], host);
|
|
unmap:
|
|
if (host->gpio_wp != -ENOSYS)
|
|
gpio_free(host->gpio_wp);
|
|
err_gpio_wp:
|
|
if (host->gpio_cd_irq >= 0)
|
|
free_irq(host->gpio_cd_irq, host);
|
|
if (host->gpio_cd != -ENOSYS)
|
|
gpio_free(host->gpio_cd);
|
|
err_gpio_cd:
|
|
iounmap(host->base);
|
|
clk_disable:
|
|
clk_disable(host->clk);
|
|
clk_free:
|
|
clk_put(host->clk);
|
|
host_free:
|
|
mmc_free_host(mmc);
|
|
rel_regions:
|
|
amba_release_regions(dev);
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
static int __devexit mmci_remove(struct amba_device *dev)
|
|
{
|
|
struct mmc_host *mmc = amba_get_drvdata(dev);
|
|
|
|
amba_set_drvdata(dev, NULL);
|
|
|
|
if (mmc) {
|
|
struct mmci_host *host = mmc_priv(mmc);
|
|
|
|
mmc_remove_host(mmc);
|
|
|
|
writel(0, host->base + MMCIMASK0);
|
|
writel(0, host->base + MMCIMASK1);
|
|
|
|
writel(0, host->base + MMCICOMMAND);
|
|
writel(0, host->base + MMCIDATACTRL);
|
|
|
|
mmci_dma_release(host);
|
|
free_irq(dev->irq[0], host);
|
|
if (!host->singleirq)
|
|
free_irq(dev->irq[1], host);
|
|
|
|
if (host->gpio_wp != -ENOSYS)
|
|
gpio_free(host->gpio_wp);
|
|
if (host->gpio_cd_irq >= 0)
|
|
free_irq(host->gpio_cd_irq, host);
|
|
if (host->gpio_cd != -ENOSYS)
|
|
gpio_free(host->gpio_cd);
|
|
|
|
iounmap(host->base);
|
|
clk_disable(host->clk);
|
|
clk_put(host->clk);
|
|
|
|
if (host->vcc)
|
|
mmc_regulator_set_ocr(mmc, host->vcc, 0);
|
|
regulator_put(host->vcc);
|
|
|
|
mmc_free_host(mmc);
|
|
|
|
amba_release_regions(dev);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_PM
|
|
static int mmci_suspend(struct amba_device *dev, pm_message_t state)
|
|
{
|
|
struct mmc_host *mmc = amba_get_drvdata(dev);
|
|
int ret = 0;
|
|
|
|
if (mmc) {
|
|
struct mmci_host *host = mmc_priv(mmc);
|
|
|
|
ret = mmc_suspend_host(mmc);
|
|
if (ret == 0)
|
|
writel(0, host->base + MMCIMASK0);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int mmci_resume(struct amba_device *dev)
|
|
{
|
|
struct mmc_host *mmc = amba_get_drvdata(dev);
|
|
int ret = 0;
|
|
|
|
if (mmc) {
|
|
struct mmci_host *host = mmc_priv(mmc);
|
|
|
|
writel(MCI_IRQENABLE, host->base + MMCIMASK0);
|
|
|
|
ret = mmc_resume_host(mmc);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
#else
|
|
#define mmci_suspend NULL
|
|
#define mmci_resume NULL
|
|
#endif
|
|
|
|
static struct amba_id mmci_ids[] = {
|
|
{
|
|
.id = 0x00041180,
|
|
.mask = 0xff0fffff,
|
|
.data = &variant_arm,
|
|
},
|
|
{
|
|
.id = 0x01041180,
|
|
.mask = 0xff0fffff,
|
|
.data = &variant_arm_extended_fifo,
|
|
},
|
|
{
|
|
.id = 0x00041181,
|
|
.mask = 0x000fffff,
|
|
.data = &variant_arm,
|
|
},
|
|
/* ST Micro variants */
|
|
{
|
|
.id = 0x00180180,
|
|
.mask = 0x00ffffff,
|
|
.data = &variant_u300,
|
|
},
|
|
{
|
|
.id = 0x00280180,
|
|
.mask = 0x00ffffff,
|
|
.data = &variant_u300,
|
|
},
|
|
{
|
|
.id = 0x00480180,
|
|
.mask = 0x00ffffff,
|
|
.data = &variant_ux500,
|
|
},
|
|
{ 0, 0 },
|
|
};
|
|
|
|
static struct amba_driver mmci_driver = {
|
|
.drv = {
|
|
.name = DRIVER_NAME,
|
|
},
|
|
.probe = mmci_probe,
|
|
.remove = __devexit_p(mmci_remove),
|
|
.suspend = mmci_suspend,
|
|
.resume = mmci_resume,
|
|
.id_table = mmci_ids,
|
|
};
|
|
|
|
static int __init mmci_init(void)
|
|
{
|
|
return amba_driver_register(&mmci_driver);
|
|
}
|
|
|
|
static void __exit mmci_exit(void)
|
|
{
|
|
amba_driver_unregister(&mmci_driver);
|
|
}
|
|
|
|
module_init(mmci_init);
|
|
module_exit(mmci_exit);
|
|
module_param(fmax, uint, 0444);
|
|
|
|
MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver");
|
|
MODULE_LICENSE("GPL");
|