linux/arch/riscv/crypto/chacha-riscv64-zvkb.S
Jerry Shih bb54668837
crypto: riscv - add vector crypto accelerated ChaCha20
Add an implementation of ChaCha20 using the Zvkb extension.  The
assembly code is derived from OpenSSL code (openssl/openssl#21923) that
was dual-licensed so that it could be reused in the kernel.
Nevertheless, the assembly has been significantly reworked for
integration with the kernel, for example by using a regular .S file
instead of the so-called perlasm, using the assembler instead of bare
'.inst', and reducing code duplication.

Signed-off-by: Jerry Shih <jerry.shih@sifive.com>
Co-developed-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Link: https://lore.kernel.org/r/20240122002024.27477-6-ebiggers@kernel.org
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
2024-01-22 17:55:19 -08:00

295 lines
8.0 KiB
ArmAsm

/* SPDX-License-Identifier: Apache-2.0 OR BSD-2-Clause */
//
// This file is dual-licensed, meaning that you can use it under your
// choice of either of the following two licenses:
//
// Copyright 2023 The OpenSSL Project Authors. All Rights Reserved.
//
// Licensed under the Apache License 2.0 (the "License"). You can obtain
// a copy in the file LICENSE in the source distribution or at
// https://www.openssl.org/source/license.html
//
// or
//
// Copyright (c) 2023, Jerry Shih <jerry.shih@sifive.com>
// Copyright 2024 Google LLC
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// The generated code of this file depends on the following RISC-V extensions:
// - RV64I
// - RISC-V Vector ('V') with VLEN >= 128
// - RISC-V Vector Cryptography Bit-manipulation extension ('Zvkb')
#include <linux/linkage.h>
.text
.option arch, +zvkb
#define KEYP a0
#define INP a1
#define OUTP a2
#define LEN a3
#define IVP a4
#define CONSTS0 a5
#define CONSTS1 a6
#define CONSTS2 a7
#define CONSTS3 t0
#define TMP t1
#define VL t2
#define STRIDE t3
#define NROUNDS t4
#define KEY0 s0
#define KEY1 s1
#define KEY2 s2
#define KEY3 s3
#define KEY4 s4
#define KEY5 s5
#define KEY6 s6
#define KEY7 s7
#define COUNTER s8
#define NONCE0 s9
#define NONCE1 s10
#define NONCE2 s11
.macro chacha_round a0, b0, c0, d0, a1, b1, c1, d1, \
a2, b2, c2, d2, a3, b3, c3, d3
// a += b; d ^= a; d = rol(d, 16);
vadd.vv \a0, \a0, \b0
vadd.vv \a1, \a1, \b1
vadd.vv \a2, \a2, \b2
vadd.vv \a3, \a3, \b3
vxor.vv \d0, \d0, \a0
vxor.vv \d1, \d1, \a1
vxor.vv \d2, \d2, \a2
vxor.vv \d3, \d3, \a3
vror.vi \d0, \d0, 32 - 16
vror.vi \d1, \d1, 32 - 16
vror.vi \d2, \d2, 32 - 16
vror.vi \d3, \d3, 32 - 16
// c += d; b ^= c; b = rol(b, 12);
vadd.vv \c0, \c0, \d0
vadd.vv \c1, \c1, \d1
vadd.vv \c2, \c2, \d2
vadd.vv \c3, \c3, \d3
vxor.vv \b0, \b0, \c0
vxor.vv \b1, \b1, \c1
vxor.vv \b2, \b2, \c2
vxor.vv \b3, \b3, \c3
vror.vi \b0, \b0, 32 - 12
vror.vi \b1, \b1, 32 - 12
vror.vi \b2, \b2, 32 - 12
vror.vi \b3, \b3, 32 - 12
// a += b; d ^= a; d = rol(d, 8);
vadd.vv \a0, \a0, \b0
vadd.vv \a1, \a1, \b1
vadd.vv \a2, \a2, \b2
vadd.vv \a3, \a3, \b3
vxor.vv \d0, \d0, \a0
vxor.vv \d1, \d1, \a1
vxor.vv \d2, \d2, \a2
vxor.vv \d3, \d3, \a3
vror.vi \d0, \d0, 32 - 8
vror.vi \d1, \d1, 32 - 8
vror.vi \d2, \d2, 32 - 8
vror.vi \d3, \d3, 32 - 8
// c += d; b ^= c; b = rol(b, 7);
vadd.vv \c0, \c0, \d0
vadd.vv \c1, \c1, \d1
vadd.vv \c2, \c2, \d2
vadd.vv \c3, \c3, \d3
vxor.vv \b0, \b0, \c0
vxor.vv \b1, \b1, \c1
vxor.vv \b2, \b2, \c2
vxor.vv \b3, \b3, \c3
vror.vi \b0, \b0, 32 - 7
vror.vi \b1, \b1, 32 - 7
vror.vi \b2, \b2, 32 - 7
vror.vi \b3, \b3, 32 - 7
.endm
// void chacha20_zvkb(const u32 key[8], const u8 *in, u8 *out, size_t len,
// const u32 iv[4]);
//
// |len| must be nonzero and a multiple of 64 (CHACHA_BLOCK_SIZE).
// The counter is treated as 32-bit, following the RFC7539 convention.
SYM_FUNC_START(chacha20_zvkb)
srli LEN, LEN, 6 // Bytes to blocks
addi sp, sp, -96
sd s0, 0(sp)
sd s1, 8(sp)
sd s2, 16(sp)
sd s3, 24(sp)
sd s4, 32(sp)
sd s5, 40(sp)
sd s6, 48(sp)
sd s7, 56(sp)
sd s8, 64(sp)
sd s9, 72(sp)
sd s10, 80(sp)
sd s11, 88(sp)
li STRIDE, 64
// Set up the initial state matrix in scalar registers.
li CONSTS0, 0x61707865 // "expa" little endian
li CONSTS1, 0x3320646e // "nd 3" little endian
li CONSTS2, 0x79622d32 // "2-by" little endian
li CONSTS3, 0x6b206574 // "te k" little endian
lw KEY0, 0(KEYP)
lw KEY1, 4(KEYP)
lw KEY2, 8(KEYP)
lw KEY3, 12(KEYP)
lw KEY4, 16(KEYP)
lw KEY5, 20(KEYP)
lw KEY6, 24(KEYP)
lw KEY7, 28(KEYP)
lw COUNTER, 0(IVP)
lw NONCE0, 4(IVP)
lw NONCE1, 8(IVP)
lw NONCE2, 12(IVP)
.Lblock_loop:
// Set vl to the number of blocks to process in this iteration.
vsetvli VL, LEN, e32, m1, ta, ma
// Set up the initial state matrix for the next VL blocks in v0-v15.
// v{i} holds the i'th 32-bit word of the state matrix for all blocks.
// Note that only the counter word, at index 12, differs across blocks.
vmv.v.x v0, CONSTS0
vmv.v.x v1, CONSTS1
vmv.v.x v2, CONSTS2
vmv.v.x v3, CONSTS3
vmv.v.x v4, KEY0
vmv.v.x v5, KEY1
vmv.v.x v6, KEY2
vmv.v.x v7, KEY3
vmv.v.x v8, KEY4
vmv.v.x v9, KEY5
vmv.v.x v10, KEY6
vmv.v.x v11, KEY7
vid.v v12
vadd.vx v12, v12, COUNTER
vmv.v.x v13, NONCE0
vmv.v.x v14, NONCE1
vmv.v.x v15, NONCE2
// Load the first half of the input data for each block into v16-v23.
// v{16+i} holds the i'th 32-bit word for all blocks.
vlsseg8e32.v v16, (INP), STRIDE
li NROUNDS, 20
.Lnext_doubleround:
addi NROUNDS, NROUNDS, -2
// column round
chacha_round v0, v4, v8, v12, v1, v5, v9, v13, \
v2, v6, v10, v14, v3, v7, v11, v15
// diagonal round
chacha_round v0, v5, v10, v15, v1, v6, v11, v12, \
v2, v7, v8, v13, v3, v4, v9, v14
bnez NROUNDS, .Lnext_doubleround
// Load the second half of the input data for each block into v24-v31.
// v{24+i} holds the {8+i}'th 32-bit word for all blocks.
addi TMP, INP, 32
vlsseg8e32.v v24, (TMP), STRIDE
// Finalize the first half of the keystream for each block.
vadd.vx v0, v0, CONSTS0
vadd.vx v1, v1, CONSTS1
vadd.vx v2, v2, CONSTS2
vadd.vx v3, v3, CONSTS3
vadd.vx v4, v4, KEY0
vadd.vx v5, v5, KEY1
vadd.vx v6, v6, KEY2
vadd.vx v7, v7, KEY3
// Encrypt/decrypt the first half of the data for each block.
vxor.vv v16, v16, v0
vxor.vv v17, v17, v1
vxor.vv v18, v18, v2
vxor.vv v19, v19, v3
vxor.vv v20, v20, v4
vxor.vv v21, v21, v5
vxor.vv v22, v22, v6
vxor.vv v23, v23, v7
// Store the first half of the output data for each block.
vssseg8e32.v v16, (OUTP), STRIDE
// Finalize the second half of the keystream for each block.
vadd.vx v8, v8, KEY4
vadd.vx v9, v9, KEY5
vadd.vx v10, v10, KEY6
vadd.vx v11, v11, KEY7
vid.v v0
vadd.vx v12, v12, COUNTER
vadd.vx v13, v13, NONCE0
vadd.vx v14, v14, NONCE1
vadd.vx v15, v15, NONCE2
vadd.vv v12, v12, v0
// Encrypt/decrypt the second half of the data for each block.
vxor.vv v24, v24, v8
vxor.vv v25, v25, v9
vxor.vv v26, v26, v10
vxor.vv v27, v27, v11
vxor.vv v29, v29, v13
vxor.vv v28, v28, v12
vxor.vv v30, v30, v14
vxor.vv v31, v31, v15
// Store the second half of the output data for each block.
addi TMP, OUTP, 32
vssseg8e32.v v24, (TMP), STRIDE
// Update the counter, the remaining number of blocks, and the input and
// output pointers according to the number of blocks processed (VL).
add COUNTER, COUNTER, VL
sub LEN, LEN, VL
slli TMP, VL, 6
add OUTP, OUTP, TMP
add INP, INP, TMP
bnez LEN, .Lblock_loop
ld s0, 0(sp)
ld s1, 8(sp)
ld s2, 16(sp)
ld s3, 24(sp)
ld s4, 32(sp)
ld s5, 40(sp)
ld s6, 48(sp)
ld s7, 56(sp)
ld s8, 64(sp)
ld s9, 72(sp)
ld s10, 80(sp)
ld s11, 88(sp)
addi sp, sp, 96
ret
SYM_FUNC_END(chacha20_zvkb)