linux/drivers/usb/dwc2/core.c
Minas Harutyunyan f8453bbde0 usb: dwc2: New bitfield definition and programming in GRSTCTL
Added new bitfield GRSTCTL_CLOCK_SWITH_TIMER in GRSTCTL register.
This bitfield applicable HSOTG cores v5.00 or higher and not
applicable to HS/FS IOT devices.
This bitfield must be programmed to 3'b010 if core will be
used in Low-speed and core configured for any HS/FS PHY interface.
This bitfield must be programmed to 3'b111 if core configured
to use either:
- HS PHY interface UTMI or ULPI
- FS PHY any interface

Signed-off-by: Minas Harutyunyan <Minas.Harutyunyan@synopsys.com>
Link: https://lore.kernel.org/r/0616838cfee958774c9321c6eeeda4be92f900d8.1708948356.git.Minas.Harutyunyan@synopsys.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-03-26 10:44:53 +01:00

1217 lines
34 KiB
C

// SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause)
/*
* core.c - DesignWare HS OTG Controller common routines
*
* Copyright (C) 2004-2013 Synopsys, Inc.
*/
/*
* The Core code provides basic services for accessing and managing the
* DWC_otg hardware. These services are used by both the Host Controller
* Driver and the Peripheral Controller Driver.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/spinlock.h>
#include <linux/interrupt.h>
#include <linux/dma-mapping.h>
#include <linux/delay.h>
#include <linux/io.h>
#include <linux/slab.h>
#include <linux/usb.h>
#include <linux/usb/hcd.h>
#include <linux/usb/ch11.h>
#include "core.h"
#include "hcd.h"
/**
* dwc2_backup_global_registers() - Backup global controller registers.
* When suspending usb bus, registers needs to be backuped
* if controller power is disabled once suspended.
*
* @hsotg: Programming view of the DWC_otg controller
*/
int dwc2_backup_global_registers(struct dwc2_hsotg *hsotg)
{
struct dwc2_gregs_backup *gr;
dev_dbg(hsotg->dev, "%s\n", __func__);
/* Backup global regs */
gr = &hsotg->gr_backup;
gr->gotgctl = dwc2_readl(hsotg, GOTGCTL);
gr->gintmsk = dwc2_readl(hsotg, GINTMSK);
gr->gahbcfg = dwc2_readl(hsotg, GAHBCFG);
gr->gusbcfg = dwc2_readl(hsotg, GUSBCFG);
gr->grxfsiz = dwc2_readl(hsotg, GRXFSIZ);
gr->gnptxfsiz = dwc2_readl(hsotg, GNPTXFSIZ);
gr->gdfifocfg = dwc2_readl(hsotg, GDFIFOCFG);
gr->pcgcctl1 = dwc2_readl(hsotg, PCGCCTL1);
gr->glpmcfg = dwc2_readl(hsotg, GLPMCFG);
gr->gi2cctl = dwc2_readl(hsotg, GI2CCTL);
gr->pcgcctl = dwc2_readl(hsotg, PCGCTL);
gr->valid = true;
return 0;
}
/**
* dwc2_restore_global_registers() - Restore controller global registers.
* When resuming usb bus, device registers needs to be restored
* if controller power were disabled.
*
* @hsotg: Programming view of the DWC_otg controller
*/
int dwc2_restore_global_registers(struct dwc2_hsotg *hsotg)
{
struct dwc2_gregs_backup *gr;
dev_dbg(hsotg->dev, "%s\n", __func__);
/* Restore global regs */
gr = &hsotg->gr_backup;
if (!gr->valid) {
dev_err(hsotg->dev, "%s: no global registers to restore\n",
__func__);
return -EINVAL;
}
gr->valid = false;
dwc2_writel(hsotg, 0xffffffff, GINTSTS);
dwc2_writel(hsotg, gr->gotgctl, GOTGCTL);
dwc2_writel(hsotg, gr->gintmsk, GINTMSK);
dwc2_writel(hsotg, gr->gusbcfg, GUSBCFG);
dwc2_writel(hsotg, gr->gahbcfg, GAHBCFG);
dwc2_writel(hsotg, gr->grxfsiz, GRXFSIZ);
dwc2_writel(hsotg, gr->gnptxfsiz, GNPTXFSIZ);
dwc2_writel(hsotg, gr->gdfifocfg, GDFIFOCFG);
dwc2_writel(hsotg, gr->pcgcctl1, PCGCCTL1);
dwc2_writel(hsotg, gr->glpmcfg, GLPMCFG);
dwc2_writel(hsotg, gr->pcgcctl, PCGCTL);
dwc2_writel(hsotg, gr->gi2cctl, GI2CCTL);
return 0;
}
/**
* dwc2_exit_partial_power_down() - Exit controller from Partial Power Down.
*
* @hsotg: Programming view of the DWC_otg controller
* @rem_wakeup: indicates whether resume is initiated by Reset.
* @restore: Controller registers need to be restored
*/
int dwc2_exit_partial_power_down(struct dwc2_hsotg *hsotg, int rem_wakeup,
bool restore)
{
struct dwc2_gregs_backup *gr;
gr = &hsotg->gr_backup;
/*
* Restore host or device regisers with the same mode core enterted
* to partial power down by checking "GOTGCTL_CURMODE_HOST" backup
* value of the "gotgctl" register.
*/
if (gr->gotgctl & GOTGCTL_CURMODE_HOST)
return dwc2_host_exit_partial_power_down(hsotg, rem_wakeup,
restore);
else
return dwc2_gadget_exit_partial_power_down(hsotg, restore);
}
/**
* dwc2_enter_partial_power_down() - Put controller in Partial Power Down.
*
* @hsotg: Programming view of the DWC_otg controller
*/
int dwc2_enter_partial_power_down(struct dwc2_hsotg *hsotg)
{
if (dwc2_is_host_mode(hsotg))
return dwc2_host_enter_partial_power_down(hsotg);
else
return dwc2_gadget_enter_partial_power_down(hsotg);
}
/**
* dwc2_restore_essential_regs() - Restore essiential regs of core.
*
* @hsotg: Programming view of the DWC_otg controller
* @rmode: Restore mode, enabled in case of remote-wakeup.
* @is_host: Host or device mode.
*/
static void dwc2_restore_essential_regs(struct dwc2_hsotg *hsotg, int rmode,
int is_host)
{
u32 pcgcctl;
struct dwc2_gregs_backup *gr;
struct dwc2_dregs_backup *dr;
struct dwc2_hregs_backup *hr;
gr = &hsotg->gr_backup;
dr = &hsotg->dr_backup;
hr = &hsotg->hr_backup;
dev_dbg(hsotg->dev, "%s: restoring essential regs\n", __func__);
/* Load restore values for [31:14] bits */
pcgcctl = (gr->pcgcctl & 0xffffc000);
/* If High Speed */
if (is_host) {
if (!(pcgcctl & PCGCTL_P2HD_PRT_SPD_MASK))
pcgcctl |= BIT(17);
} else {
if (!(pcgcctl & PCGCTL_P2HD_DEV_ENUM_SPD_MASK))
pcgcctl |= BIT(17);
}
dwc2_writel(hsotg, pcgcctl, PCGCTL);
/* Umnask global Interrupt in GAHBCFG and restore it */
dwc2_writel(hsotg, gr->gahbcfg | GAHBCFG_GLBL_INTR_EN, GAHBCFG);
/* Clear all pending interupts */
dwc2_writel(hsotg, 0xffffffff, GINTSTS);
/* Unmask restore done interrupt */
dwc2_writel(hsotg, GINTSTS_RESTOREDONE, GINTMSK);
/* Restore GUSBCFG and HCFG/DCFG */
dwc2_writel(hsotg, gr->gusbcfg, GUSBCFG);
if (is_host) {
dwc2_writel(hsotg, hr->hcfg, HCFG);
if (rmode)
pcgcctl |= PCGCTL_RESTOREMODE;
dwc2_writel(hsotg, pcgcctl, PCGCTL);
udelay(10);
pcgcctl |= PCGCTL_ESS_REG_RESTORED;
dwc2_writel(hsotg, pcgcctl, PCGCTL);
udelay(10);
} else {
dwc2_writel(hsotg, dr->dcfg, DCFG);
if (!rmode)
pcgcctl |= PCGCTL_RESTOREMODE | PCGCTL_RSTPDWNMODULE;
dwc2_writel(hsotg, pcgcctl, PCGCTL);
udelay(10);
pcgcctl |= PCGCTL_ESS_REG_RESTORED;
dwc2_writel(hsotg, pcgcctl, PCGCTL);
udelay(10);
}
}
/**
* dwc2_hib_restore_common() - Common part of restore routine.
*
* @hsotg: Programming view of the DWC_otg controller
* @rem_wakeup: Remote-wakeup, enabled in case of remote-wakeup.
* @is_host: Host or device mode.
*/
void dwc2_hib_restore_common(struct dwc2_hsotg *hsotg, int rem_wakeup,
int is_host)
{
u32 gpwrdn;
/* Switch-on voltage to the core */
gpwrdn = dwc2_readl(hsotg, GPWRDN);
gpwrdn &= ~GPWRDN_PWRDNSWTCH;
dwc2_writel(hsotg, gpwrdn, GPWRDN);
udelay(10);
/* Reset core */
gpwrdn = dwc2_readl(hsotg, GPWRDN);
gpwrdn &= ~GPWRDN_PWRDNRSTN;
dwc2_writel(hsotg, gpwrdn, GPWRDN);
udelay(10);
/* Enable restore from PMU */
gpwrdn = dwc2_readl(hsotg, GPWRDN);
gpwrdn |= GPWRDN_RESTORE;
dwc2_writel(hsotg, gpwrdn, GPWRDN);
udelay(10);
/* Disable Power Down Clamp */
gpwrdn = dwc2_readl(hsotg, GPWRDN);
gpwrdn &= ~GPWRDN_PWRDNCLMP;
dwc2_writel(hsotg, gpwrdn, GPWRDN);
udelay(50);
if (!is_host && rem_wakeup)
udelay(70);
/* Deassert reset core */
gpwrdn = dwc2_readl(hsotg, GPWRDN);
gpwrdn |= GPWRDN_PWRDNRSTN;
dwc2_writel(hsotg, gpwrdn, GPWRDN);
udelay(10);
/* Reset ULPI latch */
gpwrdn = dwc2_readl(hsotg, GPWRDN);
gpwrdn &= ~GPWRDN_ULPI_LATCH_EN_DURING_HIB_ENTRY;
dwc2_writel(hsotg, gpwrdn, GPWRDN);
/* Disable PMU interrupt */
gpwrdn = dwc2_readl(hsotg, GPWRDN);
gpwrdn &= ~GPWRDN_PMUINTSEL;
dwc2_writel(hsotg, gpwrdn, GPWRDN);
udelay(10);
/* Set Restore Essential Regs bit in PCGCCTL register */
dwc2_restore_essential_regs(hsotg, rem_wakeup, is_host);
/*
* Wait For Restore_done Interrupt. This mechanism of polling the
* interrupt is introduced to avoid any possible race conditions
*/
if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS, GINTSTS_RESTOREDONE,
20000)) {
dev_dbg(hsotg->dev,
"%s: Restore Done wasn't generated here\n",
__func__);
} else {
dev_dbg(hsotg->dev, "restore done generated here\n");
/*
* To avoid restore done interrupt storm after restore is
* generated clear GINTSTS_RESTOREDONE bit.
*/
dwc2_writel(hsotg, GINTSTS_RESTOREDONE, GINTSTS);
}
}
/**
* dwc2_wait_for_mode() - Waits for the controller mode.
* @hsotg: Programming view of the DWC_otg controller.
* @host_mode: If true, waits for host mode, otherwise device mode.
*/
static void dwc2_wait_for_mode(struct dwc2_hsotg *hsotg,
bool host_mode)
{
ktime_t start;
ktime_t end;
unsigned int timeout = 110;
dev_vdbg(hsotg->dev, "Waiting for %s mode\n",
host_mode ? "host" : "device");
start = ktime_get();
while (1) {
s64 ms;
if (dwc2_is_host_mode(hsotg) == host_mode) {
dev_vdbg(hsotg->dev, "%s mode set\n",
host_mode ? "Host" : "Device");
break;
}
end = ktime_get();
ms = ktime_to_ms(ktime_sub(end, start));
if (ms >= (s64)timeout) {
dev_warn(hsotg->dev, "%s: Couldn't set %s mode\n",
__func__, host_mode ? "host" : "device");
break;
}
usleep_range(1000, 2000);
}
}
/**
* dwc2_iddig_filter_enabled() - Returns true if the IDDIG debounce
* filter is enabled.
*
* @hsotg: Programming view of DWC_otg controller
*/
static bool dwc2_iddig_filter_enabled(struct dwc2_hsotg *hsotg)
{
u32 gsnpsid;
u32 ghwcfg4;
if (!dwc2_hw_is_otg(hsotg))
return false;
/* Check if core configuration includes the IDDIG filter. */
ghwcfg4 = dwc2_readl(hsotg, GHWCFG4);
if (!(ghwcfg4 & GHWCFG4_IDDIG_FILT_EN))
return false;
/*
* Check if the IDDIG debounce filter is bypassed. Available
* in core version >= 3.10a.
*/
gsnpsid = dwc2_readl(hsotg, GSNPSID);
if (gsnpsid >= DWC2_CORE_REV_3_10a) {
u32 gotgctl = dwc2_readl(hsotg, GOTGCTL);
if (gotgctl & GOTGCTL_DBNCE_FLTR_BYPASS)
return false;
}
return true;
}
/*
* dwc2_enter_hibernation() - Common function to enter hibernation.
*
* @hsotg: Programming view of the DWC_otg controller
* @is_host: True if core is in host mode.
*
* Return: 0 if successful, negative error code otherwise
*/
int dwc2_enter_hibernation(struct dwc2_hsotg *hsotg, int is_host)
{
if (is_host)
return dwc2_host_enter_hibernation(hsotg);
else
return dwc2_gadget_enter_hibernation(hsotg);
}
/*
* dwc2_exit_hibernation() - Common function to exit from hibernation.
*
* @hsotg: Programming view of the DWC_otg controller
* @rem_wakeup: Remote-wakeup, enabled in case of remote-wakeup.
* @reset: Enabled in case of restore with reset.
* @is_host: True if core is in host mode.
*
* Return: 0 if successful, negative error code otherwise
*/
int dwc2_exit_hibernation(struct dwc2_hsotg *hsotg, int rem_wakeup,
int reset, int is_host)
{
if (is_host)
return dwc2_host_exit_hibernation(hsotg, rem_wakeup, reset);
else
return dwc2_gadget_exit_hibernation(hsotg, rem_wakeup, reset);
}
/*
* Do core a soft reset of the core. Be careful with this because it
* resets all the internal state machines of the core.
*/
int dwc2_core_reset(struct dwc2_hsotg *hsotg, bool skip_wait)
{
u32 greset;
bool wait_for_host_mode = false;
dev_vdbg(hsotg->dev, "%s()\n", __func__);
/*
* If the current mode is host, either due to the force mode
* bit being set (which persists after core reset) or the
* connector id pin, a core soft reset will temporarily reset
* the mode to device. A delay from the IDDIG debounce filter
* will occur before going back to host mode.
*
* Determine whether we will go back into host mode after a
* reset and account for this delay after the reset.
*/
if (dwc2_iddig_filter_enabled(hsotg)) {
u32 gotgctl = dwc2_readl(hsotg, GOTGCTL);
u32 gusbcfg = dwc2_readl(hsotg, GUSBCFG);
if (!(gotgctl & GOTGCTL_CONID_B) ||
(gusbcfg & GUSBCFG_FORCEHOSTMODE)) {
wait_for_host_mode = true;
}
}
/* Core Soft Reset */
greset = dwc2_readl(hsotg, GRSTCTL);
greset |= GRSTCTL_CSFTRST;
dwc2_writel(hsotg, greset, GRSTCTL);
if ((hsotg->hw_params.snpsid & DWC2_CORE_REV_MASK) <
(DWC2_CORE_REV_4_20a & DWC2_CORE_REV_MASK)) {
if (dwc2_hsotg_wait_bit_clear(hsotg, GRSTCTL,
GRSTCTL_CSFTRST, 10000)) {
dev_warn(hsotg->dev, "%s: HANG! Soft Reset timeout GRSTCTL_CSFTRST\n",
__func__);
return -EBUSY;
}
} else {
if (dwc2_hsotg_wait_bit_set(hsotg, GRSTCTL,
GRSTCTL_CSFTRST_DONE, 10000)) {
dev_warn(hsotg->dev, "%s: HANG! Soft Reset timeout GRSTCTL_CSFTRST_DONE\n",
__func__);
return -EBUSY;
}
greset = dwc2_readl(hsotg, GRSTCTL);
greset &= ~GRSTCTL_CSFTRST;
greset |= GRSTCTL_CSFTRST_DONE;
dwc2_writel(hsotg, greset, GRSTCTL);
}
/*
* Switching from device mode to host mode by disconnecting
* device cable core enters and exits form hibernation.
* However, the fifo map remains not cleared. It results
* to a WARNING (WARNING: CPU: 5 PID: 0 at drivers/usb/dwc2/
* gadget.c:307 dwc2_hsotg_init_fifo+0x12/0x152 [dwc2])
* if in host mode we disconnect the micro a to b host
* cable. Because core reset occurs.
* To avoid the WARNING, fifo_map should be cleared
* in dwc2_core_reset() function by taking into account configs.
* fifo_map must be cleared only if driver is configured in
* "CONFIG_USB_DWC2_PERIPHERAL" or "CONFIG_USB_DWC2_DUAL_ROLE"
* mode.
*/
dwc2_clear_fifo_map(hsotg);
/* Wait for AHB master IDLE state */
if (dwc2_hsotg_wait_bit_set(hsotg, GRSTCTL, GRSTCTL_AHBIDLE, 10000)) {
dev_warn(hsotg->dev, "%s: HANG! AHB Idle timeout GRSTCTL GRSTCTL_AHBIDLE\n",
__func__);
return -EBUSY;
}
if (wait_for_host_mode && !skip_wait)
dwc2_wait_for_mode(hsotg, true);
return 0;
}
/**
* dwc2_force_mode() - Force the mode of the controller.
*
* Forcing the mode is needed for two cases:
*
* 1) If the dr_mode is set to either HOST or PERIPHERAL we force the
* controller to stay in a particular mode regardless of ID pin
* changes. We do this once during probe.
*
* 2) During probe we want to read reset values of the hw
* configuration registers that are only available in either host or
* device mode. We may need to force the mode if the current mode does
* not allow us to access the register in the mode that we want.
*
* In either case it only makes sense to force the mode if the
* controller hardware is OTG capable.
*
* Checks are done in this function to determine whether doing a force
* would be valid or not.
*
* If a force is done, it requires a IDDIG debounce filter delay if
* the filter is configured and enabled. We poll the current mode of
* the controller to account for this delay.
*
* @hsotg: Programming view of DWC_otg controller
* @host: Host mode flag
*/
void dwc2_force_mode(struct dwc2_hsotg *hsotg, bool host)
{
u32 gusbcfg;
u32 set;
u32 clear;
dev_dbg(hsotg->dev, "Forcing mode to %s\n", host ? "host" : "device");
/*
* Force mode has no effect if the hardware is not OTG.
*/
if (!dwc2_hw_is_otg(hsotg))
return;
/*
* If dr_mode is either peripheral or host only, there is no
* need to ever force the mode to the opposite mode.
*/
if (WARN_ON(host && hsotg->dr_mode == USB_DR_MODE_PERIPHERAL))
return;
if (WARN_ON(!host && hsotg->dr_mode == USB_DR_MODE_HOST))
return;
gusbcfg = dwc2_readl(hsotg, GUSBCFG);
set = host ? GUSBCFG_FORCEHOSTMODE : GUSBCFG_FORCEDEVMODE;
clear = host ? GUSBCFG_FORCEDEVMODE : GUSBCFG_FORCEHOSTMODE;
gusbcfg &= ~clear;
gusbcfg |= set;
dwc2_writel(hsotg, gusbcfg, GUSBCFG);
dwc2_wait_for_mode(hsotg, host);
return;
}
/**
* dwc2_clear_force_mode() - Clears the force mode bits.
*
* After clearing the bits, wait up to 100 ms to account for any
* potential IDDIG filter delay. We can't know if we expect this delay
* or not because the value of the connector ID status is affected by
* the force mode. We only need to call this once during probe if
* dr_mode == OTG.
*
* @hsotg: Programming view of DWC_otg controller
*/
static void dwc2_clear_force_mode(struct dwc2_hsotg *hsotg)
{
u32 gusbcfg;
if (!dwc2_hw_is_otg(hsotg))
return;
dev_dbg(hsotg->dev, "Clearing force mode bits\n");
gusbcfg = dwc2_readl(hsotg, GUSBCFG);
gusbcfg &= ~GUSBCFG_FORCEHOSTMODE;
gusbcfg &= ~GUSBCFG_FORCEDEVMODE;
dwc2_writel(hsotg, gusbcfg, GUSBCFG);
if (dwc2_iddig_filter_enabled(hsotg))
msleep(100);
}
/*
* Sets or clears force mode based on the dr_mode parameter.
*/
void dwc2_force_dr_mode(struct dwc2_hsotg *hsotg)
{
switch (hsotg->dr_mode) {
case USB_DR_MODE_HOST:
/*
* NOTE: This is required for some rockchip soc based
* platforms on their host-only dwc2.
*/
if (!dwc2_hw_is_otg(hsotg))
msleep(50);
break;
case USB_DR_MODE_PERIPHERAL:
dwc2_force_mode(hsotg, false);
break;
case USB_DR_MODE_OTG:
dwc2_clear_force_mode(hsotg);
break;
default:
dev_warn(hsotg->dev, "%s() Invalid dr_mode=%d\n",
__func__, hsotg->dr_mode);
break;
}
}
/*
* dwc2_enable_acg - enable active clock gating feature
*/
void dwc2_enable_acg(struct dwc2_hsotg *hsotg)
{
if (hsotg->params.acg_enable) {
u32 pcgcctl1 = dwc2_readl(hsotg, PCGCCTL1);
dev_dbg(hsotg->dev, "Enabling Active Clock Gating\n");
pcgcctl1 |= PCGCCTL1_GATEEN;
dwc2_writel(hsotg, pcgcctl1, PCGCCTL1);
}
}
/**
* dwc2_dump_host_registers() - Prints the host registers
*
* @hsotg: Programming view of DWC_otg controller
*
* NOTE: This function will be removed once the peripheral controller code
* is integrated and the driver is stable
*/
void dwc2_dump_host_registers(struct dwc2_hsotg *hsotg)
{
#ifdef DEBUG
u32 __iomem *addr;
int i;
dev_dbg(hsotg->dev, "Host Global Registers\n");
addr = hsotg->regs + HCFG;
dev_dbg(hsotg->dev, "HCFG @0x%08lX : 0x%08X\n",
(unsigned long)addr, dwc2_readl(hsotg, HCFG));
addr = hsotg->regs + HFIR;
dev_dbg(hsotg->dev, "HFIR @0x%08lX : 0x%08X\n",
(unsigned long)addr, dwc2_readl(hsotg, HFIR));
addr = hsotg->regs + HFNUM;
dev_dbg(hsotg->dev, "HFNUM @0x%08lX : 0x%08X\n",
(unsigned long)addr, dwc2_readl(hsotg, HFNUM));
addr = hsotg->regs + HPTXSTS;
dev_dbg(hsotg->dev, "HPTXSTS @0x%08lX : 0x%08X\n",
(unsigned long)addr, dwc2_readl(hsotg, HPTXSTS));
addr = hsotg->regs + HAINT;
dev_dbg(hsotg->dev, "HAINT @0x%08lX : 0x%08X\n",
(unsigned long)addr, dwc2_readl(hsotg, HAINT));
addr = hsotg->regs + HAINTMSK;
dev_dbg(hsotg->dev, "HAINTMSK @0x%08lX : 0x%08X\n",
(unsigned long)addr, dwc2_readl(hsotg, HAINTMSK));
if (hsotg->params.dma_desc_enable) {
addr = hsotg->regs + HFLBADDR;
dev_dbg(hsotg->dev, "HFLBADDR @0x%08lX : 0x%08X\n",
(unsigned long)addr, dwc2_readl(hsotg, HFLBADDR));
}
addr = hsotg->regs + HPRT0;
dev_dbg(hsotg->dev, "HPRT0 @0x%08lX : 0x%08X\n",
(unsigned long)addr, dwc2_readl(hsotg, HPRT0));
for (i = 0; i < hsotg->params.host_channels; i++) {
dev_dbg(hsotg->dev, "Host Channel %d Specific Registers\n", i);
addr = hsotg->regs + HCCHAR(i);
dev_dbg(hsotg->dev, "HCCHAR @0x%08lX : 0x%08X\n",
(unsigned long)addr, dwc2_readl(hsotg, HCCHAR(i)));
addr = hsotg->regs + HCSPLT(i);
dev_dbg(hsotg->dev, "HCSPLT @0x%08lX : 0x%08X\n",
(unsigned long)addr, dwc2_readl(hsotg, HCSPLT(i)));
addr = hsotg->regs + HCINT(i);
dev_dbg(hsotg->dev, "HCINT @0x%08lX : 0x%08X\n",
(unsigned long)addr, dwc2_readl(hsotg, HCINT(i)));
addr = hsotg->regs + HCINTMSK(i);
dev_dbg(hsotg->dev, "HCINTMSK @0x%08lX : 0x%08X\n",
(unsigned long)addr, dwc2_readl(hsotg, HCINTMSK(i)));
addr = hsotg->regs + HCTSIZ(i);
dev_dbg(hsotg->dev, "HCTSIZ @0x%08lX : 0x%08X\n",
(unsigned long)addr, dwc2_readl(hsotg, HCTSIZ(i)));
addr = hsotg->regs + HCDMA(i);
dev_dbg(hsotg->dev, "HCDMA @0x%08lX : 0x%08X\n",
(unsigned long)addr, dwc2_readl(hsotg, HCDMA(i)));
if (hsotg->params.dma_desc_enable) {
addr = hsotg->regs + HCDMAB(i);
dev_dbg(hsotg->dev, "HCDMAB @0x%08lX : 0x%08X\n",
(unsigned long)addr, dwc2_readl(hsotg,
HCDMAB(i)));
}
}
#endif
}
/**
* dwc2_dump_global_registers() - Prints the core global registers
*
* @hsotg: Programming view of DWC_otg controller
*
* NOTE: This function will be removed once the peripheral controller code
* is integrated and the driver is stable
*/
void dwc2_dump_global_registers(struct dwc2_hsotg *hsotg)
{
#ifdef DEBUG
u32 __iomem *addr;
dev_dbg(hsotg->dev, "Core Global Registers\n");
addr = hsotg->regs + GOTGCTL;
dev_dbg(hsotg->dev, "GOTGCTL @0x%08lX : 0x%08X\n",
(unsigned long)addr, dwc2_readl(hsotg, GOTGCTL));
addr = hsotg->regs + GOTGINT;
dev_dbg(hsotg->dev, "GOTGINT @0x%08lX : 0x%08X\n",
(unsigned long)addr, dwc2_readl(hsotg, GOTGINT));
addr = hsotg->regs + GAHBCFG;
dev_dbg(hsotg->dev, "GAHBCFG @0x%08lX : 0x%08X\n",
(unsigned long)addr, dwc2_readl(hsotg, GAHBCFG));
addr = hsotg->regs + GUSBCFG;
dev_dbg(hsotg->dev, "GUSBCFG @0x%08lX : 0x%08X\n",
(unsigned long)addr, dwc2_readl(hsotg, GUSBCFG));
addr = hsotg->regs + GRSTCTL;
dev_dbg(hsotg->dev, "GRSTCTL @0x%08lX : 0x%08X\n",
(unsigned long)addr, dwc2_readl(hsotg, GRSTCTL));
addr = hsotg->regs + GINTSTS;
dev_dbg(hsotg->dev, "GINTSTS @0x%08lX : 0x%08X\n",
(unsigned long)addr, dwc2_readl(hsotg, GINTSTS));
addr = hsotg->regs + GINTMSK;
dev_dbg(hsotg->dev, "GINTMSK @0x%08lX : 0x%08X\n",
(unsigned long)addr, dwc2_readl(hsotg, GINTMSK));
addr = hsotg->regs + GRXSTSR;
dev_dbg(hsotg->dev, "GRXSTSR @0x%08lX : 0x%08X\n",
(unsigned long)addr, dwc2_readl(hsotg, GRXSTSR));
addr = hsotg->regs + GRXFSIZ;
dev_dbg(hsotg->dev, "GRXFSIZ @0x%08lX : 0x%08X\n",
(unsigned long)addr, dwc2_readl(hsotg, GRXFSIZ));
addr = hsotg->regs + GNPTXFSIZ;
dev_dbg(hsotg->dev, "GNPTXFSIZ @0x%08lX : 0x%08X\n",
(unsigned long)addr, dwc2_readl(hsotg, GNPTXFSIZ));
addr = hsotg->regs + GNPTXSTS;
dev_dbg(hsotg->dev, "GNPTXSTS @0x%08lX : 0x%08X\n",
(unsigned long)addr, dwc2_readl(hsotg, GNPTXSTS));
addr = hsotg->regs + GI2CCTL;
dev_dbg(hsotg->dev, "GI2CCTL @0x%08lX : 0x%08X\n",
(unsigned long)addr, dwc2_readl(hsotg, GI2CCTL));
addr = hsotg->regs + GPVNDCTL;
dev_dbg(hsotg->dev, "GPVNDCTL @0x%08lX : 0x%08X\n",
(unsigned long)addr, dwc2_readl(hsotg, GPVNDCTL));
addr = hsotg->regs + GGPIO;
dev_dbg(hsotg->dev, "GGPIO @0x%08lX : 0x%08X\n",
(unsigned long)addr, dwc2_readl(hsotg, GGPIO));
addr = hsotg->regs + GUID;
dev_dbg(hsotg->dev, "GUID @0x%08lX : 0x%08X\n",
(unsigned long)addr, dwc2_readl(hsotg, GUID));
addr = hsotg->regs + GSNPSID;
dev_dbg(hsotg->dev, "GSNPSID @0x%08lX : 0x%08X\n",
(unsigned long)addr, dwc2_readl(hsotg, GSNPSID));
addr = hsotg->regs + GHWCFG1;
dev_dbg(hsotg->dev, "GHWCFG1 @0x%08lX : 0x%08X\n",
(unsigned long)addr, dwc2_readl(hsotg, GHWCFG1));
addr = hsotg->regs + GHWCFG2;
dev_dbg(hsotg->dev, "GHWCFG2 @0x%08lX : 0x%08X\n",
(unsigned long)addr, dwc2_readl(hsotg, GHWCFG2));
addr = hsotg->regs + GHWCFG3;
dev_dbg(hsotg->dev, "GHWCFG3 @0x%08lX : 0x%08X\n",
(unsigned long)addr, dwc2_readl(hsotg, GHWCFG3));
addr = hsotg->regs + GHWCFG4;
dev_dbg(hsotg->dev, "GHWCFG4 @0x%08lX : 0x%08X\n",
(unsigned long)addr, dwc2_readl(hsotg, GHWCFG4));
addr = hsotg->regs + GLPMCFG;
dev_dbg(hsotg->dev, "GLPMCFG @0x%08lX : 0x%08X\n",
(unsigned long)addr, dwc2_readl(hsotg, GLPMCFG));
addr = hsotg->regs + GPWRDN;
dev_dbg(hsotg->dev, "GPWRDN @0x%08lX : 0x%08X\n",
(unsigned long)addr, dwc2_readl(hsotg, GPWRDN));
addr = hsotg->regs + GDFIFOCFG;
dev_dbg(hsotg->dev, "GDFIFOCFG @0x%08lX : 0x%08X\n",
(unsigned long)addr, dwc2_readl(hsotg, GDFIFOCFG));
addr = hsotg->regs + HPTXFSIZ;
dev_dbg(hsotg->dev, "HPTXFSIZ @0x%08lX : 0x%08X\n",
(unsigned long)addr, dwc2_readl(hsotg, HPTXFSIZ));
addr = hsotg->regs + PCGCTL;
dev_dbg(hsotg->dev, "PCGCTL @0x%08lX : 0x%08X\n",
(unsigned long)addr, dwc2_readl(hsotg, PCGCTL));
#endif
}
/**
* dwc2_flush_tx_fifo() - Flushes a Tx FIFO
*
* @hsotg: Programming view of DWC_otg controller
* @num: Tx FIFO to flush
*/
void dwc2_flush_tx_fifo(struct dwc2_hsotg *hsotg, const int num)
{
u32 greset;
dev_vdbg(hsotg->dev, "Flush Tx FIFO %d\n", num);
/* Wait for AHB master IDLE state */
if (dwc2_hsotg_wait_bit_set(hsotg, GRSTCTL, GRSTCTL_AHBIDLE, 10000))
dev_warn(hsotg->dev, "%s: HANG! AHB Idle GRSCTL\n",
__func__);
greset = GRSTCTL_TXFFLSH;
greset |= num << GRSTCTL_TXFNUM_SHIFT & GRSTCTL_TXFNUM_MASK;
dwc2_writel(hsotg, greset, GRSTCTL);
if (dwc2_hsotg_wait_bit_clear(hsotg, GRSTCTL, GRSTCTL_TXFFLSH, 10000))
dev_warn(hsotg->dev, "%s: HANG! timeout GRSTCTL GRSTCTL_TXFFLSH\n",
__func__);
/* Wait for at least 3 PHY Clocks */
udelay(1);
}
/**
* dwc2_flush_rx_fifo() - Flushes the Rx FIFO
*
* @hsotg: Programming view of DWC_otg controller
*/
void dwc2_flush_rx_fifo(struct dwc2_hsotg *hsotg)
{
u32 greset;
dev_vdbg(hsotg->dev, "%s()\n", __func__);
/* Wait for AHB master IDLE state */
if (dwc2_hsotg_wait_bit_set(hsotg, GRSTCTL, GRSTCTL_AHBIDLE, 10000))
dev_warn(hsotg->dev, "%s: HANG! AHB Idle GRSCTL\n",
__func__);
greset = GRSTCTL_RXFFLSH;
dwc2_writel(hsotg, greset, GRSTCTL);
/* Wait for RxFIFO flush done */
if (dwc2_hsotg_wait_bit_clear(hsotg, GRSTCTL, GRSTCTL_RXFFLSH, 10000))
dev_warn(hsotg->dev, "%s: HANG! timeout GRSTCTL GRSTCTL_RXFFLSH\n",
__func__);
/* Wait for at least 3 PHY Clocks */
udelay(1);
}
bool dwc2_is_controller_alive(struct dwc2_hsotg *hsotg)
{
if (dwc2_readl(hsotg, GSNPSID) == 0xffffffff)
return false;
else
return true;
}
/**
* dwc2_enable_global_interrupts() - Enables the controller's Global
* Interrupt in the AHB Config register
*
* @hsotg: Programming view of DWC_otg controller
*/
void dwc2_enable_global_interrupts(struct dwc2_hsotg *hsotg)
{
u32 ahbcfg = dwc2_readl(hsotg, GAHBCFG);
ahbcfg |= GAHBCFG_GLBL_INTR_EN;
dwc2_writel(hsotg, ahbcfg, GAHBCFG);
}
/**
* dwc2_disable_global_interrupts() - Disables the controller's Global
* Interrupt in the AHB Config register
*
* @hsotg: Programming view of DWC_otg controller
*/
void dwc2_disable_global_interrupts(struct dwc2_hsotg *hsotg)
{
u32 ahbcfg = dwc2_readl(hsotg, GAHBCFG);
ahbcfg &= ~GAHBCFG_GLBL_INTR_EN;
dwc2_writel(hsotg, ahbcfg, GAHBCFG);
}
/* Returns the controller's GHWCFG2.OTG_MODE. */
unsigned int dwc2_op_mode(struct dwc2_hsotg *hsotg)
{
u32 ghwcfg2 = dwc2_readl(hsotg, GHWCFG2);
return (ghwcfg2 & GHWCFG2_OP_MODE_MASK) >>
GHWCFG2_OP_MODE_SHIFT;
}
/* Returns true if the controller is capable of DRD. */
bool dwc2_hw_is_otg(struct dwc2_hsotg *hsotg)
{
unsigned int op_mode = dwc2_op_mode(hsotg);
return (op_mode == GHWCFG2_OP_MODE_HNP_SRP_CAPABLE) ||
(op_mode == GHWCFG2_OP_MODE_SRP_ONLY_CAPABLE) ||
(op_mode == GHWCFG2_OP_MODE_NO_HNP_SRP_CAPABLE);
}
/* Returns true if the controller is host-only. */
bool dwc2_hw_is_host(struct dwc2_hsotg *hsotg)
{
unsigned int op_mode = dwc2_op_mode(hsotg);
return (op_mode == GHWCFG2_OP_MODE_SRP_CAPABLE_HOST) ||
(op_mode == GHWCFG2_OP_MODE_NO_SRP_CAPABLE_HOST);
}
/* Returns true if the controller is device-only. */
bool dwc2_hw_is_device(struct dwc2_hsotg *hsotg)
{
unsigned int op_mode = dwc2_op_mode(hsotg);
return (op_mode == GHWCFG2_OP_MODE_SRP_CAPABLE_DEVICE) ||
(op_mode == GHWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE);
}
/**
* dwc2_hsotg_wait_bit_set - Waits for bit to be set.
* @hsotg: Programming view of DWC_otg controller.
* @offset: Register's offset where bit/bits must be set.
* @mask: Mask of the bit/bits which must be set.
* @timeout: Timeout to wait.
*
* Return: 0 if bit/bits are set or -ETIMEDOUT in case of timeout.
*/
int dwc2_hsotg_wait_bit_set(struct dwc2_hsotg *hsotg, u32 offset, u32 mask,
u32 timeout)
{
u32 i;
for (i = 0; i < timeout; i++) {
if (dwc2_readl(hsotg, offset) & mask)
return 0;
udelay(1);
}
return -ETIMEDOUT;
}
/**
* dwc2_hsotg_wait_bit_clear - Waits for bit to be clear.
* @hsotg: Programming view of DWC_otg controller.
* @offset: Register's offset where bit/bits must be set.
* @mask: Mask of the bit/bits which must be set.
* @timeout: Timeout to wait.
*
* Return: 0 if bit/bits are set or -ETIMEDOUT in case of timeout.
*/
int dwc2_hsotg_wait_bit_clear(struct dwc2_hsotg *hsotg, u32 offset, u32 mask,
u32 timeout)
{
u32 i;
for (i = 0; i < timeout; i++) {
if (!(dwc2_readl(hsotg, offset) & mask))
return 0;
udelay(1);
}
return -ETIMEDOUT;
}
/*
* Initializes the FSLSPClkSel field of the HCFG register depending on the
* PHY type
*/
void dwc2_init_fs_ls_pclk_sel(struct dwc2_hsotg *hsotg)
{
u32 hcfg, val;
if ((hsotg->hw_params.hs_phy_type == GHWCFG2_HS_PHY_TYPE_ULPI &&
hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED &&
hsotg->params.ulpi_fs_ls) ||
hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS) {
/* Full speed PHY */
val = HCFG_FSLSPCLKSEL_48_MHZ;
} else {
/* High speed PHY running at full speed or high speed */
val = HCFG_FSLSPCLKSEL_30_60_MHZ;
}
dev_dbg(hsotg->dev, "Initializing HCFG.FSLSPClkSel to %08x\n", val);
hcfg = dwc2_readl(hsotg, HCFG);
hcfg &= ~HCFG_FSLSPCLKSEL_MASK;
hcfg |= val << HCFG_FSLSPCLKSEL_SHIFT;
dwc2_writel(hsotg, hcfg, HCFG);
}
static void dwc2_set_clock_switch_timer(struct dwc2_hsotg *hsotg)
{
u32 grstctl, gsnpsid, val = 0;
gsnpsid = dwc2_readl(hsotg, GSNPSID);
/*
* Applicable only to HSOTG core v5.00a or higher.
* Not applicable to HS/FS IOT devices.
*/
if ((gsnpsid & ~DWC2_CORE_REV_MASK) != DWC2_OTG_ID ||
gsnpsid < DWC2_CORE_REV_5_00a)
return;
if ((hsotg->hw_params.hs_phy_type == GHWCFG2_HS_PHY_TYPE_UTMI &&
hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_NOT_SUPPORTED) ||
(hsotg->hw_params.hs_phy_type == GHWCFG2_HS_PHY_TYPE_ULPI &&
hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_NOT_SUPPORTED) ||
(hsotg->hw_params.hs_phy_type == GHWCFG2_HS_PHY_TYPE_NOT_SUPPORTED &&
hsotg->hw_params.fs_phy_type != GHWCFG2_FS_PHY_TYPE_NOT_SUPPORTED)) {
val = GRSTCTL_CLOCK_SWITH_TIMER_VALUE_DIS;
}
if (hsotg->params.speed == DWC2_SPEED_PARAM_LOW &&
hsotg->hw_params.hs_phy_type != GHWCFG2_HS_PHY_TYPE_NOT_SUPPORTED &&
hsotg->hw_params.fs_phy_type != GHWCFG2_FS_PHY_TYPE_NOT_SUPPORTED) {
val = GRSTCTL_CLOCK_SWITH_TIMER_VALUE_147;
}
grstctl = dwc2_readl(hsotg, GRSTCTL);
grstctl &= ~GRSTCTL_CLOCK_SWITH_TIMER_MASK;
grstctl |= GRSTCTL_CLOCK_SWITH_TIMER(val);
dwc2_writel(hsotg, grstctl, GRSTCTL);
}
static int dwc2_fs_phy_init(struct dwc2_hsotg *hsotg, bool select_phy)
{
u32 usbcfg, ggpio, i2cctl;
int retval = 0;
/*
* core_init() is now called on every switch so only call the
* following for the first time through
*/
if (select_phy) {
dev_dbg(hsotg->dev, "FS PHY selected\n");
usbcfg = dwc2_readl(hsotg, GUSBCFG);
if (!(usbcfg & GUSBCFG_PHYSEL)) {
usbcfg |= GUSBCFG_PHYSEL;
dwc2_writel(hsotg, usbcfg, GUSBCFG);
dwc2_set_clock_switch_timer(hsotg);
/* Reset after a PHY select */
retval = dwc2_core_reset(hsotg, false);
if (retval) {
dev_err(hsotg->dev,
"%s: Reset failed, aborting", __func__);
return retval;
}
}
if (hsotg->params.activate_stm_fs_transceiver) {
ggpio = dwc2_readl(hsotg, GGPIO);
if (!(ggpio & GGPIO_STM32_OTG_GCCFG_PWRDWN)) {
dev_dbg(hsotg->dev, "Activating transceiver\n");
/*
* STM32F4x9 uses the GGPIO register as general
* core configuration register.
*/
ggpio |= GGPIO_STM32_OTG_GCCFG_PWRDWN;
dwc2_writel(hsotg, ggpio, GGPIO);
}
}
}
/*
* Program DCFG.DevSpd or HCFG.FSLSPclkSel to 48Mhz in FS. Also
* do this on HNP Dev/Host mode switches (done in dev_init and
* host_init).
*/
if (dwc2_is_host_mode(hsotg))
dwc2_init_fs_ls_pclk_sel(hsotg);
if (hsotg->params.i2c_enable) {
dev_dbg(hsotg->dev, "FS PHY enabling I2C\n");
/* Program GUSBCFG.OtgUtmiFsSel to I2C */
usbcfg = dwc2_readl(hsotg, GUSBCFG);
usbcfg |= GUSBCFG_OTG_UTMI_FS_SEL;
dwc2_writel(hsotg, usbcfg, GUSBCFG);
/* Program GI2CCTL.I2CEn */
i2cctl = dwc2_readl(hsotg, GI2CCTL);
i2cctl &= ~GI2CCTL_I2CDEVADDR_MASK;
i2cctl |= 1 << GI2CCTL_I2CDEVADDR_SHIFT;
i2cctl &= ~GI2CCTL_I2CEN;
dwc2_writel(hsotg, i2cctl, GI2CCTL);
i2cctl |= GI2CCTL_I2CEN;
dwc2_writel(hsotg, i2cctl, GI2CCTL);
}
return retval;
}
static int dwc2_hs_phy_init(struct dwc2_hsotg *hsotg, bool select_phy)
{
u32 usbcfg, usbcfg_old;
int retval = 0;
if (!select_phy)
return 0;
usbcfg = dwc2_readl(hsotg, GUSBCFG);
usbcfg_old = usbcfg;
/*
* HS PHY parameters. These parameters are preserved during soft reset
* so only program the first time. Do a soft reset immediately after
* setting phyif.
*/
switch (hsotg->params.phy_type) {
case DWC2_PHY_TYPE_PARAM_ULPI:
/* ULPI interface */
dev_dbg(hsotg->dev, "HS ULPI PHY selected\n");
usbcfg |= GUSBCFG_ULPI_UTMI_SEL;
usbcfg &= ~(GUSBCFG_PHYIF16 | GUSBCFG_DDRSEL);
if (hsotg->params.phy_ulpi_ddr)
usbcfg |= GUSBCFG_DDRSEL;
/* Set external VBUS indicator as needed. */
if (hsotg->params.oc_disable)
usbcfg |= (GUSBCFG_ULPI_INT_VBUS_IND |
GUSBCFG_INDICATORPASSTHROUGH);
break;
case DWC2_PHY_TYPE_PARAM_UTMI:
/* UTMI+ interface */
dev_dbg(hsotg->dev, "HS UTMI+ PHY selected\n");
usbcfg &= ~(GUSBCFG_ULPI_UTMI_SEL | GUSBCFG_PHYIF16);
if (hsotg->params.phy_utmi_width == 16)
usbcfg |= GUSBCFG_PHYIF16;
break;
default:
dev_err(hsotg->dev, "FS PHY selected at HS!\n");
break;
}
if (usbcfg != usbcfg_old) {
dwc2_writel(hsotg, usbcfg, GUSBCFG);
/* Reset after setting the PHY parameters */
retval = dwc2_core_reset(hsotg, false);
if (retval) {
dev_err(hsotg->dev,
"%s: Reset failed, aborting", __func__);
return retval;
}
}
return retval;
}
static void dwc2_set_turnaround_time(struct dwc2_hsotg *hsotg)
{
u32 usbcfg;
if (hsotg->params.phy_type != DWC2_PHY_TYPE_PARAM_UTMI)
return;
usbcfg = dwc2_readl(hsotg, GUSBCFG);
usbcfg &= ~GUSBCFG_USBTRDTIM_MASK;
if (hsotg->params.phy_utmi_width == 16)
usbcfg |= 5 << GUSBCFG_USBTRDTIM_SHIFT;
else
usbcfg |= 9 << GUSBCFG_USBTRDTIM_SHIFT;
dwc2_writel(hsotg, usbcfg, GUSBCFG);
}
int dwc2_phy_init(struct dwc2_hsotg *hsotg, bool select_phy)
{
u32 usbcfg;
u32 otgctl;
int retval = 0;
if ((hsotg->params.speed == DWC2_SPEED_PARAM_FULL ||
hsotg->params.speed == DWC2_SPEED_PARAM_LOW) &&
hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS) {
/* If FS/LS mode with FS/LS PHY */
retval = dwc2_fs_phy_init(hsotg, select_phy);
if (retval)
return retval;
} else {
/* High speed PHY */
retval = dwc2_hs_phy_init(hsotg, select_phy);
if (retval)
return retval;
if (dwc2_is_device_mode(hsotg))
dwc2_set_turnaround_time(hsotg);
}
if (hsotg->hw_params.hs_phy_type == GHWCFG2_HS_PHY_TYPE_ULPI &&
hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED &&
hsotg->params.ulpi_fs_ls) {
dev_dbg(hsotg->dev, "Setting ULPI FSLS\n");
usbcfg = dwc2_readl(hsotg, GUSBCFG);
usbcfg |= GUSBCFG_ULPI_FS_LS;
usbcfg |= GUSBCFG_ULPI_CLK_SUSP_M;
dwc2_writel(hsotg, usbcfg, GUSBCFG);
} else {
usbcfg = dwc2_readl(hsotg, GUSBCFG);
usbcfg &= ~GUSBCFG_ULPI_FS_LS;
usbcfg &= ~GUSBCFG_ULPI_CLK_SUSP_M;
dwc2_writel(hsotg, usbcfg, GUSBCFG);
}
if (!hsotg->params.activate_ingenic_overcurrent_detection) {
if (dwc2_is_host_mode(hsotg)) {
otgctl = readl(hsotg->regs + GOTGCTL);
otgctl |= GOTGCTL_VBVALOEN | GOTGCTL_VBVALOVAL;
writel(otgctl, hsotg->regs + GOTGCTL);
}
}
return retval;
}
MODULE_DESCRIPTION("DESIGNWARE HS OTG Core");
MODULE_AUTHOR("Synopsys, Inc.");
MODULE_LICENSE("Dual BSD/GPL");