mirror of
https://github.com/torvalds/linux.git
synced 2024-12-24 11:51:27 +00:00
4471a34f9a
Initially ondemand governor was written and then using its code conservative governor is written. It used a lot of code from ondemand governor, but copy of code was created instead of using the same routines from both governors. Which increased code redundancy, which is difficult to manage. This patch is an attempt to move common part of both the governors to cpufreq_governor.c file to come over above mentioned issues. This shouldn't change anything from functionality point of view. Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
534 lines
15 KiB
C
534 lines
15 KiB
C
/*
|
|
* drivers/cpufreq/cpufreq_ondemand.c
|
|
*
|
|
* Copyright (C) 2001 Russell King
|
|
* (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
|
|
* Jun Nakajima <jun.nakajima@intel.com>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*/
|
|
|
|
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
|
|
|
|
#include <linux/cpufreq.h>
|
|
#include <linux/init.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/kernel_stat.h>
|
|
#include <linux/kobject.h>
|
|
#include <linux/module.h>
|
|
#include <linux/mutex.h>
|
|
#include <linux/percpu-defs.h>
|
|
#include <linux/sysfs.h>
|
|
#include <linux/tick.h>
|
|
#include <linux/types.h>
|
|
|
|
#include "cpufreq_governor.h"
|
|
|
|
/* On-demand governor macors */
|
|
#define DEF_FREQUENCY_DOWN_DIFFERENTIAL (10)
|
|
#define DEF_FREQUENCY_UP_THRESHOLD (80)
|
|
#define DEF_SAMPLING_DOWN_FACTOR (1)
|
|
#define MAX_SAMPLING_DOWN_FACTOR (100000)
|
|
#define MICRO_FREQUENCY_DOWN_DIFFERENTIAL (3)
|
|
#define MICRO_FREQUENCY_UP_THRESHOLD (95)
|
|
#define MICRO_FREQUENCY_MIN_SAMPLE_RATE (10000)
|
|
#define MIN_FREQUENCY_UP_THRESHOLD (11)
|
|
#define MAX_FREQUENCY_UP_THRESHOLD (100)
|
|
|
|
static struct dbs_data od_dbs_data;
|
|
static DEFINE_PER_CPU(struct od_cpu_dbs_info_s, od_cpu_dbs_info);
|
|
|
|
static struct od_dbs_tuners od_tuners = {
|
|
.up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
|
|
.sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR,
|
|
.down_differential = DEF_FREQUENCY_DOWN_DIFFERENTIAL,
|
|
.ignore_nice = 0,
|
|
.powersave_bias = 0,
|
|
};
|
|
|
|
static void ondemand_powersave_bias_init_cpu(int cpu)
|
|
{
|
|
struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
|
|
|
|
dbs_info->freq_table = cpufreq_frequency_get_table(cpu);
|
|
dbs_info->freq_lo = 0;
|
|
}
|
|
|
|
/*
|
|
* Not all CPUs want IO time to be accounted as busy; this depends on how
|
|
* efficient idling at a higher frequency/voltage is.
|
|
* Pavel Machek says this is not so for various generations of AMD and old
|
|
* Intel systems.
|
|
* Mike Chan (androidlcom) calis this is also not true for ARM.
|
|
* Because of this, whitelist specific known (series) of CPUs by default, and
|
|
* leave all others up to the user.
|
|
*/
|
|
static int should_io_be_busy(void)
|
|
{
|
|
#if defined(CONFIG_X86)
|
|
/*
|
|
* For Intel, Core 2 (model 15) andl later have an efficient idle.
|
|
*/
|
|
if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
|
|
boot_cpu_data.x86 == 6 &&
|
|
boot_cpu_data.x86_model >= 15)
|
|
return 1;
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Find right freq to be set now with powersave_bias on.
|
|
* Returns the freq_hi to be used right now and will set freq_hi_jiffies,
|
|
* freq_lo, and freq_lo_jiffies in percpu area for averaging freqs.
|
|
*/
|
|
static unsigned int powersave_bias_target(struct cpufreq_policy *policy,
|
|
unsigned int freq_next, unsigned int relation)
|
|
{
|
|
unsigned int freq_req, freq_reduc, freq_avg;
|
|
unsigned int freq_hi, freq_lo;
|
|
unsigned int index = 0;
|
|
unsigned int jiffies_total, jiffies_hi, jiffies_lo;
|
|
struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info,
|
|
policy->cpu);
|
|
|
|
if (!dbs_info->freq_table) {
|
|
dbs_info->freq_lo = 0;
|
|
dbs_info->freq_lo_jiffies = 0;
|
|
return freq_next;
|
|
}
|
|
|
|
cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_next,
|
|
relation, &index);
|
|
freq_req = dbs_info->freq_table[index].frequency;
|
|
freq_reduc = freq_req * od_tuners.powersave_bias / 1000;
|
|
freq_avg = freq_req - freq_reduc;
|
|
|
|
/* Find freq bounds for freq_avg in freq_table */
|
|
index = 0;
|
|
cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
|
|
CPUFREQ_RELATION_H, &index);
|
|
freq_lo = dbs_info->freq_table[index].frequency;
|
|
index = 0;
|
|
cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
|
|
CPUFREQ_RELATION_L, &index);
|
|
freq_hi = dbs_info->freq_table[index].frequency;
|
|
|
|
/* Find out how long we have to be in hi and lo freqs */
|
|
if (freq_hi == freq_lo) {
|
|
dbs_info->freq_lo = 0;
|
|
dbs_info->freq_lo_jiffies = 0;
|
|
return freq_lo;
|
|
}
|
|
jiffies_total = usecs_to_jiffies(od_tuners.sampling_rate);
|
|
jiffies_hi = (freq_avg - freq_lo) * jiffies_total;
|
|
jiffies_hi += ((freq_hi - freq_lo) / 2);
|
|
jiffies_hi /= (freq_hi - freq_lo);
|
|
jiffies_lo = jiffies_total - jiffies_hi;
|
|
dbs_info->freq_lo = freq_lo;
|
|
dbs_info->freq_lo_jiffies = jiffies_lo;
|
|
dbs_info->freq_hi_jiffies = jiffies_hi;
|
|
return freq_hi;
|
|
}
|
|
|
|
static void ondemand_powersave_bias_init(void)
|
|
{
|
|
int i;
|
|
for_each_online_cpu(i) {
|
|
ondemand_powersave_bias_init_cpu(i);
|
|
}
|
|
}
|
|
|
|
static void dbs_freq_increase(struct cpufreq_policy *p, unsigned int freq)
|
|
{
|
|
if (od_tuners.powersave_bias)
|
|
freq = powersave_bias_target(p, freq, CPUFREQ_RELATION_H);
|
|
else if (p->cur == p->max)
|
|
return;
|
|
|
|
__cpufreq_driver_target(p, freq, od_tuners.powersave_bias ?
|
|
CPUFREQ_RELATION_L : CPUFREQ_RELATION_H);
|
|
}
|
|
|
|
/*
|
|
* Every sampling_rate, we check, if current idle time is less than 20%
|
|
* (default), then we try to increase frequency Every sampling_rate, we look for
|
|
* a the lowest frequency which can sustain the load while keeping idle time
|
|
* over 30%. If such a frequency exist, we try to decrease to this frequency.
|
|
*
|
|
* Any frequency increase takes it to the maximum frequency. Frequency reduction
|
|
* happens at minimum steps of 5% (default) of current frequency
|
|
*/
|
|
static void od_check_cpu(int cpu, unsigned int load_freq)
|
|
{
|
|
struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
|
|
struct cpufreq_policy *policy = dbs_info->cdbs.cur_policy;
|
|
|
|
dbs_info->freq_lo = 0;
|
|
|
|
/* Check for frequency increase */
|
|
if (load_freq > od_tuners.up_threshold * policy->cur) {
|
|
/* If switching to max speed, apply sampling_down_factor */
|
|
if (policy->cur < policy->max)
|
|
dbs_info->rate_mult =
|
|
od_tuners.sampling_down_factor;
|
|
dbs_freq_increase(policy, policy->max);
|
|
return;
|
|
}
|
|
|
|
/* Check for frequency decrease */
|
|
/* if we cannot reduce the frequency anymore, break out early */
|
|
if (policy->cur == policy->min)
|
|
return;
|
|
|
|
/*
|
|
* The optimal frequency is the frequency that is the lowest that can
|
|
* support the current CPU usage without triggering the up policy. To be
|
|
* safe, we focus 10 points under the threshold.
|
|
*/
|
|
if (load_freq < (od_tuners.up_threshold - od_tuners.down_differential) *
|
|
policy->cur) {
|
|
unsigned int freq_next;
|
|
freq_next = load_freq / (od_tuners.up_threshold -
|
|
od_tuners.down_differential);
|
|
|
|
/* No longer fully busy, reset rate_mult */
|
|
dbs_info->rate_mult = 1;
|
|
|
|
if (freq_next < policy->min)
|
|
freq_next = policy->min;
|
|
|
|
if (!od_tuners.powersave_bias) {
|
|
__cpufreq_driver_target(policy, freq_next,
|
|
CPUFREQ_RELATION_L);
|
|
} else {
|
|
int freq = powersave_bias_target(policy, freq_next,
|
|
CPUFREQ_RELATION_L);
|
|
__cpufreq_driver_target(policy, freq,
|
|
CPUFREQ_RELATION_L);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void od_dbs_timer(struct work_struct *work)
|
|
{
|
|
struct od_cpu_dbs_info_s *dbs_info =
|
|
container_of(work, struct od_cpu_dbs_info_s, cdbs.work.work);
|
|
unsigned int cpu = dbs_info->cdbs.cpu;
|
|
int delay, sample_type = dbs_info->sample_type;
|
|
|
|
mutex_lock(&dbs_info->cdbs.timer_mutex);
|
|
|
|
/* Common NORMAL_SAMPLE setup */
|
|
dbs_info->sample_type = OD_NORMAL_SAMPLE;
|
|
if (sample_type == OD_SUB_SAMPLE) {
|
|
delay = dbs_info->freq_lo_jiffies;
|
|
__cpufreq_driver_target(dbs_info->cdbs.cur_policy,
|
|
dbs_info->freq_lo, CPUFREQ_RELATION_H);
|
|
} else {
|
|
dbs_check_cpu(&od_dbs_data, cpu);
|
|
if (dbs_info->freq_lo) {
|
|
/* Setup timer for SUB_SAMPLE */
|
|
dbs_info->sample_type = OD_SUB_SAMPLE;
|
|
delay = dbs_info->freq_hi_jiffies;
|
|
} else {
|
|
delay = delay_for_sampling_rate(dbs_info->rate_mult);
|
|
}
|
|
}
|
|
|
|
schedule_delayed_work_on(cpu, &dbs_info->cdbs.work, delay);
|
|
mutex_unlock(&dbs_info->cdbs.timer_mutex);
|
|
}
|
|
|
|
/************************** sysfs interface ************************/
|
|
|
|
static ssize_t show_sampling_rate_min(struct kobject *kobj,
|
|
struct attribute *attr, char *buf)
|
|
{
|
|
return sprintf(buf, "%u\n", od_dbs_data.min_sampling_rate);
|
|
}
|
|
|
|
/**
|
|
* update_sampling_rate - update sampling rate effective immediately if needed.
|
|
* @new_rate: new sampling rate
|
|
*
|
|
* If new rate is smaller than the old, simply updaing
|
|
* dbs_tuners_int.sampling_rate might not be appropriate. For example, if the
|
|
* original sampling_rate was 1 second and the requested new sampling rate is 10
|
|
* ms because the user needs immediate reaction from ondemand governor, but not
|
|
* sure if higher frequency will be required or not, then, the governor may
|
|
* change the sampling rate too late; up to 1 second later. Thus, if we are
|
|
* reducing the sampling rate, we need to make the new value effective
|
|
* immediately.
|
|
*/
|
|
static void update_sampling_rate(unsigned int new_rate)
|
|
{
|
|
int cpu;
|
|
|
|
od_tuners.sampling_rate = new_rate = max(new_rate,
|
|
od_dbs_data.min_sampling_rate);
|
|
|
|
for_each_online_cpu(cpu) {
|
|
struct cpufreq_policy *policy;
|
|
struct od_cpu_dbs_info_s *dbs_info;
|
|
unsigned long next_sampling, appointed_at;
|
|
|
|
policy = cpufreq_cpu_get(cpu);
|
|
if (!policy)
|
|
continue;
|
|
dbs_info = &per_cpu(od_cpu_dbs_info, policy->cpu);
|
|
cpufreq_cpu_put(policy);
|
|
|
|
mutex_lock(&dbs_info->cdbs.timer_mutex);
|
|
|
|
if (!delayed_work_pending(&dbs_info->cdbs.work)) {
|
|
mutex_unlock(&dbs_info->cdbs.timer_mutex);
|
|
continue;
|
|
}
|
|
|
|
next_sampling = jiffies + usecs_to_jiffies(new_rate);
|
|
appointed_at = dbs_info->cdbs.work.timer.expires;
|
|
|
|
if (time_before(next_sampling, appointed_at)) {
|
|
|
|
mutex_unlock(&dbs_info->cdbs.timer_mutex);
|
|
cancel_delayed_work_sync(&dbs_info->cdbs.work);
|
|
mutex_lock(&dbs_info->cdbs.timer_mutex);
|
|
|
|
schedule_delayed_work_on(dbs_info->cdbs.cpu,
|
|
&dbs_info->cdbs.work,
|
|
usecs_to_jiffies(new_rate));
|
|
|
|
}
|
|
mutex_unlock(&dbs_info->cdbs.timer_mutex);
|
|
}
|
|
}
|
|
|
|
static ssize_t store_sampling_rate(struct kobject *a, struct attribute *b,
|
|
const char *buf, size_t count)
|
|
{
|
|
unsigned int input;
|
|
int ret;
|
|
ret = sscanf(buf, "%u", &input);
|
|
if (ret != 1)
|
|
return -EINVAL;
|
|
update_sampling_rate(input);
|
|
return count;
|
|
}
|
|
|
|
static ssize_t store_io_is_busy(struct kobject *a, struct attribute *b,
|
|
const char *buf, size_t count)
|
|
{
|
|
unsigned int input;
|
|
int ret;
|
|
|
|
ret = sscanf(buf, "%u", &input);
|
|
if (ret != 1)
|
|
return -EINVAL;
|
|
od_tuners.io_is_busy = !!input;
|
|
return count;
|
|
}
|
|
|
|
static ssize_t store_up_threshold(struct kobject *a, struct attribute *b,
|
|
const char *buf, size_t count)
|
|
{
|
|
unsigned int input;
|
|
int ret;
|
|
ret = sscanf(buf, "%u", &input);
|
|
|
|
if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD ||
|
|
input < MIN_FREQUENCY_UP_THRESHOLD) {
|
|
return -EINVAL;
|
|
}
|
|
od_tuners.up_threshold = input;
|
|
return count;
|
|
}
|
|
|
|
static ssize_t store_sampling_down_factor(struct kobject *a,
|
|
struct attribute *b, const char *buf, size_t count)
|
|
{
|
|
unsigned int input, j;
|
|
int ret;
|
|
ret = sscanf(buf, "%u", &input);
|
|
|
|
if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
|
|
return -EINVAL;
|
|
od_tuners.sampling_down_factor = input;
|
|
|
|
/* Reset down sampling multiplier in case it was active */
|
|
for_each_online_cpu(j) {
|
|
struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info,
|
|
j);
|
|
dbs_info->rate_mult = 1;
|
|
}
|
|
return count;
|
|
}
|
|
|
|
static ssize_t store_ignore_nice_load(struct kobject *a, struct attribute *b,
|
|
const char *buf, size_t count)
|
|
{
|
|
unsigned int input;
|
|
int ret;
|
|
|
|
unsigned int j;
|
|
|
|
ret = sscanf(buf, "%u", &input);
|
|
if (ret != 1)
|
|
return -EINVAL;
|
|
|
|
if (input > 1)
|
|
input = 1;
|
|
|
|
if (input == od_tuners.ignore_nice) { /* nothing to do */
|
|
return count;
|
|
}
|
|
od_tuners.ignore_nice = input;
|
|
|
|
/* we need to re-evaluate prev_cpu_idle */
|
|
for_each_online_cpu(j) {
|
|
struct od_cpu_dbs_info_s *dbs_info;
|
|
dbs_info = &per_cpu(od_cpu_dbs_info, j);
|
|
dbs_info->cdbs.prev_cpu_idle = get_cpu_idle_time(j,
|
|
&dbs_info->cdbs.prev_cpu_wall);
|
|
if (od_tuners.ignore_nice)
|
|
dbs_info->cdbs.prev_cpu_nice =
|
|
kcpustat_cpu(j).cpustat[CPUTIME_NICE];
|
|
|
|
}
|
|
return count;
|
|
}
|
|
|
|
static ssize_t store_powersave_bias(struct kobject *a, struct attribute *b,
|
|
const char *buf, size_t count)
|
|
{
|
|
unsigned int input;
|
|
int ret;
|
|
ret = sscanf(buf, "%u", &input);
|
|
|
|
if (ret != 1)
|
|
return -EINVAL;
|
|
|
|
if (input > 1000)
|
|
input = 1000;
|
|
|
|
od_tuners.powersave_bias = input;
|
|
ondemand_powersave_bias_init();
|
|
return count;
|
|
}
|
|
|
|
show_one(od, sampling_rate, sampling_rate);
|
|
show_one(od, io_is_busy, io_is_busy);
|
|
show_one(od, up_threshold, up_threshold);
|
|
show_one(od, sampling_down_factor, sampling_down_factor);
|
|
show_one(od, ignore_nice_load, ignore_nice);
|
|
show_one(od, powersave_bias, powersave_bias);
|
|
|
|
define_one_global_rw(sampling_rate);
|
|
define_one_global_rw(io_is_busy);
|
|
define_one_global_rw(up_threshold);
|
|
define_one_global_rw(sampling_down_factor);
|
|
define_one_global_rw(ignore_nice_load);
|
|
define_one_global_rw(powersave_bias);
|
|
define_one_global_ro(sampling_rate_min);
|
|
|
|
static struct attribute *dbs_attributes[] = {
|
|
&sampling_rate_min.attr,
|
|
&sampling_rate.attr,
|
|
&up_threshold.attr,
|
|
&sampling_down_factor.attr,
|
|
&ignore_nice_load.attr,
|
|
&powersave_bias.attr,
|
|
&io_is_busy.attr,
|
|
NULL
|
|
};
|
|
|
|
static struct attribute_group od_attr_group = {
|
|
.attrs = dbs_attributes,
|
|
.name = "ondemand",
|
|
};
|
|
|
|
/************************** sysfs end ************************/
|
|
|
|
define_get_cpu_dbs_routines(od_cpu_dbs_info);
|
|
|
|
static struct od_ops od_ops = {
|
|
.io_busy = should_io_be_busy,
|
|
.powersave_bias_init_cpu = ondemand_powersave_bias_init_cpu,
|
|
.powersave_bias_target = powersave_bias_target,
|
|
.freq_increase = dbs_freq_increase,
|
|
};
|
|
|
|
static struct dbs_data od_dbs_data = {
|
|
.governor = GOV_ONDEMAND,
|
|
.attr_group = &od_attr_group,
|
|
.tuners = &od_tuners,
|
|
.get_cpu_cdbs = get_cpu_cdbs,
|
|
.get_cpu_dbs_info_s = get_cpu_dbs_info_s,
|
|
.gov_dbs_timer = od_dbs_timer,
|
|
.gov_check_cpu = od_check_cpu,
|
|
.gov_ops = &od_ops,
|
|
};
|
|
|
|
static int od_cpufreq_governor_dbs(struct cpufreq_policy *policy,
|
|
unsigned int event)
|
|
{
|
|
return cpufreq_governor_dbs(&od_dbs_data, policy, event);
|
|
}
|
|
|
|
#ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
|
|
static
|
|
#endif
|
|
struct cpufreq_governor cpufreq_gov_ondemand = {
|
|
.name = "ondemand",
|
|
.governor = od_cpufreq_governor_dbs,
|
|
.max_transition_latency = TRANSITION_LATENCY_LIMIT,
|
|
.owner = THIS_MODULE,
|
|
};
|
|
|
|
static int __init cpufreq_gov_dbs_init(void)
|
|
{
|
|
u64 idle_time;
|
|
int cpu = get_cpu();
|
|
|
|
mutex_init(&od_dbs_data.mutex);
|
|
idle_time = get_cpu_idle_time_us(cpu, NULL);
|
|
put_cpu();
|
|
if (idle_time != -1ULL) {
|
|
/* Idle micro accounting is supported. Use finer thresholds */
|
|
od_tuners.up_threshold = MICRO_FREQUENCY_UP_THRESHOLD;
|
|
od_tuners.down_differential = MICRO_FREQUENCY_DOWN_DIFFERENTIAL;
|
|
/*
|
|
* In nohz/micro accounting case we set the minimum frequency
|
|
* not depending on HZ, but fixed (very low). The deferred
|
|
* timer might skip some samples if idle/sleeping as needed.
|
|
*/
|
|
od_dbs_data.min_sampling_rate = MICRO_FREQUENCY_MIN_SAMPLE_RATE;
|
|
} else {
|
|
/* For correct statistics, we need 10 ticks for each measure */
|
|
od_dbs_data.min_sampling_rate = MIN_SAMPLING_RATE_RATIO *
|
|
jiffies_to_usecs(10);
|
|
}
|
|
|
|
return cpufreq_register_governor(&cpufreq_gov_ondemand);
|
|
}
|
|
|
|
static void __exit cpufreq_gov_dbs_exit(void)
|
|
{
|
|
cpufreq_unregister_governor(&cpufreq_gov_ondemand);
|
|
}
|
|
|
|
MODULE_AUTHOR("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
|
|
MODULE_AUTHOR("Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>");
|
|
MODULE_DESCRIPTION("'cpufreq_ondemand' - A dynamic cpufreq governor for "
|
|
"Low Latency Frequency Transition capable processors");
|
|
MODULE_LICENSE("GPL");
|
|
|
|
#ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
|
|
fs_initcall(cpufreq_gov_dbs_init);
|
|
#else
|
|
module_init(cpufreq_gov_dbs_init);
|
|
#endif
|
|
module_exit(cpufreq_gov_dbs_exit);
|