linux/arch/powerpc/kernel/prom_init.c
Anton Blanchard 6d1e2c6c1a powerpc: panic if we can't instantiate RTAS
I had to debug a strange situation where all manner of things were
failing. SMT threads, storage and network were all completely broken.

The root cause was we couldn't find enough memory to instantiate RTAS -
this was a network install so the initrd was huge.

Instead of limping along and failing in mysterious ways we should just
panic up front if RTAS exists and we can't allocate space for it.

Signed-off-by: Anton Blanchard <anton@samba.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2011-11-16 14:47:54 +11:00

3007 lines
81 KiB
C

/*
* Procedures for interfacing to Open Firmware.
*
* Paul Mackerras August 1996.
* Copyright (C) 1996-2005 Paul Mackerras.
*
* Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
* {engebret|bergner}@us.ibm.com
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#undef DEBUG_PROM
#include <stdarg.h>
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/init.h>
#include <linux/threads.h>
#include <linux/spinlock.h>
#include <linux/types.h>
#include <linux/pci.h>
#include <linux/proc_fs.h>
#include <linux/stringify.h>
#include <linux/delay.h>
#include <linux/initrd.h>
#include <linux/bitops.h>
#include <asm/prom.h>
#include <asm/rtas.h>
#include <asm/page.h>
#include <asm/processor.h>
#include <asm/irq.h>
#include <asm/io.h>
#include <asm/smp.h>
#include <asm/system.h>
#include <asm/mmu.h>
#include <asm/pgtable.h>
#include <asm/pci.h>
#include <asm/iommu.h>
#include <asm/btext.h>
#include <asm/sections.h>
#include <asm/machdep.h>
#include <asm/opal.h>
#include <linux/linux_logo.h>
/*
* Properties whose value is longer than this get excluded from our
* copy of the device tree. This value does need to be big enough to
* ensure that we don't lose things like the interrupt-map property
* on a PCI-PCI bridge.
*/
#define MAX_PROPERTY_LENGTH (1UL * 1024 * 1024)
/*
* Eventually bump that one up
*/
#define DEVTREE_CHUNK_SIZE 0x100000
/*
* This is the size of the local memory reserve map that gets copied
* into the boot params passed to the kernel. That size is totally
* flexible as the kernel just reads the list until it encounters an
* entry with size 0, so it can be changed without breaking binary
* compatibility
*/
#define MEM_RESERVE_MAP_SIZE 8
/*
* prom_init() is called very early on, before the kernel text
* and data have been mapped to KERNELBASE. At this point the code
* is running at whatever address it has been loaded at.
* On ppc32 we compile with -mrelocatable, which means that references
* to extern and static variables get relocated automatically.
* On ppc64 we have to relocate the references explicitly with
* RELOC. (Note that strings count as static variables.)
*
* Because OF may have mapped I/O devices into the area starting at
* KERNELBASE, particularly on CHRP machines, we can't safely call
* OF once the kernel has been mapped to KERNELBASE. Therefore all
* OF calls must be done within prom_init().
*
* ADDR is used in calls to call_prom. The 4th and following
* arguments to call_prom should be 32-bit values.
* On ppc64, 64 bit values are truncated to 32 bits (and
* fortunately don't get interpreted as two arguments).
*/
#ifdef CONFIG_PPC64
#define RELOC(x) (*PTRRELOC(&(x)))
#define ADDR(x) (u32) add_reloc_offset((unsigned long)(x))
#define OF_WORKAROUNDS 0
#else
#define RELOC(x) (x)
#define ADDR(x) (u32) (x)
#define OF_WORKAROUNDS of_workarounds
int of_workarounds;
#endif
#define OF_WA_CLAIM 1 /* do phys/virt claim separately, then map */
#define OF_WA_LONGTRAIL 2 /* work around longtrail bugs */
#define PROM_BUG() do { \
prom_printf("kernel BUG at %s line 0x%x!\n", \
RELOC(__FILE__), __LINE__); \
__asm__ __volatile__(".long " BUG_ILLEGAL_INSTR); \
} while (0)
#ifdef DEBUG_PROM
#define prom_debug(x...) prom_printf(x)
#else
#define prom_debug(x...)
#endif
typedef u32 prom_arg_t;
struct prom_args {
u32 service;
u32 nargs;
u32 nret;
prom_arg_t args[10];
};
struct prom_t {
ihandle root;
phandle chosen;
int cpu;
ihandle stdout;
ihandle mmumap;
ihandle memory;
};
struct mem_map_entry {
u64 base;
u64 size;
};
typedef u32 cell_t;
extern void __start(unsigned long r3, unsigned long r4, unsigned long r5,
unsigned long r6, unsigned long r7, unsigned long r8,
unsigned long r9);
#ifdef CONFIG_PPC64
extern int enter_prom(struct prom_args *args, unsigned long entry);
#else
static inline int enter_prom(struct prom_args *args, unsigned long entry)
{
return ((int (*)(struct prom_args *))entry)(args);
}
#endif
extern void copy_and_flush(unsigned long dest, unsigned long src,
unsigned long size, unsigned long offset);
/* prom structure */
static struct prom_t __initdata prom;
static unsigned long prom_entry __initdata;
#define PROM_SCRATCH_SIZE 256
static char __initdata of_stdout_device[256];
static char __initdata prom_scratch[PROM_SCRATCH_SIZE];
static unsigned long __initdata dt_header_start;
static unsigned long __initdata dt_struct_start, dt_struct_end;
static unsigned long __initdata dt_string_start, dt_string_end;
static unsigned long __initdata prom_initrd_start, prom_initrd_end;
#ifdef CONFIG_PPC64
static int __initdata prom_iommu_force_on;
static int __initdata prom_iommu_off;
static unsigned long __initdata prom_tce_alloc_start;
static unsigned long __initdata prom_tce_alloc_end;
#endif
/* Platforms codes are now obsolete in the kernel. Now only used within this
* file and ultimately gone too. Feel free to change them if you need, they
* are not shared with anything outside of this file anymore
*/
#define PLATFORM_PSERIES 0x0100
#define PLATFORM_PSERIES_LPAR 0x0101
#define PLATFORM_LPAR 0x0001
#define PLATFORM_POWERMAC 0x0400
#define PLATFORM_GENERIC 0x0500
#define PLATFORM_OPAL 0x0600
static int __initdata of_platform;
static char __initdata prom_cmd_line[COMMAND_LINE_SIZE];
static unsigned long __initdata prom_memory_limit;
static unsigned long __initdata alloc_top;
static unsigned long __initdata alloc_top_high;
static unsigned long __initdata alloc_bottom;
static unsigned long __initdata rmo_top;
static unsigned long __initdata ram_top;
static struct mem_map_entry __initdata mem_reserve_map[MEM_RESERVE_MAP_SIZE];
static int __initdata mem_reserve_cnt;
static cell_t __initdata regbuf[1024];
/*
* Error results ... some OF calls will return "-1" on error, some
* will return 0, some will return either. To simplify, here are
* macros to use with any ihandle or phandle return value to check if
* it is valid
*/
#define PROM_ERROR (-1u)
#define PHANDLE_VALID(p) ((p) != 0 && (p) != PROM_ERROR)
#define IHANDLE_VALID(i) ((i) != 0 && (i) != PROM_ERROR)
/* This is the one and *ONLY* place where we actually call open
* firmware.
*/
static int __init call_prom(const char *service, int nargs, int nret, ...)
{
int i;
struct prom_args args;
va_list list;
args.service = ADDR(service);
args.nargs = nargs;
args.nret = nret;
va_start(list, nret);
for (i = 0; i < nargs; i++)
args.args[i] = va_arg(list, prom_arg_t);
va_end(list);
for (i = 0; i < nret; i++)
args.args[nargs+i] = 0;
if (enter_prom(&args, RELOC(prom_entry)) < 0)
return PROM_ERROR;
return (nret > 0) ? args.args[nargs] : 0;
}
static int __init call_prom_ret(const char *service, int nargs, int nret,
prom_arg_t *rets, ...)
{
int i;
struct prom_args args;
va_list list;
args.service = ADDR(service);
args.nargs = nargs;
args.nret = nret;
va_start(list, rets);
for (i = 0; i < nargs; i++)
args.args[i] = va_arg(list, prom_arg_t);
va_end(list);
for (i = 0; i < nret; i++)
args.args[nargs+i] = 0;
if (enter_prom(&args, RELOC(prom_entry)) < 0)
return PROM_ERROR;
if (rets != NULL)
for (i = 1; i < nret; ++i)
rets[i-1] = args.args[nargs+i];
return (nret > 0) ? args.args[nargs] : 0;
}
static void __init prom_print(const char *msg)
{
const char *p, *q;
struct prom_t *_prom = &RELOC(prom);
if (_prom->stdout == 0)
return;
for (p = msg; *p != 0; p = q) {
for (q = p; *q != 0 && *q != '\n'; ++q)
;
if (q > p)
call_prom("write", 3, 1, _prom->stdout, p, q - p);
if (*q == 0)
break;
++q;
call_prom("write", 3, 1, _prom->stdout, ADDR("\r\n"), 2);
}
}
static void __init prom_print_hex(unsigned long val)
{
int i, nibbles = sizeof(val)*2;
char buf[sizeof(val)*2+1];
struct prom_t *_prom = &RELOC(prom);
for (i = nibbles-1; i >= 0; i--) {
buf[i] = (val & 0xf) + '0';
if (buf[i] > '9')
buf[i] += ('a'-'0'-10);
val >>= 4;
}
buf[nibbles] = '\0';
call_prom("write", 3, 1, _prom->stdout, buf, nibbles);
}
/* max number of decimal digits in an unsigned long */
#define UL_DIGITS 21
static void __init prom_print_dec(unsigned long val)
{
int i, size;
char buf[UL_DIGITS+1];
struct prom_t *_prom = &RELOC(prom);
for (i = UL_DIGITS-1; i >= 0; i--) {
buf[i] = (val % 10) + '0';
val = val/10;
if (val == 0)
break;
}
/* shift stuff down */
size = UL_DIGITS - i;
call_prom("write", 3, 1, _prom->stdout, buf+i, size);
}
static void __init prom_printf(const char *format, ...)
{
const char *p, *q, *s;
va_list args;
unsigned long v;
long vs;
struct prom_t *_prom = &RELOC(prom);
va_start(args, format);
#ifdef CONFIG_PPC64
format = PTRRELOC(format);
#endif
for (p = format; *p != 0; p = q) {
for (q = p; *q != 0 && *q != '\n' && *q != '%'; ++q)
;
if (q > p)
call_prom("write", 3, 1, _prom->stdout, p, q - p);
if (*q == 0)
break;
if (*q == '\n') {
++q;
call_prom("write", 3, 1, _prom->stdout,
ADDR("\r\n"), 2);
continue;
}
++q;
if (*q == 0)
break;
switch (*q) {
case 's':
++q;
s = va_arg(args, const char *);
prom_print(s);
break;
case 'x':
++q;
v = va_arg(args, unsigned long);
prom_print_hex(v);
break;
case 'd':
++q;
vs = va_arg(args, int);
if (vs < 0) {
prom_print(RELOC("-"));
vs = -vs;
}
prom_print_dec(vs);
break;
case 'l':
++q;
if (*q == 0)
break;
else if (*q == 'x') {
++q;
v = va_arg(args, unsigned long);
prom_print_hex(v);
} else if (*q == 'u') { /* '%lu' */
++q;
v = va_arg(args, unsigned long);
prom_print_dec(v);
} else if (*q == 'd') { /* %ld */
++q;
vs = va_arg(args, long);
if (vs < 0) {
prom_print(RELOC("-"));
vs = -vs;
}
prom_print_dec(vs);
}
break;
}
}
}
static unsigned int __init prom_claim(unsigned long virt, unsigned long size,
unsigned long align)
{
struct prom_t *_prom = &RELOC(prom);
if (align == 0 && (OF_WORKAROUNDS & OF_WA_CLAIM)) {
/*
* Old OF requires we claim physical and virtual separately
* and then map explicitly (assuming virtual mode)
*/
int ret;
prom_arg_t result;
ret = call_prom_ret("call-method", 5, 2, &result,
ADDR("claim"), _prom->memory,
align, size, virt);
if (ret != 0 || result == -1)
return -1;
ret = call_prom_ret("call-method", 5, 2, &result,
ADDR("claim"), _prom->mmumap,
align, size, virt);
if (ret != 0) {
call_prom("call-method", 4, 1, ADDR("release"),
_prom->memory, size, virt);
return -1;
}
/* the 0x12 is M (coherence) + PP == read/write */
call_prom("call-method", 6, 1,
ADDR("map"), _prom->mmumap, 0x12, size, virt, virt);
return virt;
}
return call_prom("claim", 3, 1, (prom_arg_t)virt, (prom_arg_t)size,
(prom_arg_t)align);
}
static void __init __attribute__((noreturn)) prom_panic(const char *reason)
{
#ifdef CONFIG_PPC64
reason = PTRRELOC(reason);
#endif
prom_print(reason);
/* Do not call exit because it clears the screen on pmac
* it also causes some sort of double-fault on early pmacs */
if (RELOC(of_platform) == PLATFORM_POWERMAC)
asm("trap\n");
/* ToDo: should put up an SRC here on p/iSeries */
call_prom("exit", 0, 0);
for (;;) /* should never get here */
;
}
static int __init prom_next_node(phandle *nodep)
{
phandle node;
if ((node = *nodep) != 0
&& (*nodep = call_prom("child", 1, 1, node)) != 0)
return 1;
if ((*nodep = call_prom("peer", 1, 1, node)) != 0)
return 1;
for (;;) {
if ((node = call_prom("parent", 1, 1, node)) == 0)
return 0;
if ((*nodep = call_prom("peer", 1, 1, node)) != 0)
return 1;
}
}
static int inline prom_getprop(phandle node, const char *pname,
void *value, size_t valuelen)
{
return call_prom("getprop", 4, 1, node, ADDR(pname),
(u32)(unsigned long) value, (u32) valuelen);
}
static int inline prom_getproplen(phandle node, const char *pname)
{
return call_prom("getproplen", 2, 1, node, ADDR(pname));
}
static void add_string(char **str, const char *q)
{
char *p = *str;
while (*q)
*p++ = *q++;
*p++ = ' ';
*str = p;
}
static char *tohex(unsigned int x)
{
static char digits[] = "0123456789abcdef";
static char result[9];
int i;
result[8] = 0;
i = 8;
do {
--i;
result[i] = digits[x & 0xf];
x >>= 4;
} while (x != 0 && i > 0);
return &result[i];
}
static int __init prom_setprop(phandle node, const char *nodename,
const char *pname, void *value, size_t valuelen)
{
char cmd[256], *p;
if (!(OF_WORKAROUNDS & OF_WA_LONGTRAIL))
return call_prom("setprop", 4, 1, node, ADDR(pname),
(u32)(unsigned long) value, (u32) valuelen);
/* gah... setprop doesn't work on longtrail, have to use interpret */
p = cmd;
add_string(&p, "dev");
add_string(&p, nodename);
add_string(&p, tohex((u32)(unsigned long) value));
add_string(&p, tohex(valuelen));
add_string(&p, tohex(ADDR(pname)));
add_string(&p, tohex(strlen(RELOC(pname))));
add_string(&p, "property");
*p = 0;
return call_prom("interpret", 1, 1, (u32)(unsigned long) cmd);
}
/* We can't use the standard versions because of RELOC headaches. */
#define isxdigit(c) (('0' <= (c) && (c) <= '9') \
|| ('a' <= (c) && (c) <= 'f') \
|| ('A' <= (c) && (c) <= 'F'))
#define isdigit(c) ('0' <= (c) && (c) <= '9')
#define islower(c) ('a' <= (c) && (c) <= 'z')
#define toupper(c) (islower(c) ? ((c) - 'a' + 'A') : (c))
unsigned long prom_strtoul(const char *cp, const char **endp)
{
unsigned long result = 0, base = 10, value;
if (*cp == '0') {
base = 8;
cp++;
if (toupper(*cp) == 'X') {
cp++;
base = 16;
}
}
while (isxdigit(*cp) &&
(value = isdigit(*cp) ? *cp - '0' : toupper(*cp) - 'A' + 10) < base) {
result = result * base + value;
cp++;
}
if (endp)
*endp = cp;
return result;
}
unsigned long prom_memparse(const char *ptr, const char **retptr)
{
unsigned long ret = prom_strtoul(ptr, retptr);
int shift = 0;
/*
* We can't use a switch here because GCC *may* generate a
* jump table which won't work, because we're not running at
* the address we're linked at.
*/
if ('G' == **retptr || 'g' == **retptr)
shift = 30;
if ('M' == **retptr || 'm' == **retptr)
shift = 20;
if ('K' == **retptr || 'k' == **retptr)
shift = 10;
if (shift) {
ret <<= shift;
(*retptr)++;
}
return ret;
}
/*
* Early parsing of the command line passed to the kernel, used for
* "mem=x" and the options that affect the iommu
*/
static void __init early_cmdline_parse(void)
{
struct prom_t *_prom = &RELOC(prom);
const char *opt;
char *p;
int l = 0;
RELOC(prom_cmd_line[0]) = 0;
p = RELOC(prom_cmd_line);
if ((long)_prom->chosen > 0)
l = prom_getprop(_prom->chosen, "bootargs", p, COMMAND_LINE_SIZE-1);
#ifdef CONFIG_CMDLINE
if (l <= 0 || p[0] == '\0') /* dbl check */
strlcpy(RELOC(prom_cmd_line),
RELOC(CONFIG_CMDLINE), sizeof(prom_cmd_line));
#endif /* CONFIG_CMDLINE */
prom_printf("command line: %s\n", RELOC(prom_cmd_line));
#ifdef CONFIG_PPC64
opt = strstr(RELOC(prom_cmd_line), RELOC("iommu="));
if (opt) {
prom_printf("iommu opt is: %s\n", opt);
opt += 6;
while (*opt && *opt == ' ')
opt++;
if (!strncmp(opt, RELOC("off"), 3))
RELOC(prom_iommu_off) = 1;
else if (!strncmp(opt, RELOC("force"), 5))
RELOC(prom_iommu_force_on) = 1;
}
#endif
opt = strstr(RELOC(prom_cmd_line), RELOC("mem="));
if (opt) {
opt += 4;
RELOC(prom_memory_limit) = prom_memparse(opt, (const char **)&opt);
#ifdef CONFIG_PPC64
/* Align to 16 MB == size of ppc64 large page */
RELOC(prom_memory_limit) = ALIGN(RELOC(prom_memory_limit), 0x1000000);
#endif
}
}
#if defined(CONFIG_PPC_PSERIES) || defined(CONFIG_PPC_POWERNV)
/*
* There are two methods for telling firmware what our capabilities are.
* Newer machines have an "ibm,client-architecture-support" method on the
* root node. For older machines, we have to call the "process-elf-header"
* method in the /packages/elf-loader node, passing it a fake 32-bit
* ELF header containing a couple of PT_NOTE sections that contain
* structures that contain various information.
*/
/*
* New method - extensible architecture description vector.
*
* Because the description vector contains a mix of byte and word
* values, we declare it as an unsigned char array, and use this
* macro to put word values in.
*/
#define W(x) ((x) >> 24) & 0xff, ((x) >> 16) & 0xff, \
((x) >> 8) & 0xff, (x) & 0xff
/* Option vector bits - generic bits in byte 1 */
#define OV_IGNORE 0x80 /* ignore this vector */
#define OV_CESSATION_POLICY 0x40 /* halt if unsupported option present*/
/* Option vector 1: processor architectures supported */
#define OV1_PPC_2_00 0x80 /* set if we support PowerPC 2.00 */
#define OV1_PPC_2_01 0x40 /* set if we support PowerPC 2.01 */
#define OV1_PPC_2_02 0x20 /* set if we support PowerPC 2.02 */
#define OV1_PPC_2_03 0x10 /* set if we support PowerPC 2.03 */
#define OV1_PPC_2_04 0x08 /* set if we support PowerPC 2.04 */
#define OV1_PPC_2_05 0x04 /* set if we support PowerPC 2.05 */
#define OV1_PPC_2_06 0x02 /* set if we support PowerPC 2.06 */
/* Option vector 2: Open Firmware options supported */
#define OV2_REAL_MODE 0x20 /* set if we want OF in real mode */
/* Option vector 3: processor options supported */
#define OV3_FP 0x80 /* floating point */
#define OV3_VMX 0x40 /* VMX/Altivec */
#define OV3_DFP 0x20 /* decimal FP */
/* Option vector 5: PAPR/OF options supported */
#define OV5_LPAR 0x80 /* logical partitioning supported */
#define OV5_SPLPAR 0x40 /* shared-processor LPAR supported */
/* ibm,dynamic-reconfiguration-memory property supported */
#define OV5_DRCONF_MEMORY 0x20
#define OV5_LARGE_PAGES 0x10 /* large pages supported */
#define OV5_DONATE_DEDICATE_CPU 0x02 /* donate dedicated CPU support */
/* PCIe/MSI support. Without MSI full PCIe is not supported */
#ifdef CONFIG_PCI_MSI
#define OV5_MSI 0x01 /* PCIe/MSI support */
#else
#define OV5_MSI 0x00
#endif /* CONFIG_PCI_MSI */
#ifdef CONFIG_PPC_SMLPAR
#define OV5_CMO 0x80 /* Cooperative Memory Overcommitment */
#define OV5_XCMO 0x40 /* Page Coalescing */
#else
#define OV5_CMO 0x00
#define OV5_XCMO 0x00
#endif
#define OV5_TYPE1_AFFINITY 0x80 /* Type 1 NUMA affinity */
/* Option Vector 6: IBM PAPR hints */
#define OV6_LINUX 0x02 /* Linux is our OS */
/*
* The architecture vector has an array of PVR mask/value pairs,
* followed by # option vectors - 1, followed by the option vectors.
*/
static unsigned char ibm_architecture_vec[] = {
W(0xfffe0000), W(0x003a0000), /* POWER5/POWER5+ */
W(0xffff0000), W(0x003e0000), /* POWER6 */
W(0xffff0000), W(0x003f0000), /* POWER7 */
W(0xffffffff), W(0x0f000003), /* all 2.06-compliant */
W(0xffffffff), W(0x0f000002), /* all 2.05-compliant */
W(0xfffffffe), W(0x0f000001), /* all 2.04-compliant and earlier */
6 - 1, /* 6 option vectors */
/* option vector 1: processor architectures supported */
3 - 2, /* length */
0, /* don't ignore, don't halt */
OV1_PPC_2_00 | OV1_PPC_2_01 | OV1_PPC_2_02 | OV1_PPC_2_03 |
OV1_PPC_2_04 | OV1_PPC_2_05 | OV1_PPC_2_06,
/* option vector 2: Open Firmware options supported */
34 - 2, /* length */
OV2_REAL_MODE,
0, 0,
W(0xffffffff), /* real_base */
W(0xffffffff), /* real_size */
W(0xffffffff), /* virt_base */
W(0xffffffff), /* virt_size */
W(0xffffffff), /* load_base */
W(64), /* 64MB min RMA */
W(0xffffffff), /* full client load */
0, /* min RMA percentage of total RAM */
48, /* max log_2(hash table size) */
/* option vector 3: processor options supported */
3 - 2, /* length */
0, /* don't ignore, don't halt */
OV3_FP | OV3_VMX | OV3_DFP,
/* option vector 4: IBM PAPR implementation */
2 - 2, /* length */
0, /* don't halt */
/* option vector 5: PAPR/OF options */
13 - 2, /* length */
0, /* don't ignore, don't halt */
OV5_LPAR | OV5_SPLPAR | OV5_LARGE_PAGES | OV5_DRCONF_MEMORY |
OV5_DONATE_DEDICATE_CPU | OV5_MSI,
0,
OV5_CMO | OV5_XCMO,
OV5_TYPE1_AFFINITY,
0,
0,
0,
/* WARNING: The offset of the "number of cores" field below
* must match by the macro below. Update the definition if
* the structure layout changes.
*/
#define IBM_ARCH_VEC_NRCORES_OFFSET 100
W(NR_CPUS), /* number of cores supported */
/* option vector 6: IBM PAPR hints */
4 - 2, /* length */
0,
0,
OV6_LINUX,
};
/* Old method - ELF header with PT_NOTE sections */
static struct fake_elf {
Elf32_Ehdr elfhdr;
Elf32_Phdr phdr[2];
struct chrpnote {
u32 namesz;
u32 descsz;
u32 type;
char name[8]; /* "PowerPC" */
struct chrpdesc {
u32 real_mode;
u32 real_base;
u32 real_size;
u32 virt_base;
u32 virt_size;
u32 load_base;
} chrpdesc;
} chrpnote;
struct rpanote {
u32 namesz;
u32 descsz;
u32 type;
char name[24]; /* "IBM,RPA-Client-Config" */
struct rpadesc {
u32 lpar_affinity;
u32 min_rmo_size;
u32 min_rmo_percent;
u32 max_pft_size;
u32 splpar;
u32 min_load;
u32 new_mem_def;
u32 ignore_me;
} rpadesc;
} rpanote;
} fake_elf = {
.elfhdr = {
.e_ident = { 0x7f, 'E', 'L', 'F',
ELFCLASS32, ELFDATA2MSB, EV_CURRENT },
.e_type = ET_EXEC, /* yeah right */
.e_machine = EM_PPC,
.e_version = EV_CURRENT,
.e_phoff = offsetof(struct fake_elf, phdr),
.e_phentsize = sizeof(Elf32_Phdr),
.e_phnum = 2
},
.phdr = {
[0] = {
.p_type = PT_NOTE,
.p_offset = offsetof(struct fake_elf, chrpnote),
.p_filesz = sizeof(struct chrpnote)
}, [1] = {
.p_type = PT_NOTE,
.p_offset = offsetof(struct fake_elf, rpanote),
.p_filesz = sizeof(struct rpanote)
}
},
.chrpnote = {
.namesz = sizeof("PowerPC"),
.descsz = sizeof(struct chrpdesc),
.type = 0x1275,
.name = "PowerPC",
.chrpdesc = {
.real_mode = ~0U, /* ~0 means "don't care" */
.real_base = ~0U,
.real_size = ~0U,
.virt_base = ~0U,
.virt_size = ~0U,
.load_base = ~0U
},
},
.rpanote = {
.namesz = sizeof("IBM,RPA-Client-Config"),
.descsz = sizeof(struct rpadesc),
.type = 0x12759999,
.name = "IBM,RPA-Client-Config",
.rpadesc = {
.lpar_affinity = 0,
.min_rmo_size = 64, /* in megabytes */
.min_rmo_percent = 0,
.max_pft_size = 48, /* 2^48 bytes max PFT size */
.splpar = 1,
.min_load = ~0U,
.new_mem_def = 0
}
}
};
static int __init prom_count_smt_threads(void)
{
phandle node;
char type[64];
unsigned int plen;
/* Pick up th first CPU node we can find */
for (node = 0; prom_next_node(&node); ) {
type[0] = 0;
prom_getprop(node, "device_type", type, sizeof(type));
if (strcmp(type, RELOC("cpu")))
continue;
/*
* There is an entry for each smt thread, each entry being
* 4 bytes long. All cpus should have the same number of
* smt threads, so return after finding the first.
*/
plen = prom_getproplen(node, "ibm,ppc-interrupt-server#s");
if (plen == PROM_ERROR)
break;
plen >>= 2;
prom_debug("Found %lu smt threads per core\n", (unsigned long)plen);
/* Sanity check */
if (plen < 1 || plen > 64) {
prom_printf("Threads per core %lu out of bounds, assuming 1\n",
(unsigned long)plen);
return 1;
}
return plen;
}
prom_debug("No threads found, assuming 1 per core\n");
return 1;
}
static void __init prom_send_capabilities(void)
{
ihandle elfloader, root;
prom_arg_t ret;
u32 *cores;
root = call_prom("open", 1, 1, ADDR("/"));
if (root != 0) {
/* We need to tell the FW about the number of cores we support.
*
* To do that, we count the number of threads on the first core
* (we assume this is the same for all cores) and use it to
* divide NR_CPUS.
*/
cores = (u32 *)PTRRELOC(&ibm_architecture_vec[IBM_ARCH_VEC_NRCORES_OFFSET]);
if (*cores != NR_CPUS) {
prom_printf("WARNING ! "
"ibm_architecture_vec structure inconsistent: %lu!\n",
*cores);
} else {
*cores = DIV_ROUND_UP(NR_CPUS, prom_count_smt_threads());
prom_printf("Max number of cores passed to firmware: %lu (NR_CPUS = %lu)\n",
*cores, NR_CPUS);
}
/* try calling the ibm,client-architecture-support method */
prom_printf("Calling ibm,client-architecture-support...");
if (call_prom_ret("call-method", 3, 2, &ret,
ADDR("ibm,client-architecture-support"),
root,
ADDR(ibm_architecture_vec)) == 0) {
/* the call exists... */
if (ret)
prom_printf("\nWARNING: ibm,client-architecture"
"-support call FAILED!\n");
call_prom("close", 1, 0, root);
prom_printf(" done\n");
return;
}
call_prom("close", 1, 0, root);
prom_printf(" not implemented\n");
}
/* no ibm,client-architecture-support call, try the old way */
elfloader = call_prom("open", 1, 1, ADDR("/packages/elf-loader"));
if (elfloader == 0) {
prom_printf("couldn't open /packages/elf-loader\n");
return;
}
call_prom("call-method", 3, 1, ADDR("process-elf-header"),
elfloader, ADDR(&fake_elf));
call_prom("close", 1, 0, elfloader);
}
#endif
/*
* Memory allocation strategy... our layout is normally:
*
* at 14Mb or more we have vmlinux, then a gap and initrd. In some
* rare cases, initrd might end up being before the kernel though.
* We assume this won't override the final kernel at 0, we have no
* provision to handle that in this version, but it should hopefully
* never happen.
*
* alloc_top is set to the top of RMO, eventually shrink down if the
* TCEs overlap
*
* alloc_bottom is set to the top of kernel/initrd
*
* from there, allocations are done this way : rtas is allocated
* topmost, and the device-tree is allocated from the bottom. We try
* to grow the device-tree allocation as we progress. If we can't,
* then we fail, we don't currently have a facility to restart
* elsewhere, but that shouldn't be necessary.
*
* Note that calls to reserve_mem have to be done explicitly, memory
* allocated with either alloc_up or alloc_down isn't automatically
* reserved.
*/
/*
* Allocates memory in the RMO upward from the kernel/initrd
*
* When align is 0, this is a special case, it means to allocate in place
* at the current location of alloc_bottom or fail (that is basically
* extending the previous allocation). Used for the device-tree flattening
*/
static unsigned long __init alloc_up(unsigned long size, unsigned long align)
{
unsigned long base = RELOC(alloc_bottom);
unsigned long addr = 0;
if (align)
base = _ALIGN_UP(base, align);
prom_debug("alloc_up(%x, %x)\n", size, align);
if (RELOC(ram_top) == 0)
prom_panic("alloc_up() called with mem not initialized\n");
if (align)
base = _ALIGN_UP(RELOC(alloc_bottom), align);
else
base = RELOC(alloc_bottom);
for(; (base + size) <= RELOC(alloc_top);
base = _ALIGN_UP(base + 0x100000, align)) {
prom_debug(" trying: 0x%x\n\r", base);
addr = (unsigned long)prom_claim(base, size, 0);
if (addr != PROM_ERROR && addr != 0)
break;
addr = 0;
if (align == 0)
break;
}
if (addr == 0)
return 0;
RELOC(alloc_bottom) = addr + size;
prom_debug(" -> %x\n", addr);
prom_debug(" alloc_bottom : %x\n", RELOC(alloc_bottom));
prom_debug(" alloc_top : %x\n", RELOC(alloc_top));
prom_debug(" alloc_top_hi : %x\n", RELOC(alloc_top_high));
prom_debug(" rmo_top : %x\n", RELOC(rmo_top));
prom_debug(" ram_top : %x\n", RELOC(ram_top));
return addr;
}
/*
* Allocates memory downward, either from top of RMO, or if highmem
* is set, from the top of RAM. Note that this one doesn't handle
* failures. It does claim memory if highmem is not set.
*/
static unsigned long __init alloc_down(unsigned long size, unsigned long align,
int highmem)
{
unsigned long base, addr = 0;
prom_debug("alloc_down(%x, %x, %s)\n", size, align,
highmem ? RELOC("(high)") : RELOC("(low)"));
if (RELOC(ram_top) == 0)
prom_panic("alloc_down() called with mem not initialized\n");
if (highmem) {
/* Carve out storage for the TCE table. */
addr = _ALIGN_DOWN(RELOC(alloc_top_high) - size, align);
if (addr <= RELOC(alloc_bottom))
return 0;
/* Will we bump into the RMO ? If yes, check out that we
* didn't overlap existing allocations there, if we did,
* we are dead, we must be the first in town !
*/
if (addr < RELOC(rmo_top)) {
/* Good, we are first */
if (RELOC(alloc_top) == RELOC(rmo_top))
RELOC(alloc_top) = RELOC(rmo_top) = addr;
else
return 0;
}
RELOC(alloc_top_high) = addr;
goto bail;
}
base = _ALIGN_DOWN(RELOC(alloc_top) - size, align);
for (; base > RELOC(alloc_bottom);
base = _ALIGN_DOWN(base - 0x100000, align)) {
prom_debug(" trying: 0x%x\n\r", base);
addr = (unsigned long)prom_claim(base, size, 0);
if (addr != PROM_ERROR && addr != 0)
break;
addr = 0;
}
if (addr == 0)
return 0;
RELOC(alloc_top) = addr;
bail:
prom_debug(" -> %x\n", addr);
prom_debug(" alloc_bottom : %x\n", RELOC(alloc_bottom));
prom_debug(" alloc_top : %x\n", RELOC(alloc_top));
prom_debug(" alloc_top_hi : %x\n", RELOC(alloc_top_high));
prom_debug(" rmo_top : %x\n", RELOC(rmo_top));
prom_debug(" ram_top : %x\n", RELOC(ram_top));
return addr;
}
/*
* Parse a "reg" cell
*/
static unsigned long __init prom_next_cell(int s, cell_t **cellp)
{
cell_t *p = *cellp;
unsigned long r = 0;
/* Ignore more than 2 cells */
while (s > sizeof(unsigned long) / 4) {
p++;
s--;
}
r = *p++;
#ifdef CONFIG_PPC64
if (s > 1) {
r <<= 32;
r |= *(p++);
}
#endif
*cellp = p;
return r;
}
/*
* Very dumb function for adding to the memory reserve list, but
* we don't need anything smarter at this point
*
* XXX Eventually check for collisions. They should NEVER happen.
* If problems seem to show up, it would be a good start to track
* them down.
*/
static void __init reserve_mem(u64 base, u64 size)
{
u64 top = base + size;
unsigned long cnt = RELOC(mem_reserve_cnt);
if (size == 0)
return;
/* We need to always keep one empty entry so that we
* have our terminator with "size" set to 0 since we are
* dumb and just copy this entire array to the boot params
*/
base = _ALIGN_DOWN(base, PAGE_SIZE);
top = _ALIGN_UP(top, PAGE_SIZE);
size = top - base;
if (cnt >= (MEM_RESERVE_MAP_SIZE - 1))
prom_panic("Memory reserve map exhausted !\n");
RELOC(mem_reserve_map)[cnt].base = base;
RELOC(mem_reserve_map)[cnt].size = size;
RELOC(mem_reserve_cnt) = cnt + 1;
}
/*
* Initialize memory allocation mechanism, parse "memory" nodes and
* obtain that way the top of memory and RMO to setup out local allocator
*/
static void __init prom_init_mem(void)
{
phandle node;
char *path, type[64];
unsigned int plen;
cell_t *p, *endp;
struct prom_t *_prom = &RELOC(prom);
u32 rac, rsc;
/*
* We iterate the memory nodes to find
* 1) top of RMO (first node)
* 2) top of memory
*/
rac = 2;
prom_getprop(_prom->root, "#address-cells", &rac, sizeof(rac));
rsc = 1;
prom_getprop(_prom->root, "#size-cells", &rsc, sizeof(rsc));
prom_debug("root_addr_cells: %x\n", (unsigned long) rac);
prom_debug("root_size_cells: %x\n", (unsigned long) rsc);
prom_debug("scanning memory:\n");
path = RELOC(prom_scratch);
for (node = 0; prom_next_node(&node); ) {
type[0] = 0;
prom_getprop(node, "device_type", type, sizeof(type));
if (type[0] == 0) {
/*
* CHRP Longtrail machines have no device_type
* on the memory node, so check the name instead...
*/
prom_getprop(node, "name", type, sizeof(type));
}
if (strcmp(type, RELOC("memory")))
continue;
plen = prom_getprop(node, "reg", RELOC(regbuf), sizeof(regbuf));
if (plen > sizeof(regbuf)) {
prom_printf("memory node too large for buffer !\n");
plen = sizeof(regbuf);
}
p = RELOC(regbuf);
endp = p + (plen / sizeof(cell_t));
#ifdef DEBUG_PROM
memset(path, 0, PROM_SCRATCH_SIZE);
call_prom("package-to-path", 3, 1, node, path, PROM_SCRATCH_SIZE-1);
prom_debug(" node %s :\n", path);
#endif /* DEBUG_PROM */
while ((endp - p) >= (rac + rsc)) {
unsigned long base, size;
base = prom_next_cell(rac, &p);
size = prom_next_cell(rsc, &p);
if (size == 0)
continue;
prom_debug(" %x %x\n", base, size);
if (base == 0 && (RELOC(of_platform) & PLATFORM_LPAR))
RELOC(rmo_top) = size;
if ((base + size) > RELOC(ram_top))
RELOC(ram_top) = base + size;
}
}
RELOC(alloc_bottom) = PAGE_ALIGN((unsigned long)&RELOC(_end) + 0x4000);
/* Check if we have an initrd after the kernel, if we do move our bottom
* point to after it
*/
if (RELOC(prom_initrd_start)) {
if (RELOC(prom_initrd_end) > RELOC(alloc_bottom))
RELOC(alloc_bottom) = PAGE_ALIGN(RELOC(prom_initrd_end));
}
/*
* If prom_memory_limit is set we reduce the upper limits *except* for
* alloc_top_high. This must be the real top of RAM so we can put
* TCE's up there.
*/
RELOC(alloc_top_high) = RELOC(ram_top);
if (RELOC(prom_memory_limit)) {
if (RELOC(prom_memory_limit) <= RELOC(alloc_bottom)) {
prom_printf("Ignoring mem=%x <= alloc_bottom.\n",
RELOC(prom_memory_limit));
RELOC(prom_memory_limit) = 0;
} else if (RELOC(prom_memory_limit) >= RELOC(ram_top)) {
prom_printf("Ignoring mem=%x >= ram_top.\n",
RELOC(prom_memory_limit));
RELOC(prom_memory_limit) = 0;
} else {
RELOC(ram_top) = RELOC(prom_memory_limit);
RELOC(rmo_top) = min(RELOC(rmo_top), RELOC(prom_memory_limit));
}
}
/*
* Setup our top alloc point, that is top of RMO or top of
* segment 0 when running non-LPAR.
* Some RS64 machines have buggy firmware where claims up at
* 1GB fail. Cap at 768MB as a workaround.
* Since 768MB is plenty of room, and we need to cap to something
* reasonable on 32-bit, cap at 768MB on all machines.
*/
if (!RELOC(rmo_top))
RELOC(rmo_top) = RELOC(ram_top);
RELOC(rmo_top) = min(0x30000000ul, RELOC(rmo_top));
RELOC(alloc_top) = RELOC(rmo_top);
RELOC(alloc_top_high) = RELOC(ram_top);
prom_printf("memory layout at init:\n");
prom_printf(" memory_limit : %x (16 MB aligned)\n", RELOC(prom_memory_limit));
prom_printf(" alloc_bottom : %x\n", RELOC(alloc_bottom));
prom_printf(" alloc_top : %x\n", RELOC(alloc_top));
prom_printf(" alloc_top_hi : %x\n", RELOC(alloc_top_high));
prom_printf(" rmo_top : %x\n", RELOC(rmo_top));
prom_printf(" ram_top : %x\n", RELOC(ram_top));
}
static void __init prom_close_stdin(void)
{
struct prom_t *_prom = &RELOC(prom);
ihandle val;
if (prom_getprop(_prom->chosen, "stdin", &val, sizeof(val)) > 0)
call_prom("close", 1, 0, val);
}
#ifdef CONFIG_PPC_POWERNV
static u64 __initdata prom_opal_size;
static u64 __initdata prom_opal_align;
static int __initdata prom_rtas_start_cpu;
static u64 __initdata prom_rtas_data;
static u64 __initdata prom_rtas_entry;
#ifdef CONFIG_PPC_EARLY_DEBUG_OPAL
static u64 __initdata prom_opal_base;
static u64 __initdata prom_opal_entry;
#endif
/* XXX Don't change this structure without updating opal-takeover.S */
static struct opal_secondary_data {
s64 ack; /* 0 */
u64 go; /* 8 */
struct opal_takeover_args args; /* 16 */
} opal_secondary_data;
extern char opal_secondary_entry;
static void prom_query_opal(void)
{
long rc;
/* We must not query for OPAL presence on a machine that
* supports TNK takeover (970 blades), as this uses the same
* h-call with different arguments and will crash
*/
if (PHANDLE_VALID(call_prom("finddevice", 1, 1,
ADDR("/tnk-memory-map")))) {
prom_printf("TNK takeover detected, skipping OPAL check\n");
return;
}
prom_printf("Querying for OPAL presence... ");
rc = opal_query_takeover(&RELOC(prom_opal_size),
&RELOC(prom_opal_align));
prom_debug("(rc = %ld) ", rc);
if (rc != 0) {
prom_printf("not there.\n");
return;
}
RELOC(of_platform) = PLATFORM_OPAL;
prom_printf(" there !\n");
prom_debug(" opal_size = 0x%lx\n", RELOC(prom_opal_size));
prom_debug(" opal_align = 0x%lx\n", RELOC(prom_opal_align));
if (RELOC(prom_opal_align) < 0x10000)
RELOC(prom_opal_align) = 0x10000;
}
static int prom_rtas_call(int token, int nargs, int nret, int *outputs, ...)
{
struct rtas_args rtas_args;
va_list list;
int i;
rtas_args.token = token;
rtas_args.nargs = nargs;
rtas_args.nret = nret;
rtas_args.rets = (rtas_arg_t *)&(rtas_args.args[nargs]);
va_start(list, outputs);
for (i = 0; i < nargs; ++i)
rtas_args.args[i] = va_arg(list, rtas_arg_t);
va_end(list);
for (i = 0; i < nret; ++i)
rtas_args.rets[i] = 0;
opal_enter_rtas(&rtas_args, RELOC(prom_rtas_data),
RELOC(prom_rtas_entry));
if (nret > 1 && outputs != NULL)
for (i = 0; i < nret-1; ++i)
outputs[i] = rtas_args.rets[i+1];
return (nret > 0)? rtas_args.rets[0]: 0;
}
static void __init prom_opal_hold_cpus(void)
{
int i, cnt, cpu, rc;
long j;
phandle node;
char type[64];
u32 servers[8];
struct prom_t *_prom = &RELOC(prom);
void *entry = (unsigned long *)&RELOC(opal_secondary_entry);
struct opal_secondary_data *data = &RELOC(opal_secondary_data);
prom_debug("prom_opal_hold_cpus: start...\n");
prom_debug(" - entry = 0x%x\n", entry);
prom_debug(" - data = 0x%x\n", data);
data->ack = -1;
data->go = 0;
/* look for cpus */
for (node = 0; prom_next_node(&node); ) {
type[0] = 0;
prom_getprop(node, "device_type", type, sizeof(type));
if (strcmp(type, RELOC("cpu")) != 0)
continue;
/* Skip non-configured cpus. */
if (prom_getprop(node, "status", type, sizeof(type)) > 0)
if (strcmp(type, RELOC("okay")) != 0)
continue;
cnt = prom_getprop(node, "ibm,ppc-interrupt-server#s", servers,
sizeof(servers));
if (cnt == PROM_ERROR)
break;
cnt >>= 2;
for (i = 0; i < cnt; i++) {
cpu = servers[i];
prom_debug("CPU %d ... ", cpu);
if (cpu == _prom->cpu) {
prom_debug("booted !\n");
continue;
}
prom_debug("starting ... ");
/* Init the acknowledge var which will be reset by
* the secondary cpu when it awakens from its OF
* spinloop.
*/
data->ack = -1;
rc = prom_rtas_call(RELOC(prom_rtas_start_cpu), 3, 1,
NULL, cpu, entry, data);
prom_debug("rtas rc=%d ...", rc);
for (j = 0; j < 100000000 && data->ack == -1; j++) {
HMT_low();
mb();
}
HMT_medium();
if (data->ack != -1)
prom_debug("done, PIR=0x%x\n", data->ack);
else
prom_debug("timeout !\n");
}
}
prom_debug("prom_opal_hold_cpus: end...\n");
}
static void prom_opal_takeover(void)
{
struct opal_secondary_data *data = &RELOC(opal_secondary_data);
struct opal_takeover_args *args = &data->args;
u64 align = RELOC(prom_opal_align);
u64 top_addr, opal_addr;
args->k_image = (u64)RELOC(_stext);
args->k_size = _end - _stext;
args->k_entry = 0;
args->k_entry2 = 0x60;
top_addr = _ALIGN_UP(args->k_size, align);
if (RELOC(prom_initrd_start) != 0) {
args->rd_image = RELOC(prom_initrd_start);
args->rd_size = RELOC(prom_initrd_end) - args->rd_image;
args->rd_loc = top_addr;
top_addr = _ALIGN_UP(args->rd_loc + args->rd_size, align);
}
/* Pickup an address for the HAL. We want to go really high
* up to avoid problem with future kexecs. On the other hand
* we don't want to be all over the TCEs on P5IOC2 machines
* which are going to be up there too. We assume the machine
* has plenty of memory, and we ask for the HAL for now to
* be just below the 1G point, or above the initrd
*/
opal_addr = _ALIGN_DOWN(0x40000000 - RELOC(prom_opal_size), align);
if (opal_addr < top_addr)
opal_addr = top_addr;
args->hal_addr = opal_addr;
/* Copy the command line to the kernel image */
strlcpy(RELOC(boot_command_line), RELOC(prom_cmd_line),
COMMAND_LINE_SIZE);
prom_debug(" k_image = 0x%lx\n", args->k_image);
prom_debug(" k_size = 0x%lx\n", args->k_size);
prom_debug(" k_entry = 0x%lx\n", args->k_entry);
prom_debug(" k_entry2 = 0x%lx\n", args->k_entry2);
prom_debug(" hal_addr = 0x%lx\n", args->hal_addr);
prom_debug(" rd_image = 0x%lx\n", args->rd_image);
prom_debug(" rd_size = 0x%lx\n", args->rd_size);
prom_debug(" rd_loc = 0x%lx\n", args->rd_loc);
prom_printf("Performing OPAL takeover,this can take a few minutes..\n");
prom_close_stdin();
mb();
data->go = 1;
for (;;)
opal_do_takeover(args);
}
/*
* Allocate room for and instantiate OPAL
*/
static void __init prom_instantiate_opal(void)
{
phandle opal_node;
ihandle opal_inst;
u64 base, entry;
u64 size = 0, align = 0x10000;
u32 rets[2];
prom_debug("prom_instantiate_opal: start...\n");
opal_node = call_prom("finddevice", 1, 1, ADDR("/ibm,opal"));
prom_debug("opal_node: %x\n", opal_node);
if (!PHANDLE_VALID(opal_node))
return;
prom_getprop(opal_node, "opal-runtime-size", &size, sizeof(size));
if (size == 0)
return;
prom_getprop(opal_node, "opal-runtime-alignment", &align,
sizeof(align));
base = alloc_down(size, align, 0);
if (base == 0) {
prom_printf("OPAL allocation failed !\n");
return;
}
opal_inst = call_prom("open", 1, 1, ADDR("/ibm,opal"));
if (!IHANDLE_VALID(opal_inst)) {
prom_printf("opening opal package failed (%x)\n", opal_inst);
return;
}
prom_printf("instantiating opal at 0x%x...", base);
if (call_prom_ret("call-method", 4, 3, rets,
ADDR("load-opal-runtime"),
opal_inst,
base >> 32, base & 0xffffffff) != 0
|| (rets[0] == 0 && rets[1] == 0)) {
prom_printf(" failed\n");
return;
}
entry = (((u64)rets[0]) << 32) | rets[1];
prom_printf(" done\n");
reserve_mem(base, size);
prom_debug("opal base = 0x%x\n", base);
prom_debug("opal align = 0x%x\n", align);
prom_debug("opal entry = 0x%x\n", entry);
prom_debug("opal size = 0x%x\n", (long)size);
prom_setprop(opal_node, "/ibm,opal", "opal-base-address",
&base, sizeof(base));
prom_setprop(opal_node, "/ibm,opal", "opal-entry-address",
&entry, sizeof(entry));
#ifdef CONFIG_PPC_EARLY_DEBUG_OPAL
RELOC(prom_opal_base) = base;
RELOC(prom_opal_entry) = entry;
#endif
prom_debug("prom_instantiate_opal: end...\n");
}
#endif /* CONFIG_PPC_POWERNV */
/*
* Allocate room for and instantiate RTAS
*/
static void __init prom_instantiate_rtas(void)
{
phandle rtas_node;
ihandle rtas_inst;
u32 base, entry = 0;
u32 size = 0;
prom_debug("prom_instantiate_rtas: start...\n");
rtas_node = call_prom("finddevice", 1, 1, ADDR("/rtas"));
prom_debug("rtas_node: %x\n", rtas_node);
if (!PHANDLE_VALID(rtas_node))
return;
prom_getprop(rtas_node, "rtas-size", &size, sizeof(size));
if (size == 0)
return;
base = alloc_down(size, PAGE_SIZE, 0);
if (base == 0)
prom_panic("Could not allocate memory for RTAS\n");
rtas_inst = call_prom("open", 1, 1, ADDR("/rtas"));
if (!IHANDLE_VALID(rtas_inst)) {
prom_printf("opening rtas package failed (%x)\n", rtas_inst);
return;
}
prom_printf("instantiating rtas at 0x%x...", base);
if (call_prom_ret("call-method", 3, 2, &entry,
ADDR("instantiate-rtas"),
rtas_inst, base) != 0
|| entry == 0) {
prom_printf(" failed\n");
return;
}
prom_printf(" done\n");
reserve_mem(base, size);
prom_setprop(rtas_node, "/rtas", "linux,rtas-base",
&base, sizeof(base));
prom_setprop(rtas_node, "/rtas", "linux,rtas-entry",
&entry, sizeof(entry));
#ifdef CONFIG_PPC_POWERNV
/* PowerVN takeover hack */
RELOC(prom_rtas_data) = base;
RELOC(prom_rtas_entry) = entry;
prom_getprop(rtas_node, "start-cpu", &RELOC(prom_rtas_start_cpu), 4);
#endif
prom_debug("rtas base = 0x%x\n", base);
prom_debug("rtas entry = 0x%x\n", entry);
prom_debug("rtas size = 0x%x\n", (long)size);
prom_debug("prom_instantiate_rtas: end...\n");
}
#ifdef CONFIG_PPC64
/*
* Allocate room for and initialize TCE tables
*/
static void __init prom_initialize_tce_table(void)
{
phandle node;
ihandle phb_node;
char compatible[64], type[64], model[64];
char *path = RELOC(prom_scratch);
u64 base, align;
u32 minalign, minsize;
u64 tce_entry, *tce_entryp;
u64 local_alloc_top, local_alloc_bottom;
u64 i;
if (RELOC(prom_iommu_off))
return;
prom_debug("starting prom_initialize_tce_table\n");
/* Cache current top of allocs so we reserve a single block */
local_alloc_top = RELOC(alloc_top_high);
local_alloc_bottom = local_alloc_top;
/* Search all nodes looking for PHBs. */
for (node = 0; prom_next_node(&node); ) {
compatible[0] = 0;
type[0] = 0;
model[0] = 0;
prom_getprop(node, "compatible",
compatible, sizeof(compatible));
prom_getprop(node, "device_type", type, sizeof(type));
prom_getprop(node, "model", model, sizeof(model));
if ((type[0] == 0) || (strstr(type, RELOC("pci")) == NULL))
continue;
/* Keep the old logic intact to avoid regression. */
if (compatible[0] != 0) {
if ((strstr(compatible, RELOC("python")) == NULL) &&
(strstr(compatible, RELOC("Speedwagon")) == NULL) &&
(strstr(compatible, RELOC("Winnipeg")) == NULL))
continue;
} else if (model[0] != 0) {
if ((strstr(model, RELOC("ython")) == NULL) &&
(strstr(model, RELOC("peedwagon")) == NULL) &&
(strstr(model, RELOC("innipeg")) == NULL))
continue;
}
if (prom_getprop(node, "tce-table-minalign", &minalign,
sizeof(minalign)) == PROM_ERROR)
minalign = 0;
if (prom_getprop(node, "tce-table-minsize", &minsize,
sizeof(minsize)) == PROM_ERROR)
minsize = 4UL << 20;
/*
* Even though we read what OF wants, we just set the table
* size to 4 MB. This is enough to map 2GB of PCI DMA space.
* By doing this, we avoid the pitfalls of trying to DMA to
* MMIO space and the DMA alias hole.
*
* On POWER4, firmware sets the TCE region by assuming
* each TCE table is 8MB. Using this memory for anything
* else will impact performance, so we always allocate 8MB.
* Anton
*/
if (__is_processor(PV_POWER4) || __is_processor(PV_POWER4p))
minsize = 8UL << 20;
else
minsize = 4UL << 20;
/* Align to the greater of the align or size */
align = max(minalign, minsize);
base = alloc_down(minsize, align, 1);
if (base == 0)
prom_panic("ERROR, cannot find space for TCE table.\n");
if (base < local_alloc_bottom)
local_alloc_bottom = base;
/* It seems OF doesn't null-terminate the path :-( */
memset(path, 0, PROM_SCRATCH_SIZE);
/* Call OF to setup the TCE hardware */
if (call_prom("package-to-path", 3, 1, node,
path, PROM_SCRATCH_SIZE-1) == PROM_ERROR) {
prom_printf("package-to-path failed\n");
}
/* Save away the TCE table attributes for later use. */
prom_setprop(node, path, "linux,tce-base", &base, sizeof(base));
prom_setprop(node, path, "linux,tce-size", &minsize, sizeof(minsize));
prom_debug("TCE table: %s\n", path);
prom_debug("\tnode = 0x%x\n", node);
prom_debug("\tbase = 0x%x\n", base);
prom_debug("\tsize = 0x%x\n", minsize);
/* Initialize the table to have a one-to-one mapping
* over the allocated size.
*/
tce_entryp = (u64 *)base;
for (i = 0; i < (minsize >> 3) ;tce_entryp++, i++) {
tce_entry = (i << PAGE_SHIFT);
tce_entry |= 0x3;
*tce_entryp = tce_entry;
}
prom_printf("opening PHB %s", path);
phb_node = call_prom("open", 1, 1, path);
if (phb_node == 0)
prom_printf("... failed\n");
else
prom_printf("... done\n");
call_prom("call-method", 6, 0, ADDR("set-64-bit-addressing"),
phb_node, -1, minsize,
(u32) base, (u32) (base >> 32));
call_prom("close", 1, 0, phb_node);
}
reserve_mem(local_alloc_bottom, local_alloc_top - local_alloc_bottom);
/* These are only really needed if there is a memory limit in
* effect, but we don't know so export them always. */
RELOC(prom_tce_alloc_start) = local_alloc_bottom;
RELOC(prom_tce_alloc_end) = local_alloc_top;
/* Flag the first invalid entry */
prom_debug("ending prom_initialize_tce_table\n");
}
#endif
/*
* With CHRP SMP we need to use the OF to start the other processors.
* We can't wait until smp_boot_cpus (the OF is trashed by then)
* so we have to put the processors into a holding pattern controlled
* by the kernel (not OF) before we destroy the OF.
*
* This uses a chunk of low memory, puts some holding pattern
* code there and sends the other processors off to there until
* smp_boot_cpus tells them to do something. The holding pattern
* checks that address until its cpu # is there, when it is that
* cpu jumps to __secondary_start(). smp_boot_cpus() takes care
* of setting those values.
*
* We also use physical address 0x4 here to tell when a cpu
* is in its holding pattern code.
*
* -- Cort
*/
/*
* We want to reference the copy of __secondary_hold_* in the
* 0 - 0x100 address range
*/
#define LOW_ADDR(x) (((unsigned long) &(x)) & 0xff)
static void __init prom_hold_cpus(void)
{
unsigned long i;
unsigned int reg;
phandle node;
char type[64];
struct prom_t *_prom = &RELOC(prom);
unsigned long *spinloop
= (void *) LOW_ADDR(__secondary_hold_spinloop);
unsigned long *acknowledge
= (void *) LOW_ADDR(__secondary_hold_acknowledge);
unsigned long secondary_hold = LOW_ADDR(__secondary_hold);
prom_debug("prom_hold_cpus: start...\n");
prom_debug(" 1) spinloop = 0x%x\n", (unsigned long)spinloop);
prom_debug(" 1) *spinloop = 0x%x\n", *spinloop);
prom_debug(" 1) acknowledge = 0x%x\n",
(unsigned long)acknowledge);
prom_debug(" 1) *acknowledge = 0x%x\n", *acknowledge);
prom_debug(" 1) secondary_hold = 0x%x\n", secondary_hold);
/* Set the common spinloop variable, so all of the secondary cpus
* will block when they are awakened from their OF spinloop.
* This must occur for both SMP and non SMP kernels, since OF will
* be trashed when we move the kernel.
*/
*spinloop = 0;
/* look for cpus */
for (node = 0; prom_next_node(&node); ) {
type[0] = 0;
prom_getprop(node, "device_type", type, sizeof(type));
if (strcmp(type, RELOC("cpu")) != 0)
continue;
/* Skip non-configured cpus. */
if (prom_getprop(node, "status", type, sizeof(type)) > 0)
if (strcmp(type, RELOC("okay")) != 0)
continue;
reg = -1;
prom_getprop(node, "reg", &reg, sizeof(reg));
prom_debug("cpu hw idx = %lu\n", reg);
/* Init the acknowledge var which will be reset by
* the secondary cpu when it awakens from its OF
* spinloop.
*/
*acknowledge = (unsigned long)-1;
if (reg != _prom->cpu) {
/* Primary Thread of non-boot cpu or any thread */
prom_printf("starting cpu hw idx %lu... ", reg);
call_prom("start-cpu", 3, 0, node,
secondary_hold, reg);
for (i = 0; (i < 100000000) &&
(*acknowledge == ((unsigned long)-1)); i++ )
mb();
if (*acknowledge == reg)
prom_printf("done\n");
else
prom_printf("failed: %x\n", *acknowledge);
}
#ifdef CONFIG_SMP
else
prom_printf("boot cpu hw idx %lu\n", reg);
#endif /* CONFIG_SMP */
}
prom_debug("prom_hold_cpus: end...\n");
}
static void __init prom_init_client_services(unsigned long pp)
{
struct prom_t *_prom = &RELOC(prom);
/* Get a handle to the prom entry point before anything else */
RELOC(prom_entry) = pp;
/* get a handle for the stdout device */
_prom->chosen = call_prom("finddevice", 1, 1, ADDR("/chosen"));
if (!PHANDLE_VALID(_prom->chosen))
prom_panic("cannot find chosen"); /* msg won't be printed :( */
/* get device tree root */
_prom->root = call_prom("finddevice", 1, 1, ADDR("/"));
if (!PHANDLE_VALID(_prom->root))
prom_panic("cannot find device tree root"); /* msg won't be printed :( */
_prom->mmumap = 0;
}
#ifdef CONFIG_PPC32
/*
* For really old powermacs, we need to map things we claim.
* For that, we need the ihandle of the mmu.
* Also, on the longtrail, we need to work around other bugs.
*/
static void __init prom_find_mmu(void)
{
struct prom_t *_prom = &RELOC(prom);
phandle oprom;
char version[64];
oprom = call_prom("finddevice", 1, 1, ADDR("/openprom"));
if (!PHANDLE_VALID(oprom))
return;
if (prom_getprop(oprom, "model", version, sizeof(version)) <= 0)
return;
version[sizeof(version) - 1] = 0;
/* XXX might need to add other versions here */
if (strcmp(version, "Open Firmware, 1.0.5") == 0)
of_workarounds = OF_WA_CLAIM;
else if (strncmp(version, "FirmWorks,3.", 12) == 0) {
of_workarounds = OF_WA_CLAIM | OF_WA_LONGTRAIL;
call_prom("interpret", 1, 1, "dev /memory 0 to allow-reclaim");
} else
return;
_prom->memory = call_prom("open", 1, 1, ADDR("/memory"));
prom_getprop(_prom->chosen, "mmu", &_prom->mmumap,
sizeof(_prom->mmumap));
if (!IHANDLE_VALID(_prom->memory) || !IHANDLE_VALID(_prom->mmumap))
of_workarounds &= ~OF_WA_CLAIM; /* hmmm */
}
#else
#define prom_find_mmu()
#endif
static void __init prom_init_stdout(void)
{
struct prom_t *_prom = &RELOC(prom);
char *path = RELOC(of_stdout_device);
char type[16];
u32 val;
if (prom_getprop(_prom->chosen, "stdout", &val, sizeof(val)) <= 0)
prom_panic("cannot find stdout");
_prom->stdout = val;
/* Get the full OF pathname of the stdout device */
memset(path, 0, 256);
call_prom("instance-to-path", 3, 1, _prom->stdout, path, 255);
val = call_prom("instance-to-package", 1, 1, _prom->stdout);
prom_setprop(_prom->chosen, "/chosen", "linux,stdout-package",
&val, sizeof(val));
prom_printf("OF stdout device is: %s\n", RELOC(of_stdout_device));
prom_setprop(_prom->chosen, "/chosen", "linux,stdout-path",
path, strlen(path) + 1);
/* If it's a display, note it */
memset(type, 0, sizeof(type));
prom_getprop(val, "device_type", type, sizeof(type));
if (strcmp(type, RELOC("display")) == 0)
prom_setprop(val, path, "linux,boot-display", NULL, 0);
}
static int __init prom_find_machine_type(void)
{
struct prom_t *_prom = &RELOC(prom);
char compat[256];
int len, i = 0;
#ifdef CONFIG_PPC64
phandle rtas;
int x;
#endif
/* Look for a PowerMac or a Cell */
len = prom_getprop(_prom->root, "compatible",
compat, sizeof(compat)-1);
if (len > 0) {
compat[len] = 0;
while (i < len) {
char *p = &compat[i];
int sl = strlen(p);
if (sl == 0)
break;
if (strstr(p, RELOC("Power Macintosh")) ||
strstr(p, RELOC("MacRISC")))
return PLATFORM_POWERMAC;
#ifdef CONFIG_PPC64
/* We must make sure we don't detect the IBM Cell
* blades as pSeries due to some firmware issues,
* so we do it here.
*/
if (strstr(p, RELOC("IBM,CBEA")) ||
strstr(p, RELOC("IBM,CPBW-1.0")))
return PLATFORM_GENERIC;
#endif /* CONFIG_PPC64 */
i += sl + 1;
}
}
#ifdef CONFIG_PPC64
/* Try to detect OPAL */
if (PHANDLE_VALID(call_prom("finddevice", 1, 1, ADDR("/ibm,opal"))))
return PLATFORM_OPAL;
/* Try to figure out if it's an IBM pSeries or any other
* PAPR compliant platform. We assume it is if :
* - /device_type is "chrp" (please, do NOT use that for future
* non-IBM designs !
* - it has /rtas
*/
len = prom_getprop(_prom->root, "device_type",
compat, sizeof(compat)-1);
if (len <= 0)
return PLATFORM_GENERIC;
if (strcmp(compat, RELOC("chrp")))
return PLATFORM_GENERIC;
/* Default to pSeries. We need to know if we are running LPAR */
rtas = call_prom("finddevice", 1, 1, ADDR("/rtas"));
if (!PHANDLE_VALID(rtas))
return PLATFORM_GENERIC;
x = prom_getproplen(rtas, "ibm,hypertas-functions");
if (x != PROM_ERROR) {
prom_debug("Hypertas detected, assuming LPAR !\n");
return PLATFORM_PSERIES_LPAR;
}
return PLATFORM_PSERIES;
#else
return PLATFORM_GENERIC;
#endif
}
static int __init prom_set_color(ihandle ih, int i, int r, int g, int b)
{
return call_prom("call-method", 6, 1, ADDR("color!"), ih, i, b, g, r);
}
/*
* If we have a display that we don't know how to drive,
* we will want to try to execute OF's open method for it
* later. However, OF will probably fall over if we do that
* we've taken over the MMU.
* So we check whether we will need to open the display,
* and if so, open it now.
*/
static void __init prom_check_displays(void)
{
char type[16], *path;
phandle node;
ihandle ih;
int i;
static unsigned char default_colors[] = {
0x00, 0x00, 0x00,
0x00, 0x00, 0xaa,
0x00, 0xaa, 0x00,
0x00, 0xaa, 0xaa,
0xaa, 0x00, 0x00,
0xaa, 0x00, 0xaa,
0xaa, 0xaa, 0x00,
0xaa, 0xaa, 0xaa,
0x55, 0x55, 0x55,
0x55, 0x55, 0xff,
0x55, 0xff, 0x55,
0x55, 0xff, 0xff,
0xff, 0x55, 0x55,
0xff, 0x55, 0xff,
0xff, 0xff, 0x55,
0xff, 0xff, 0xff
};
const unsigned char *clut;
prom_debug("Looking for displays\n");
for (node = 0; prom_next_node(&node); ) {
memset(type, 0, sizeof(type));
prom_getprop(node, "device_type", type, sizeof(type));
if (strcmp(type, RELOC("display")) != 0)
continue;
/* It seems OF doesn't null-terminate the path :-( */
path = RELOC(prom_scratch);
memset(path, 0, PROM_SCRATCH_SIZE);
/*
* leave some room at the end of the path for appending extra
* arguments
*/
if (call_prom("package-to-path", 3, 1, node, path,
PROM_SCRATCH_SIZE-10) == PROM_ERROR)
continue;
prom_printf("found display : %s, opening... ", path);
ih = call_prom("open", 1, 1, path);
if (ih == 0) {
prom_printf("failed\n");
continue;
}
/* Success */
prom_printf("done\n");
prom_setprop(node, path, "linux,opened", NULL, 0);
/* Setup a usable color table when the appropriate
* method is available. Should update this to set-colors */
clut = RELOC(default_colors);
for (i = 0; i < 32; i++, clut += 3)
if (prom_set_color(ih, i, clut[0], clut[1],
clut[2]) != 0)
break;
#ifdef CONFIG_LOGO_LINUX_CLUT224
clut = PTRRELOC(RELOC(logo_linux_clut224.clut));
for (i = 0; i < RELOC(logo_linux_clut224.clutsize); i++, clut += 3)
if (prom_set_color(ih, i + 32, clut[0], clut[1],
clut[2]) != 0)
break;
#endif /* CONFIG_LOGO_LINUX_CLUT224 */
}
}
/* Return (relocated) pointer to this much memory: moves initrd if reqd. */
static void __init *make_room(unsigned long *mem_start, unsigned long *mem_end,
unsigned long needed, unsigned long align)
{
void *ret;
*mem_start = _ALIGN(*mem_start, align);
while ((*mem_start + needed) > *mem_end) {
unsigned long room, chunk;
prom_debug("Chunk exhausted, claiming more at %x...\n",
RELOC(alloc_bottom));
room = RELOC(alloc_top) - RELOC(alloc_bottom);
if (room > DEVTREE_CHUNK_SIZE)
room = DEVTREE_CHUNK_SIZE;
if (room < PAGE_SIZE)
prom_panic("No memory for flatten_device_tree "
"(no room)\n");
chunk = alloc_up(room, 0);
if (chunk == 0)
prom_panic("No memory for flatten_device_tree "
"(claim failed)\n");
*mem_end = chunk + room;
}
ret = (void *)*mem_start;
*mem_start += needed;
return ret;
}
#define dt_push_token(token, mem_start, mem_end) \
do { *((u32 *)make_room(mem_start, mem_end, 4, 4)) = token; } while(0)
static unsigned long __init dt_find_string(char *str)
{
char *s, *os;
s = os = (char *)RELOC(dt_string_start);
s += 4;
while (s < (char *)RELOC(dt_string_end)) {
if (strcmp(s, str) == 0)
return s - os;
s += strlen(s) + 1;
}
return 0;
}
/*
* The Open Firmware 1275 specification states properties must be 31 bytes or
* less, however not all firmwares obey this. Make it 64 bytes to be safe.
*/
#define MAX_PROPERTY_NAME 64
static void __init scan_dt_build_strings(phandle node,
unsigned long *mem_start,
unsigned long *mem_end)
{
char *prev_name, *namep, *sstart;
unsigned long soff;
phandle child;
sstart = (char *)RELOC(dt_string_start);
/* get and store all property names */
prev_name = RELOC("");
for (;;) {
/* 64 is max len of name including nul. */
namep = make_room(mem_start, mem_end, MAX_PROPERTY_NAME, 1);
if (call_prom("nextprop", 3, 1, node, prev_name, namep) != 1) {
/* No more nodes: unwind alloc */
*mem_start = (unsigned long)namep;
break;
}
/* skip "name" */
if (strcmp(namep, RELOC("name")) == 0) {
*mem_start = (unsigned long)namep;
prev_name = RELOC("name");
continue;
}
/* get/create string entry */
soff = dt_find_string(namep);
if (soff != 0) {
*mem_start = (unsigned long)namep;
namep = sstart + soff;
} else {
/* Trim off some if we can */
*mem_start = (unsigned long)namep + strlen(namep) + 1;
RELOC(dt_string_end) = *mem_start;
}
prev_name = namep;
}
/* do all our children */
child = call_prom("child", 1, 1, node);
while (child != 0) {
scan_dt_build_strings(child, mem_start, mem_end);
child = call_prom("peer", 1, 1, child);
}
}
static void __init scan_dt_build_struct(phandle node, unsigned long *mem_start,
unsigned long *mem_end)
{
phandle child;
char *namep, *prev_name, *sstart, *p, *ep, *lp, *path;
unsigned long soff;
unsigned char *valp;
static char pname[MAX_PROPERTY_NAME];
int l, room, has_phandle = 0;
dt_push_token(OF_DT_BEGIN_NODE, mem_start, mem_end);
/* get the node's full name */
namep = (char *)*mem_start;
room = *mem_end - *mem_start;
if (room > 255)
room = 255;
l = call_prom("package-to-path", 3, 1, node, namep, room);
if (l >= 0) {
/* Didn't fit? Get more room. */
if (l >= room) {
if (l >= *mem_end - *mem_start)
namep = make_room(mem_start, mem_end, l+1, 1);
call_prom("package-to-path", 3, 1, node, namep, l);
}
namep[l] = '\0';
/* Fixup an Apple bug where they have bogus \0 chars in the
* middle of the path in some properties, and extract
* the unit name (everything after the last '/').
*/
for (lp = p = namep, ep = namep + l; p < ep; p++) {
if (*p == '/')
lp = namep;
else if (*p != 0)
*lp++ = *p;
}
*lp = 0;
*mem_start = _ALIGN((unsigned long)lp + 1, 4);
}
/* get it again for debugging */
path = RELOC(prom_scratch);
memset(path, 0, PROM_SCRATCH_SIZE);
call_prom("package-to-path", 3, 1, node, path, PROM_SCRATCH_SIZE-1);
/* get and store all properties */
prev_name = RELOC("");
sstart = (char *)RELOC(dt_string_start);
for (;;) {
if (call_prom("nextprop", 3, 1, node, prev_name,
RELOC(pname)) != 1)
break;
/* skip "name" */
if (strcmp(RELOC(pname), RELOC("name")) == 0) {
prev_name = RELOC("name");
continue;
}
/* find string offset */
soff = dt_find_string(RELOC(pname));
if (soff == 0) {
prom_printf("WARNING: Can't find string index for"
" <%s>, node %s\n", RELOC(pname), path);
break;
}
prev_name = sstart + soff;
/* get length */
l = call_prom("getproplen", 2, 1, node, RELOC(pname));
/* sanity checks */
if (l == PROM_ERROR)
continue;
if (l > MAX_PROPERTY_LENGTH) {
prom_printf("WARNING: ignoring large property ");
/* It seems OF doesn't null-terminate the path :-( */
prom_printf("[%s] ", path);
prom_printf("%s length 0x%x\n", RELOC(pname), l);
continue;
}
/* push property head */
dt_push_token(OF_DT_PROP, mem_start, mem_end);
dt_push_token(l, mem_start, mem_end);
dt_push_token(soff, mem_start, mem_end);
/* push property content */
valp = make_room(mem_start, mem_end, l, 4);
call_prom("getprop", 4, 1, node, RELOC(pname), valp, l);
*mem_start = _ALIGN(*mem_start, 4);
if (!strcmp(RELOC(pname), RELOC("phandle")))
has_phandle = 1;
}
/* Add a "linux,phandle" property if no "phandle" property already
* existed (can happen with OPAL)
*/
if (!has_phandle) {
soff = dt_find_string(RELOC("linux,phandle"));
if (soff == 0)
prom_printf("WARNING: Can't find string index for"
" <linux-phandle> node %s\n", path);
else {
dt_push_token(OF_DT_PROP, mem_start, mem_end);
dt_push_token(4, mem_start, mem_end);
dt_push_token(soff, mem_start, mem_end);
valp = make_room(mem_start, mem_end, 4, 4);
*(u32 *)valp = node;
}
}
/* do all our children */
child = call_prom("child", 1, 1, node);
while (child != 0) {
scan_dt_build_struct(child, mem_start, mem_end);
child = call_prom("peer", 1, 1, child);
}
dt_push_token(OF_DT_END_NODE, mem_start, mem_end);
}
static void __init flatten_device_tree(void)
{
phandle root;
unsigned long mem_start, mem_end, room;
struct boot_param_header *hdr;
struct prom_t *_prom = &RELOC(prom);
char *namep;
u64 *rsvmap;
/*
* Check how much room we have between alloc top & bottom (+/- a
* few pages), crop to 1MB, as this is our "chunk" size
*/
room = RELOC(alloc_top) - RELOC(alloc_bottom) - 0x4000;
if (room > DEVTREE_CHUNK_SIZE)
room = DEVTREE_CHUNK_SIZE;
prom_debug("starting device tree allocs at %x\n", RELOC(alloc_bottom));
/* Now try to claim that */
mem_start = (unsigned long)alloc_up(room, PAGE_SIZE);
if (mem_start == 0)
prom_panic("Can't allocate initial device-tree chunk\n");
mem_end = mem_start + room;
/* Get root of tree */
root = call_prom("peer", 1, 1, (phandle)0);
if (root == (phandle)0)
prom_panic ("couldn't get device tree root\n");
/* Build header and make room for mem rsv map */
mem_start = _ALIGN(mem_start, 4);
hdr = make_room(&mem_start, &mem_end,
sizeof(struct boot_param_header), 4);
RELOC(dt_header_start) = (unsigned long)hdr;
rsvmap = make_room(&mem_start, &mem_end, sizeof(mem_reserve_map), 8);
/* Start of strings */
mem_start = PAGE_ALIGN(mem_start);
RELOC(dt_string_start) = mem_start;
mem_start += 4; /* hole */
/* Add "linux,phandle" in there, we'll need it */
namep = make_room(&mem_start, &mem_end, 16, 1);
strcpy(namep, RELOC("linux,phandle"));
mem_start = (unsigned long)namep + strlen(namep) + 1;
/* Build string array */
prom_printf("Building dt strings...\n");
scan_dt_build_strings(root, &mem_start, &mem_end);
RELOC(dt_string_end) = mem_start;
/* Build structure */
mem_start = PAGE_ALIGN(mem_start);
RELOC(dt_struct_start) = mem_start;
prom_printf("Building dt structure...\n");
scan_dt_build_struct(root, &mem_start, &mem_end);
dt_push_token(OF_DT_END, &mem_start, &mem_end);
RELOC(dt_struct_end) = PAGE_ALIGN(mem_start);
/* Finish header */
hdr->boot_cpuid_phys = _prom->cpu;
hdr->magic = OF_DT_HEADER;
hdr->totalsize = RELOC(dt_struct_end) - RELOC(dt_header_start);
hdr->off_dt_struct = RELOC(dt_struct_start) - RELOC(dt_header_start);
hdr->off_dt_strings = RELOC(dt_string_start) - RELOC(dt_header_start);
hdr->dt_strings_size = RELOC(dt_string_end) - RELOC(dt_string_start);
hdr->off_mem_rsvmap = ((unsigned long)rsvmap) - RELOC(dt_header_start);
hdr->version = OF_DT_VERSION;
/* Version 16 is not backward compatible */
hdr->last_comp_version = 0x10;
/* Copy the reserve map in */
memcpy(rsvmap, RELOC(mem_reserve_map), sizeof(mem_reserve_map));
#ifdef DEBUG_PROM
{
int i;
prom_printf("reserved memory map:\n");
for (i = 0; i < RELOC(mem_reserve_cnt); i++)
prom_printf(" %x - %x\n",
RELOC(mem_reserve_map)[i].base,
RELOC(mem_reserve_map)[i].size);
}
#endif
/* Bump mem_reserve_cnt to cause further reservations to fail
* since it's too late.
*/
RELOC(mem_reserve_cnt) = MEM_RESERVE_MAP_SIZE;
prom_printf("Device tree strings 0x%x -> 0x%x\n",
RELOC(dt_string_start), RELOC(dt_string_end));
prom_printf("Device tree struct 0x%x -> 0x%x\n",
RELOC(dt_struct_start), RELOC(dt_struct_end));
}
#ifdef CONFIG_PPC_MAPLE
/* PIBS Version 1.05.0000 04/26/2005 has an incorrect /ht/isa/ranges property.
* The values are bad, and it doesn't even have the right number of cells. */
static void __init fixup_device_tree_maple(void)
{
phandle isa;
u32 rloc = 0x01002000; /* IO space; PCI device = 4 */
u32 isa_ranges[6];
char *name;
name = "/ht@0/isa@4";
isa = call_prom("finddevice", 1, 1, ADDR(name));
if (!PHANDLE_VALID(isa)) {
name = "/ht@0/isa@6";
isa = call_prom("finddevice", 1, 1, ADDR(name));
rloc = 0x01003000; /* IO space; PCI device = 6 */
}
if (!PHANDLE_VALID(isa))
return;
if (prom_getproplen(isa, "ranges") != 12)
return;
if (prom_getprop(isa, "ranges", isa_ranges, sizeof(isa_ranges))
== PROM_ERROR)
return;
if (isa_ranges[0] != 0x1 ||
isa_ranges[1] != 0xf4000000 ||
isa_ranges[2] != 0x00010000)
return;
prom_printf("Fixing up bogus ISA range on Maple/Apache...\n");
isa_ranges[0] = 0x1;
isa_ranges[1] = 0x0;
isa_ranges[2] = rloc;
isa_ranges[3] = 0x0;
isa_ranges[4] = 0x0;
isa_ranges[5] = 0x00010000;
prom_setprop(isa, name, "ranges",
isa_ranges, sizeof(isa_ranges));
}
#define CPC925_MC_START 0xf8000000
#define CPC925_MC_LENGTH 0x1000000
/* The values for memory-controller don't have right number of cells */
static void __init fixup_device_tree_maple_memory_controller(void)
{
phandle mc;
u32 mc_reg[4];
char *name = "/hostbridge@f8000000";
struct prom_t *_prom = &RELOC(prom);
u32 ac, sc;
mc = call_prom("finddevice", 1, 1, ADDR(name));
if (!PHANDLE_VALID(mc))
return;
if (prom_getproplen(mc, "reg") != 8)
return;
prom_getprop(_prom->root, "#address-cells", &ac, sizeof(ac));
prom_getprop(_prom->root, "#size-cells", &sc, sizeof(sc));
if ((ac != 2) || (sc != 2))
return;
if (prom_getprop(mc, "reg", mc_reg, sizeof(mc_reg)) == PROM_ERROR)
return;
if (mc_reg[0] != CPC925_MC_START || mc_reg[1] != CPC925_MC_LENGTH)
return;
prom_printf("Fixing up bogus hostbridge on Maple...\n");
mc_reg[0] = 0x0;
mc_reg[1] = CPC925_MC_START;
mc_reg[2] = 0x0;
mc_reg[3] = CPC925_MC_LENGTH;
prom_setprop(mc, name, "reg", mc_reg, sizeof(mc_reg));
}
#else
#define fixup_device_tree_maple()
#define fixup_device_tree_maple_memory_controller()
#endif
#ifdef CONFIG_PPC_CHRP
/*
* Pegasos and BriQ lacks the "ranges" property in the isa node
* Pegasos needs decimal IRQ 14/15, not hexadecimal
* Pegasos has the IDE configured in legacy mode, but advertised as native
*/
static void __init fixup_device_tree_chrp(void)
{
phandle ph;
u32 prop[6];
u32 rloc = 0x01006000; /* IO space; PCI device = 12 */
char *name;
int rc;
name = "/pci@80000000/isa@c";
ph = call_prom("finddevice", 1, 1, ADDR(name));
if (!PHANDLE_VALID(ph)) {
name = "/pci@ff500000/isa@6";
ph = call_prom("finddevice", 1, 1, ADDR(name));
rloc = 0x01003000; /* IO space; PCI device = 6 */
}
if (PHANDLE_VALID(ph)) {
rc = prom_getproplen(ph, "ranges");
if (rc == 0 || rc == PROM_ERROR) {
prom_printf("Fixing up missing ISA range on Pegasos...\n");
prop[0] = 0x1;
prop[1] = 0x0;
prop[2] = rloc;
prop[3] = 0x0;
prop[4] = 0x0;
prop[5] = 0x00010000;
prom_setprop(ph, name, "ranges", prop, sizeof(prop));
}
}
name = "/pci@80000000/ide@C,1";
ph = call_prom("finddevice", 1, 1, ADDR(name));
if (PHANDLE_VALID(ph)) {
prom_printf("Fixing up IDE interrupt on Pegasos...\n");
prop[0] = 14;
prop[1] = 0x0;
prom_setprop(ph, name, "interrupts", prop, 2*sizeof(u32));
prom_printf("Fixing up IDE class-code on Pegasos...\n");
rc = prom_getprop(ph, "class-code", prop, sizeof(u32));
if (rc == sizeof(u32)) {
prop[0] &= ~0x5;
prom_setprop(ph, name, "class-code", prop, sizeof(u32));
}
}
}
#else
#define fixup_device_tree_chrp()
#endif
#if defined(CONFIG_PPC64) && defined(CONFIG_PPC_PMAC)
static void __init fixup_device_tree_pmac(void)
{
phandle u3, i2c, mpic;
u32 u3_rev;
u32 interrupts[2];
u32 parent;
/* Some G5s have a missing interrupt definition, fix it up here */
u3 = call_prom("finddevice", 1, 1, ADDR("/u3@0,f8000000"));
if (!PHANDLE_VALID(u3))
return;
i2c = call_prom("finddevice", 1, 1, ADDR("/u3@0,f8000000/i2c@f8001000"));
if (!PHANDLE_VALID(i2c))
return;
mpic = call_prom("finddevice", 1, 1, ADDR("/u3@0,f8000000/mpic@f8040000"));
if (!PHANDLE_VALID(mpic))
return;
/* check if proper rev of u3 */
if (prom_getprop(u3, "device-rev", &u3_rev, sizeof(u3_rev))
== PROM_ERROR)
return;
if (u3_rev < 0x35 || u3_rev > 0x39)
return;
/* does it need fixup ? */
if (prom_getproplen(i2c, "interrupts") > 0)
return;
prom_printf("fixing up bogus interrupts for u3 i2c...\n");
/* interrupt on this revision of u3 is number 0 and level */
interrupts[0] = 0;
interrupts[1] = 1;
prom_setprop(i2c, "/u3@0,f8000000/i2c@f8001000", "interrupts",
&interrupts, sizeof(interrupts));
parent = (u32)mpic;
prom_setprop(i2c, "/u3@0,f8000000/i2c@f8001000", "interrupt-parent",
&parent, sizeof(parent));
}
#else
#define fixup_device_tree_pmac()
#endif
#ifdef CONFIG_PPC_EFIKA
/*
* The MPC5200 FEC driver requires an phy-handle property to tell it how
* to talk to the phy. If the phy-handle property is missing, then this
* function is called to add the appropriate nodes and link it to the
* ethernet node.
*/
static void __init fixup_device_tree_efika_add_phy(void)
{
u32 node;
char prop[64];
int rv;
/* Check if /builtin/ethernet exists - bail if it doesn't */
node = call_prom("finddevice", 1, 1, ADDR("/builtin/ethernet"));
if (!PHANDLE_VALID(node))
return;
/* Check if the phy-handle property exists - bail if it does */
rv = prom_getprop(node, "phy-handle", prop, sizeof(prop));
if (!rv)
return;
/*
* At this point the ethernet device doesn't have a phy described.
* Now we need to add the missing phy node and linkage
*/
/* Check for an MDIO bus node - if missing then create one */
node = call_prom("finddevice", 1, 1, ADDR("/builtin/mdio"));
if (!PHANDLE_VALID(node)) {
prom_printf("Adding Ethernet MDIO node\n");
call_prom("interpret", 1, 1,
" s\" /builtin\" find-device"
" new-device"
" 1 encode-int s\" #address-cells\" property"
" 0 encode-int s\" #size-cells\" property"
" s\" mdio\" device-name"
" s\" fsl,mpc5200b-mdio\" encode-string"
" s\" compatible\" property"
" 0xf0003000 0x400 reg"
" 0x2 encode-int"
" 0x5 encode-int encode+"
" 0x3 encode-int encode+"
" s\" interrupts\" property"
" finish-device");
};
/* Check for a PHY device node - if missing then create one and
* give it's phandle to the ethernet node */
node = call_prom("finddevice", 1, 1,
ADDR("/builtin/mdio/ethernet-phy"));
if (!PHANDLE_VALID(node)) {
prom_printf("Adding Ethernet PHY node\n");
call_prom("interpret", 1, 1,
" s\" /builtin/mdio\" find-device"
" new-device"
" s\" ethernet-phy\" device-name"
" 0x10 encode-int s\" reg\" property"
" my-self"
" ihandle>phandle"
" finish-device"
" s\" /builtin/ethernet\" find-device"
" encode-int"
" s\" phy-handle\" property"
" device-end");
}
}
static void __init fixup_device_tree_efika(void)
{
int sound_irq[3] = { 2, 2, 0 };
int bcomm_irq[3*16] = { 3,0,0, 3,1,0, 3,2,0, 3,3,0,
3,4,0, 3,5,0, 3,6,0, 3,7,0,
3,8,0, 3,9,0, 3,10,0, 3,11,0,
3,12,0, 3,13,0, 3,14,0, 3,15,0 };
u32 node;
char prop[64];
int rv, len;
/* Check if we're really running on a EFIKA */
node = call_prom("finddevice", 1, 1, ADDR("/"));
if (!PHANDLE_VALID(node))
return;
rv = prom_getprop(node, "model", prop, sizeof(prop));
if (rv == PROM_ERROR)
return;
if (strcmp(prop, "EFIKA5K2"))
return;
prom_printf("Applying EFIKA device tree fixups\n");
/* Claiming to be 'chrp' is death */
node = call_prom("finddevice", 1, 1, ADDR("/"));
rv = prom_getprop(node, "device_type", prop, sizeof(prop));
if (rv != PROM_ERROR && (strcmp(prop, "chrp") == 0))
prom_setprop(node, "/", "device_type", "efika", sizeof("efika"));
/* CODEGEN,description is exposed in /proc/cpuinfo so
fix that too */
rv = prom_getprop(node, "CODEGEN,description", prop, sizeof(prop));
if (rv != PROM_ERROR && (strstr(prop, "CHRP")))
prom_setprop(node, "/", "CODEGEN,description",
"Efika 5200B PowerPC System",
sizeof("Efika 5200B PowerPC System"));
/* Fixup bestcomm interrupts property */
node = call_prom("finddevice", 1, 1, ADDR("/builtin/bestcomm"));
if (PHANDLE_VALID(node)) {
len = prom_getproplen(node, "interrupts");
if (len == 12) {
prom_printf("Fixing bestcomm interrupts property\n");
prom_setprop(node, "/builtin/bestcom", "interrupts",
bcomm_irq, sizeof(bcomm_irq));
}
}
/* Fixup sound interrupts property */
node = call_prom("finddevice", 1, 1, ADDR("/builtin/sound"));
if (PHANDLE_VALID(node)) {
rv = prom_getprop(node, "interrupts", prop, sizeof(prop));
if (rv == PROM_ERROR) {
prom_printf("Adding sound interrupts property\n");
prom_setprop(node, "/builtin/sound", "interrupts",
sound_irq, sizeof(sound_irq));
}
}
/* Make sure ethernet phy-handle property exists */
fixup_device_tree_efika_add_phy();
}
#else
#define fixup_device_tree_efika()
#endif
static void __init fixup_device_tree(void)
{
fixup_device_tree_maple();
fixup_device_tree_maple_memory_controller();
fixup_device_tree_chrp();
fixup_device_tree_pmac();
fixup_device_tree_efika();
}
static void __init prom_find_boot_cpu(void)
{
struct prom_t *_prom = &RELOC(prom);
u32 getprop_rval;
ihandle prom_cpu;
phandle cpu_pkg;
_prom->cpu = 0;
if (prom_getprop(_prom->chosen, "cpu", &prom_cpu, sizeof(prom_cpu)) <= 0)
return;
cpu_pkg = call_prom("instance-to-package", 1, 1, prom_cpu);
prom_getprop(cpu_pkg, "reg", &getprop_rval, sizeof(getprop_rval));
_prom->cpu = getprop_rval;
prom_debug("Booting CPU hw index = %lu\n", _prom->cpu);
}
static void __init prom_check_initrd(unsigned long r3, unsigned long r4)
{
#ifdef CONFIG_BLK_DEV_INITRD
struct prom_t *_prom = &RELOC(prom);
if (r3 && r4 && r4 != 0xdeadbeef) {
unsigned long val;
RELOC(prom_initrd_start) = is_kernel_addr(r3) ? __pa(r3) : r3;
RELOC(prom_initrd_end) = RELOC(prom_initrd_start) + r4;
val = RELOC(prom_initrd_start);
prom_setprop(_prom->chosen, "/chosen", "linux,initrd-start",
&val, sizeof(val));
val = RELOC(prom_initrd_end);
prom_setprop(_prom->chosen, "/chosen", "linux,initrd-end",
&val, sizeof(val));
reserve_mem(RELOC(prom_initrd_start),
RELOC(prom_initrd_end) - RELOC(prom_initrd_start));
prom_debug("initrd_start=0x%x\n", RELOC(prom_initrd_start));
prom_debug("initrd_end=0x%x\n", RELOC(prom_initrd_end));
}
#endif /* CONFIG_BLK_DEV_INITRD */
}
/*
* We enter here early on, when the Open Firmware prom is still
* handling exceptions and the MMU hash table for us.
*/
unsigned long __init prom_init(unsigned long r3, unsigned long r4,
unsigned long pp,
unsigned long r6, unsigned long r7,
unsigned long kbase)
{
struct prom_t *_prom;
unsigned long hdr;
#ifdef CONFIG_PPC32
unsigned long offset = reloc_offset();
reloc_got2(offset);
#endif
_prom = &RELOC(prom);
/*
* First zero the BSS
*/
memset(&RELOC(__bss_start), 0, __bss_stop - __bss_start);
/*
* Init interface to Open Firmware, get some node references,
* like /chosen
*/
prom_init_client_services(pp);
/*
* See if this OF is old enough that we need to do explicit maps
* and other workarounds
*/
prom_find_mmu();
/*
* Init prom stdout device
*/
prom_init_stdout();
prom_printf("Preparing to boot %s", RELOC(linux_banner));
/*
* Get default machine type. At this point, we do not differentiate
* between pSeries SMP and pSeries LPAR
*/
RELOC(of_platform) = prom_find_machine_type();
prom_printf("Detected machine type: %x\n", RELOC(of_platform));
#ifndef CONFIG_RELOCATABLE
/* Bail if this is a kdump kernel. */
if (PHYSICAL_START > 0)
prom_panic("Error: You can't boot a kdump kernel from OF!\n");
#endif
/*
* Check for an initrd
*/
prom_check_initrd(r3, r4);
#if defined(CONFIG_PPC_PSERIES) || defined(CONFIG_PPC_POWERNV)
/*
* On pSeries, inform the firmware about our capabilities
*/
if (RELOC(of_platform) == PLATFORM_PSERIES ||
RELOC(of_platform) == PLATFORM_PSERIES_LPAR)
prom_send_capabilities();
#endif
/*
* Copy the CPU hold code
*/
if (RELOC(of_platform) != PLATFORM_POWERMAC)
copy_and_flush(0, kbase, 0x100, 0);
/*
* Do early parsing of command line
*/
early_cmdline_parse();
/*
* Initialize memory management within prom_init
*/
prom_init_mem();
/*
* Determine which cpu is actually running right _now_
*/
prom_find_boot_cpu();
/*
* Initialize display devices
*/
prom_check_displays();
#ifdef CONFIG_PPC64
/*
* Initialize IOMMU (TCE tables) on pSeries. Do that before anything else
* that uses the allocator, we need to make sure we get the top of memory
* available for us here...
*/
if (RELOC(of_platform) == PLATFORM_PSERIES)
prom_initialize_tce_table();
#endif
/*
* On non-powermacs, try to instantiate RTAS. PowerMacs don't
* have a usable RTAS implementation.
*/
if (RELOC(of_platform) != PLATFORM_POWERMAC &&
RELOC(of_platform) != PLATFORM_OPAL)
prom_instantiate_rtas();
#ifdef CONFIG_PPC_POWERNV
/* Detect HAL and try instanciating it & doing takeover */
if (RELOC(of_platform) == PLATFORM_PSERIES_LPAR) {
prom_query_opal();
if (RELOC(of_platform) == PLATFORM_OPAL) {
prom_opal_hold_cpus();
prom_opal_takeover();
}
} else if (RELOC(of_platform) == PLATFORM_OPAL)
prom_instantiate_opal();
#endif
/*
* On non-powermacs, put all CPUs in spin-loops.
*
* PowerMacs use a different mechanism to spin CPUs
*/
if (RELOC(of_platform) != PLATFORM_POWERMAC &&
RELOC(of_platform) != PLATFORM_OPAL)
prom_hold_cpus();
/*
* Fill in some infos for use by the kernel later on
*/
if (RELOC(prom_memory_limit))
prom_setprop(_prom->chosen, "/chosen", "linux,memory-limit",
&RELOC(prom_memory_limit),
sizeof(prom_memory_limit));
#ifdef CONFIG_PPC64
if (RELOC(prom_iommu_off))
prom_setprop(_prom->chosen, "/chosen", "linux,iommu-off",
NULL, 0);
if (RELOC(prom_iommu_force_on))
prom_setprop(_prom->chosen, "/chosen", "linux,iommu-force-on",
NULL, 0);
if (RELOC(prom_tce_alloc_start)) {
prom_setprop(_prom->chosen, "/chosen", "linux,tce-alloc-start",
&RELOC(prom_tce_alloc_start),
sizeof(prom_tce_alloc_start));
prom_setprop(_prom->chosen, "/chosen", "linux,tce-alloc-end",
&RELOC(prom_tce_alloc_end),
sizeof(prom_tce_alloc_end));
}
#endif
/*
* Fixup any known bugs in the device-tree
*/
fixup_device_tree();
/*
* Now finally create the flattened device-tree
*/
prom_printf("copying OF device tree...\n");
flatten_device_tree();
/*
* in case stdin is USB and still active on IBM machines...
* Unfortunately quiesce crashes on some powermacs if we have
* closed stdin already (in particular the powerbook 101).
*/
if (RELOC(of_platform) != PLATFORM_POWERMAC)
prom_close_stdin();
/*
* Call OF "quiesce" method to shut down pending DMA's from
* devices etc...
*/
prom_printf("Calling quiesce...\n");
call_prom("quiesce", 0, 0);
/*
* And finally, call the kernel passing it the flattened device
* tree and NULL as r5, thus triggering the new entry point which
* is common to us and kexec
*/
hdr = RELOC(dt_header_start);
prom_printf("returning from prom_init\n");
prom_debug("->dt_header_start=0x%x\n", hdr);
#ifdef CONFIG_PPC32
reloc_got2(-offset);
#endif
#ifdef CONFIG_PPC_EARLY_DEBUG_OPAL
/* OPAL early debug gets the OPAL base & entry in r8 and r9 */
__start(hdr, kbase, 0, 0, 0,
RELOC(prom_opal_base), RELOC(prom_opal_entry));
#else
__start(hdr, kbase, 0, 0, 0, 0, 0);
#endif
return 0;
}