linux/arch/powerpc/platforms/powernv/eeh-ioda.c
Benjamin Herrenschmidt 965b5608f7 Revert "powerpc/powernv: Fundamental reset on PLX ports"
This reverts commit b2b5efcf20.

This code was way too board specific, there are quirks as to how
the PERST line is wired on different boards, we'll have to revisit
this using/creating appropriate firmware interfaces.

Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2014-05-20 10:20:49 +10:00

860 lines
23 KiB
C

/*
* The file intends to implement the functions needed by EEH, which is
* built on IODA compliant chip. Actually, lots of functions related
* to EEH would be built based on the OPAL APIs.
*
* Copyright Benjamin Herrenschmidt & Gavin Shan, IBM Corporation 2013.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*/
#include <linux/bootmem.h>
#include <linux/debugfs.h>
#include <linux/delay.h>
#include <linux/io.h>
#include <linux/irq.h>
#include <linux/kernel.h>
#include <linux/msi.h>
#include <linux/notifier.h>
#include <linux/pci.h>
#include <linux/string.h>
#include <asm/eeh.h>
#include <asm/eeh_event.h>
#include <asm/io.h>
#include <asm/iommu.h>
#include <asm/msi_bitmap.h>
#include <asm/opal.h>
#include <asm/pci-bridge.h>
#include <asm/ppc-pci.h>
#include <asm/tce.h>
#include "powernv.h"
#include "pci.h"
static int ioda_eeh_nb_init = 0;
static int ioda_eeh_event(struct notifier_block *nb,
unsigned long events, void *change)
{
uint64_t changed_evts = (uint64_t)change;
/*
* We simply send special EEH event if EEH has
* been enabled, or clear pending events in
* case that we enable EEH soon
*/
if (!(changed_evts & OPAL_EVENT_PCI_ERROR) ||
!(events & OPAL_EVENT_PCI_ERROR))
return 0;
if (eeh_enabled())
eeh_send_failure_event(NULL);
else
opal_notifier_update_evt(OPAL_EVENT_PCI_ERROR, 0x0ul);
return 0;
}
static struct notifier_block ioda_eeh_nb = {
.notifier_call = ioda_eeh_event,
.next = NULL,
.priority = 0
};
#ifdef CONFIG_DEBUG_FS
static int ioda_eeh_dbgfs_set(void *data, int offset, u64 val)
{
struct pci_controller *hose = data;
struct pnv_phb *phb = hose->private_data;
out_be64(phb->regs + offset, val);
return 0;
}
static int ioda_eeh_dbgfs_get(void *data, int offset, u64 *val)
{
struct pci_controller *hose = data;
struct pnv_phb *phb = hose->private_data;
*val = in_be64(phb->regs + offset);
return 0;
}
static int ioda_eeh_outb_dbgfs_set(void *data, u64 val)
{
return ioda_eeh_dbgfs_set(data, 0xD10, val);
}
static int ioda_eeh_outb_dbgfs_get(void *data, u64 *val)
{
return ioda_eeh_dbgfs_get(data, 0xD10, val);
}
static int ioda_eeh_inbA_dbgfs_set(void *data, u64 val)
{
return ioda_eeh_dbgfs_set(data, 0xD90, val);
}
static int ioda_eeh_inbA_dbgfs_get(void *data, u64 *val)
{
return ioda_eeh_dbgfs_get(data, 0xD90, val);
}
static int ioda_eeh_inbB_dbgfs_set(void *data, u64 val)
{
return ioda_eeh_dbgfs_set(data, 0xE10, val);
}
static int ioda_eeh_inbB_dbgfs_get(void *data, u64 *val)
{
return ioda_eeh_dbgfs_get(data, 0xE10, val);
}
DEFINE_SIMPLE_ATTRIBUTE(ioda_eeh_outb_dbgfs_ops, ioda_eeh_outb_dbgfs_get,
ioda_eeh_outb_dbgfs_set, "0x%llx\n");
DEFINE_SIMPLE_ATTRIBUTE(ioda_eeh_inbA_dbgfs_ops, ioda_eeh_inbA_dbgfs_get,
ioda_eeh_inbA_dbgfs_set, "0x%llx\n");
DEFINE_SIMPLE_ATTRIBUTE(ioda_eeh_inbB_dbgfs_ops, ioda_eeh_inbB_dbgfs_get,
ioda_eeh_inbB_dbgfs_set, "0x%llx\n");
#endif /* CONFIG_DEBUG_FS */
/**
* ioda_eeh_post_init - Chip dependent post initialization
* @hose: PCI controller
*
* The function will be called after eeh PEs and devices
* have been built. That means the EEH is ready to supply
* service with I/O cache.
*/
static int ioda_eeh_post_init(struct pci_controller *hose)
{
struct pnv_phb *phb = hose->private_data;
int ret;
/* Register OPAL event notifier */
if (!ioda_eeh_nb_init) {
ret = opal_notifier_register(&ioda_eeh_nb);
if (ret) {
pr_err("%s: Can't register OPAL event notifier (%d)\n",
__func__, ret);
return ret;
}
ioda_eeh_nb_init = 1;
}
#ifdef CONFIG_DEBUG_FS
if (!phb->has_dbgfs && phb->dbgfs) {
phb->has_dbgfs = 1;
debugfs_create_file("err_injct_outbound", 0600,
phb->dbgfs, hose,
&ioda_eeh_outb_dbgfs_ops);
debugfs_create_file("err_injct_inboundA", 0600,
phb->dbgfs, hose,
&ioda_eeh_inbA_dbgfs_ops);
debugfs_create_file("err_injct_inboundB", 0600,
phb->dbgfs, hose,
&ioda_eeh_inbB_dbgfs_ops);
}
#endif
/* If EEH is enabled, we're going to rely on that.
* Otherwise, we restore to conventional mechanism
* to clear frozen PE during PCI config access.
*/
if (eeh_enabled())
phb->flags |= PNV_PHB_FLAG_EEH;
else
phb->flags &= ~PNV_PHB_FLAG_EEH;
return 0;
}
/**
* ioda_eeh_set_option - Set EEH operation or I/O setting
* @pe: EEH PE
* @option: options
*
* Enable or disable EEH option for the indicated PE. The
* function also can be used to enable I/O or DMA for the
* PE.
*/
static int ioda_eeh_set_option(struct eeh_pe *pe, int option)
{
s64 ret;
u32 pe_no;
struct pci_controller *hose = pe->phb;
struct pnv_phb *phb = hose->private_data;
/* Check on PE number */
if (pe->addr < 0 || pe->addr >= phb->ioda.total_pe) {
pr_err("%s: PE address %x out of range [0, %x] "
"on PHB#%x\n",
__func__, pe->addr, phb->ioda.total_pe,
hose->global_number);
return -EINVAL;
}
pe_no = pe->addr;
switch (option) {
case EEH_OPT_DISABLE:
ret = -EEXIST;
break;
case EEH_OPT_ENABLE:
ret = 0;
break;
case EEH_OPT_THAW_MMIO:
ret = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no,
OPAL_EEH_ACTION_CLEAR_FREEZE_MMIO);
if (ret) {
pr_warning("%s: Failed to enable MMIO for "
"PHB#%x-PE#%x, err=%lld\n",
__func__, hose->global_number, pe_no, ret);
return -EIO;
}
break;
case EEH_OPT_THAW_DMA:
ret = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no,
OPAL_EEH_ACTION_CLEAR_FREEZE_DMA);
if (ret) {
pr_warning("%s: Failed to enable DMA for "
"PHB#%x-PE#%x, err=%lld\n",
__func__, hose->global_number, pe_no, ret);
return -EIO;
}
break;
default:
pr_warning("%s: Invalid option %d\n", __func__, option);
return -EINVAL;
}
return ret;
}
static void ioda_eeh_phb_diag(struct pci_controller *hose)
{
struct pnv_phb *phb = hose->private_data;
long rc;
rc = opal_pci_get_phb_diag_data2(phb->opal_id, phb->diag.blob,
PNV_PCI_DIAG_BUF_SIZE);
if (rc != OPAL_SUCCESS) {
pr_warning("%s: Failed to get diag-data for PHB#%x (%ld)\n",
__func__, hose->global_number, rc);
return;
}
pnv_pci_dump_phb_diag_data(hose, phb->diag.blob);
}
/**
* ioda_eeh_get_state - Retrieve the state of PE
* @pe: EEH PE
*
* The PE's state should be retrieved from the PEEV, PEST
* IODA tables. Since the OPAL has exported the function
* to do it, it'd better to use that.
*/
static int ioda_eeh_get_state(struct eeh_pe *pe)
{
s64 ret = 0;
u8 fstate;
u16 pcierr;
u32 pe_no;
int result;
struct pci_controller *hose = pe->phb;
struct pnv_phb *phb = hose->private_data;
/*
* Sanity check on PE address. The PHB PE address should
* be zero.
*/
if (pe->addr < 0 || pe->addr >= phb->ioda.total_pe) {
pr_err("%s: PE address %x out of range [0, %x] "
"on PHB#%x\n",
__func__, pe->addr, phb->ioda.total_pe,
hose->global_number);
return EEH_STATE_NOT_SUPPORT;
}
/*
* If we're in middle of PE reset, return normal
* state to keep EEH core going. For PHB reset, we
* still expect to have fenced PHB cleared with
* PHB reset.
*/
if (!(pe->type & EEH_PE_PHB) &&
(pe->state & EEH_PE_RESET)) {
result = (EEH_STATE_MMIO_ACTIVE |
EEH_STATE_DMA_ACTIVE |
EEH_STATE_MMIO_ENABLED |
EEH_STATE_DMA_ENABLED);
return result;
}
/* Retrieve PE status through OPAL */
pe_no = pe->addr;
ret = opal_pci_eeh_freeze_status(phb->opal_id, pe_no,
&fstate, &pcierr, NULL);
if (ret) {
pr_err("%s: Failed to get EEH status on "
"PHB#%x-PE#%x\n, err=%lld\n",
__func__, hose->global_number, pe_no, ret);
return EEH_STATE_NOT_SUPPORT;
}
/* Check PHB status */
if (pe->type & EEH_PE_PHB) {
result = 0;
result &= ~EEH_STATE_RESET_ACTIVE;
if (pcierr != OPAL_EEH_PHB_ERROR) {
result |= EEH_STATE_MMIO_ACTIVE;
result |= EEH_STATE_DMA_ACTIVE;
result |= EEH_STATE_MMIO_ENABLED;
result |= EEH_STATE_DMA_ENABLED;
} else if (!(pe->state & EEH_PE_ISOLATED)) {
eeh_pe_state_mark(pe, EEH_PE_ISOLATED);
ioda_eeh_phb_diag(hose);
}
return result;
}
/* Parse result out */
result = 0;
switch (fstate) {
case OPAL_EEH_STOPPED_NOT_FROZEN:
result &= ~EEH_STATE_RESET_ACTIVE;
result |= EEH_STATE_MMIO_ACTIVE;
result |= EEH_STATE_DMA_ACTIVE;
result |= EEH_STATE_MMIO_ENABLED;
result |= EEH_STATE_DMA_ENABLED;
break;
case OPAL_EEH_STOPPED_MMIO_FREEZE:
result &= ~EEH_STATE_RESET_ACTIVE;
result |= EEH_STATE_DMA_ACTIVE;
result |= EEH_STATE_DMA_ENABLED;
break;
case OPAL_EEH_STOPPED_DMA_FREEZE:
result &= ~EEH_STATE_RESET_ACTIVE;
result |= EEH_STATE_MMIO_ACTIVE;
result |= EEH_STATE_MMIO_ENABLED;
break;
case OPAL_EEH_STOPPED_MMIO_DMA_FREEZE:
result &= ~EEH_STATE_RESET_ACTIVE;
break;
case OPAL_EEH_STOPPED_RESET:
result |= EEH_STATE_RESET_ACTIVE;
break;
case OPAL_EEH_STOPPED_TEMP_UNAVAIL:
result |= EEH_STATE_UNAVAILABLE;
break;
case OPAL_EEH_STOPPED_PERM_UNAVAIL:
result |= EEH_STATE_NOT_SUPPORT;
break;
default:
pr_warning("%s: Unexpected EEH status 0x%x "
"on PHB#%x-PE#%x\n",
__func__, fstate, hose->global_number, pe_no);
}
/* Dump PHB diag-data for frozen PE */
if (result != EEH_STATE_NOT_SUPPORT &&
(result & (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE)) !=
(EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE) &&
!(pe->state & EEH_PE_ISOLATED)) {
eeh_pe_state_mark(pe, EEH_PE_ISOLATED);
ioda_eeh_phb_diag(hose);
}
return result;
}
static s64 ioda_eeh_phb_poll(struct pnv_phb *phb)
{
s64 rc = OPAL_HARDWARE;
while (1) {
rc = opal_pci_poll(phb->opal_id);
if (rc <= 0)
break;
if (system_state < SYSTEM_RUNNING)
udelay(1000 * rc);
else
msleep(rc);
}
return rc;
}
int ioda_eeh_phb_reset(struct pci_controller *hose, int option)
{
struct pnv_phb *phb = hose->private_data;
s64 rc = OPAL_HARDWARE;
pr_debug("%s: Reset PHB#%x, option=%d\n",
__func__, hose->global_number, option);
/* Issue PHB complete reset request */
if (option == EEH_RESET_FUNDAMENTAL ||
option == EEH_RESET_HOT)
rc = opal_pci_reset(phb->opal_id,
OPAL_PHB_COMPLETE,
OPAL_ASSERT_RESET);
else if (option == EEH_RESET_DEACTIVATE)
rc = opal_pci_reset(phb->opal_id,
OPAL_PHB_COMPLETE,
OPAL_DEASSERT_RESET);
if (rc < 0)
goto out;
/*
* Poll state of the PHB until the request is done
* successfully. The PHB reset is usually PHB complete
* reset followed by hot reset on root bus. So we also
* need the PCI bus settlement delay.
*/
rc = ioda_eeh_phb_poll(phb);
if (option == EEH_RESET_DEACTIVATE) {
if (system_state < SYSTEM_RUNNING)
udelay(1000 * EEH_PE_RST_SETTLE_TIME);
else
msleep(EEH_PE_RST_SETTLE_TIME);
}
out:
if (rc != OPAL_SUCCESS)
return -EIO;
return 0;
}
static int ioda_eeh_root_reset(struct pci_controller *hose, int option)
{
struct pnv_phb *phb = hose->private_data;
s64 rc = OPAL_SUCCESS;
pr_debug("%s: Reset PHB#%x, option=%d\n",
__func__, hose->global_number, option);
/*
* During the reset deassert time, we needn't care
* the reset scope because the firmware does nothing
* for fundamental or hot reset during deassert phase.
*/
if (option == EEH_RESET_FUNDAMENTAL)
rc = opal_pci_reset(phb->opal_id,
OPAL_PCI_FUNDAMENTAL_RESET,
OPAL_ASSERT_RESET);
else if (option == EEH_RESET_HOT)
rc = opal_pci_reset(phb->opal_id,
OPAL_PCI_HOT_RESET,
OPAL_ASSERT_RESET);
else if (option == EEH_RESET_DEACTIVATE)
rc = opal_pci_reset(phb->opal_id,
OPAL_PCI_HOT_RESET,
OPAL_DEASSERT_RESET);
if (rc < 0)
goto out;
/* Poll state of the PHB until the request is done */
rc = ioda_eeh_phb_poll(phb);
if (option == EEH_RESET_DEACTIVATE)
msleep(EEH_PE_RST_SETTLE_TIME);
out:
if (rc != OPAL_SUCCESS)
return -EIO;
return 0;
}
static int ioda_eeh_bridge_reset(struct pci_dev *dev, int option)
{
struct device_node *dn = pci_device_to_OF_node(dev);
struct eeh_dev *edev = of_node_to_eeh_dev(dn);
int aer = edev ? edev->aer_cap : 0;
u32 ctrl;
pr_debug("%s: Reset PCI bus %04x:%02x with option %d\n",
__func__, pci_domain_nr(dev->bus),
dev->bus->number, option);
switch (option) {
case EEH_RESET_FUNDAMENTAL:
case EEH_RESET_HOT:
/* Don't report linkDown event */
if (aer) {
eeh_ops->read_config(dn, aer + PCI_ERR_UNCOR_MASK,
4, &ctrl);
ctrl |= PCI_ERR_UNC_SURPDN;
eeh_ops->write_config(dn, aer + PCI_ERR_UNCOR_MASK,
4, ctrl);
}
eeh_ops->read_config(dn, PCI_BRIDGE_CONTROL, 2, &ctrl);
ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
eeh_ops->write_config(dn, PCI_BRIDGE_CONTROL, 2, ctrl);
msleep(EEH_PE_RST_HOLD_TIME);
break;
case EEH_RESET_DEACTIVATE:
eeh_ops->read_config(dn, PCI_BRIDGE_CONTROL, 2, &ctrl);
ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
eeh_ops->write_config(dn, PCI_BRIDGE_CONTROL, 2, ctrl);
msleep(EEH_PE_RST_SETTLE_TIME);
/* Continue reporting linkDown event */
if (aer) {
eeh_ops->read_config(dn, aer + PCI_ERR_UNCOR_MASK,
4, &ctrl);
ctrl &= ~PCI_ERR_UNC_SURPDN;
eeh_ops->write_config(dn, aer + PCI_ERR_UNCOR_MASK,
4, ctrl);
}
break;
}
return 0;
}
void pnv_pci_reset_secondary_bus(struct pci_dev *dev)
{
struct pci_controller *hose;
if (pci_is_root_bus(dev->bus)) {
hose = pci_bus_to_host(dev->bus);
ioda_eeh_root_reset(hose, EEH_RESET_HOT);
ioda_eeh_root_reset(hose, EEH_RESET_DEACTIVATE);
} else {
ioda_eeh_bridge_reset(dev, EEH_RESET_HOT);
ioda_eeh_bridge_reset(dev, EEH_RESET_DEACTIVATE);
}
}
/**
* ioda_eeh_reset - Reset the indicated PE
* @pe: EEH PE
* @option: reset option
*
* Do reset on the indicated PE. For PCI bus sensitive PE,
* we need to reset the parent p2p bridge. The PHB has to
* be reinitialized if the p2p bridge is root bridge. For
* PCI device sensitive PE, we will try to reset the device
* through FLR. For now, we don't have OPAL APIs to do HARD
* reset yet, so all reset would be SOFT (HOT) reset.
*/
static int ioda_eeh_reset(struct eeh_pe *pe, int option)
{
struct pci_controller *hose = pe->phb;
struct pci_bus *bus;
int ret;
/*
* For PHB reset, we always have complete reset. For those PEs whose
* primary bus derived from root complex (root bus) or root port
* (usually bus#1), we apply hot or fundamental reset on the root port.
* For other PEs, we always have hot reset on the PE primary bus.
*
* Here, we have different design to pHyp, which always clear the
* frozen state during PE reset. However, the good idea here from
* benh is to keep frozen state before we get PE reset done completely
* (until BAR restore). With the frozen state, HW drops illegal IO
* or MMIO access, which can incur recrusive frozen PE during PE
* reset. The side effect is that EEH core has to clear the frozen
* state explicitly after BAR restore.
*/
if (pe->type & EEH_PE_PHB) {
ret = ioda_eeh_phb_reset(hose, option);
} else {
bus = eeh_pe_bus_get(pe);
if (pci_is_root_bus(bus) ||
pci_is_root_bus(bus->parent))
ret = ioda_eeh_root_reset(hose, option);
else
ret = ioda_eeh_bridge_reset(bus->self, option);
}
return ret;
}
/**
* ioda_eeh_configure_bridge - Configure the PCI bridges for the indicated PE
* @pe: EEH PE
*
* For particular PE, it might have included PCI bridges. In order
* to make the PE work properly, those PCI bridges should be configured
* correctly. However, we need do nothing on P7IOC since the reset
* function will do everything that should be covered by the function.
*/
static int ioda_eeh_configure_bridge(struct eeh_pe *pe)
{
return 0;
}
static void ioda_eeh_hub_diag_common(struct OpalIoP7IOCErrorData *data)
{
/* GEM */
pr_info(" GEM XFIR: %016llx\n", data->gemXfir);
pr_info(" GEM RFIR: %016llx\n", data->gemRfir);
pr_info(" GEM RIRQFIR: %016llx\n", data->gemRirqfir);
pr_info(" GEM Mask: %016llx\n", data->gemMask);
pr_info(" GEM RWOF: %016llx\n", data->gemRwof);
/* LEM */
pr_info(" LEM FIR: %016llx\n", data->lemFir);
pr_info(" LEM Error Mask: %016llx\n", data->lemErrMask);
pr_info(" LEM Action 0: %016llx\n", data->lemAction0);
pr_info(" LEM Action 1: %016llx\n", data->lemAction1);
pr_info(" LEM WOF: %016llx\n", data->lemWof);
}
static void ioda_eeh_hub_diag(struct pci_controller *hose)
{
struct pnv_phb *phb = hose->private_data;
struct OpalIoP7IOCErrorData *data = &phb->diag.hub_diag;
long rc;
rc = opal_pci_get_hub_diag_data(phb->hub_id, data, sizeof(*data));
if (rc != OPAL_SUCCESS) {
pr_warning("%s: Failed to get HUB#%llx diag-data (%ld)\n",
__func__, phb->hub_id, rc);
return;
}
switch (data->type) {
case OPAL_P7IOC_DIAG_TYPE_RGC:
pr_info("P7IOC diag-data for RGC\n\n");
ioda_eeh_hub_diag_common(data);
pr_info(" RGC Status: %016llx\n", data->rgc.rgcStatus);
pr_info(" RGC LDCP: %016llx\n", data->rgc.rgcLdcp);
break;
case OPAL_P7IOC_DIAG_TYPE_BI:
pr_info("P7IOC diag-data for BI %s\n\n",
data->bi.biDownbound ? "Downbound" : "Upbound");
ioda_eeh_hub_diag_common(data);
pr_info(" BI LDCP 0: %016llx\n", data->bi.biLdcp0);
pr_info(" BI LDCP 1: %016llx\n", data->bi.biLdcp1);
pr_info(" BI LDCP 2: %016llx\n", data->bi.biLdcp2);
pr_info(" BI Fence Status: %016llx\n", data->bi.biFenceStatus);
break;
case OPAL_P7IOC_DIAG_TYPE_CI:
pr_info("P7IOC diag-data for CI Port %d\\nn",
data->ci.ciPort);
ioda_eeh_hub_diag_common(data);
pr_info(" CI Port Status: %016llx\n", data->ci.ciPortStatus);
pr_info(" CI Port LDCP: %016llx\n", data->ci.ciPortLdcp);
break;
case OPAL_P7IOC_DIAG_TYPE_MISC:
pr_info("P7IOC diag-data for MISC\n\n");
ioda_eeh_hub_diag_common(data);
break;
case OPAL_P7IOC_DIAG_TYPE_I2C:
pr_info("P7IOC diag-data for I2C\n\n");
ioda_eeh_hub_diag_common(data);
break;
default:
pr_warning("%s: Invalid type of HUB#%llx diag-data (%d)\n",
__func__, phb->hub_id, data->type);
}
}
static int ioda_eeh_get_pe(struct pci_controller *hose,
u16 pe_no, struct eeh_pe **pe)
{
struct eeh_pe *phb_pe, *dev_pe;
struct eeh_dev dev;
/* Find the PHB PE */
phb_pe = eeh_phb_pe_get(hose);
if (!phb_pe)
return -EEXIST;
/* Find the PE according to PE# */
memset(&dev, 0, sizeof(struct eeh_dev));
dev.phb = hose;
dev.pe_config_addr = pe_no;
dev_pe = eeh_pe_get(&dev);
if (!dev_pe) return -EEXIST;
*pe = dev_pe;
return 0;
}
/**
* ioda_eeh_next_error - Retrieve next error for EEH core to handle
* @pe: The affected PE
*
* The function is expected to be called by EEH core while it gets
* special EEH event (without binding PE). The function calls to
* OPAL APIs for next error to handle. The informational error is
* handled internally by platform. However, the dead IOC, dead PHB,
* fenced PHB and frozen PE should be handled by EEH core eventually.
*/
static int ioda_eeh_next_error(struct eeh_pe **pe)
{
struct pci_controller *hose;
struct pnv_phb *phb;
struct eeh_pe *phb_pe;
u64 frozen_pe_no;
u16 err_type, severity;
long rc;
int ret = EEH_NEXT_ERR_NONE;
/*
* While running here, it's safe to purge the event queue.
* And we should keep the cached OPAL notifier event sychronized
* between the kernel and firmware.
*/
eeh_remove_event(NULL);
opal_notifier_update_evt(OPAL_EVENT_PCI_ERROR, 0x0ul);
list_for_each_entry(hose, &hose_list, list_node) {
/*
* If the subordinate PCI buses of the PHB has been
* removed or is exactly under error recovery, we
* needn't take care of it any more.
*/
phb = hose->private_data;
phb_pe = eeh_phb_pe_get(hose);
if (!phb_pe || (phb_pe->state & EEH_PE_ISOLATED))
continue;
rc = opal_pci_next_error(phb->opal_id,
&frozen_pe_no, &err_type, &severity);
/* If OPAL API returns error, we needn't proceed */
if (rc != OPAL_SUCCESS) {
pr_devel("%s: Invalid return value on "
"PHB#%x (0x%lx) from opal_pci_next_error",
__func__, hose->global_number, rc);
continue;
}
/* If the PHB doesn't have error, stop processing */
if (err_type == OPAL_EEH_NO_ERROR ||
severity == OPAL_EEH_SEV_NO_ERROR) {
pr_devel("%s: No error found on PHB#%x\n",
__func__, hose->global_number);
continue;
}
/*
* Processing the error. We're expecting the error with
* highest priority reported upon multiple errors on the
* specific PHB.
*/
pr_devel("%s: Error (%d, %d, %llu) on PHB#%x\n",
__func__, err_type, severity,
frozen_pe_no, hose->global_number);
switch (err_type) {
case OPAL_EEH_IOC_ERROR:
if (severity == OPAL_EEH_SEV_IOC_DEAD) {
pr_err("EEH: dead IOC detected\n");
ret = EEH_NEXT_ERR_DEAD_IOC;
} else if (severity == OPAL_EEH_SEV_INF) {
pr_info("EEH: IOC informative error "
"detected\n");
ioda_eeh_hub_diag(hose);
ret = EEH_NEXT_ERR_NONE;
}
break;
case OPAL_EEH_PHB_ERROR:
if (severity == OPAL_EEH_SEV_PHB_DEAD) {
*pe = phb_pe;
pr_err("EEH: dead PHB#%x detected\n",
hose->global_number);
ret = EEH_NEXT_ERR_DEAD_PHB;
} else if (severity == OPAL_EEH_SEV_PHB_FENCED) {
*pe = phb_pe;
pr_err("EEH: fenced PHB#%x detected\n",
hose->global_number);
ret = EEH_NEXT_ERR_FENCED_PHB;
} else if (severity == OPAL_EEH_SEV_INF) {
pr_info("EEH: PHB#%x informative error "
"detected\n",
hose->global_number);
ioda_eeh_phb_diag(hose);
ret = EEH_NEXT_ERR_NONE;
}
break;
case OPAL_EEH_PE_ERROR:
/*
* If we can't find the corresponding PE, the
* PEEV / PEST would be messy. So we force an
* fenced PHB so that it can be recovered.
*
* If the PE has been marked as isolated, that
* should have been removed permanently or in
* progress with recovery. We needn't report
* it again.
*/
if (ioda_eeh_get_pe(hose, frozen_pe_no, pe)) {
*pe = phb_pe;
pr_err("EEH: Escalated fenced PHB#%x "
"detected for PE#%llx\n",
hose->global_number,
frozen_pe_no);
ret = EEH_NEXT_ERR_FENCED_PHB;
} else if ((*pe)->state & EEH_PE_ISOLATED) {
ret = EEH_NEXT_ERR_NONE;
} else {
pr_err("EEH: Frozen PE#%x on PHB#%x detected\n",
(*pe)->addr, (*pe)->phb->global_number);
ret = EEH_NEXT_ERR_FROZEN_PE;
}
break;
default:
pr_warn("%s: Unexpected error type %d\n",
__func__, err_type);
}
/*
* EEH core will try recover from fenced PHB or
* frozen PE. In the time for frozen PE, EEH core
* enable IO path for that before collecting logs,
* but it ruins the site. So we have to dump the
* log in advance here.
*/
if ((ret == EEH_NEXT_ERR_FROZEN_PE ||
ret == EEH_NEXT_ERR_FENCED_PHB) &&
!((*pe)->state & EEH_PE_ISOLATED)) {
eeh_pe_state_mark(*pe, EEH_PE_ISOLATED);
ioda_eeh_phb_diag(hose);
}
/*
* If we have no errors on the specific PHB or only
* informative error there, we continue poking it.
* Otherwise, we need actions to be taken by upper
* layer.
*/
if (ret > EEH_NEXT_ERR_INF)
break;
}
return ret;
}
struct pnv_eeh_ops ioda_eeh_ops = {
.post_init = ioda_eeh_post_init,
.set_option = ioda_eeh_set_option,
.get_state = ioda_eeh_get_state,
.reset = ioda_eeh_reset,
.configure_bridge = ioda_eeh_configure_bridge,
.next_error = ioda_eeh_next_error
};