linux/arch/riscv/crypto/aes-riscv64-glue.c
Eric Biggers c70dfa4a27
crypto: riscv - add vector crypto accelerated AES-CBC-CTS
Add an implementation of cts(cbc(aes)) accelerated using the Zvkned
RISC-V vector crypto extension.  This is mainly useful for fscrypt,
where cts(cbc(aes)) is the "default" filenames encryption algorithm.  In
that use case, typically most messages are short and are block-aligned.
The CBC-CTS variant implemented is CS3; this is the variant Linux uses.

To perform well on short messages, the new implementation processes the
full message in one call to the assembly function if the data is
contiguous.  Otherwise it falls back to CBC operations followed by CTS
at the end.  For decryption, to further improve performance on short
messages, especially block-aligned messages, the CBC-CTS assembly
function parallelizes the AES decryption of all full blocks.  This
improves on the arm64 implementation of cts(cbc(aes)), which always
splits the CBC part(s) from the CTS part, doing the AES decryptions for
the last two blocks serially and usually loading the round keys twice.

Tested in QEMU with CONFIG_CRYPTO_MANAGER_EXTRA_TESTS=y.

Signed-off-by: Eric Biggers <ebiggers@google.com>
Link: https://lore.kernel.org/r/20240213055442.35954-1-ebiggers@kernel.org
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
2024-03-20 08:56:11 -07:00

638 lines
19 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* AES using the RISC-V vector crypto extensions. Includes the bare block
* cipher and the ECB, CBC, CBC-CTS, CTR, and XTS modes.
*
* Copyright (C) 2023 VRULL GmbH
* Author: Heiko Stuebner <heiko.stuebner@vrull.eu>
*
* Copyright (C) 2023 SiFive, Inc.
* Author: Jerry Shih <jerry.shih@sifive.com>
*
* Copyright 2024 Google LLC
*/
#include <asm/simd.h>
#include <asm/vector.h>
#include <crypto/aes.h>
#include <crypto/internal/cipher.h>
#include <crypto/internal/simd.h>
#include <crypto/internal/skcipher.h>
#include <crypto/scatterwalk.h>
#include <crypto/xts.h>
#include <linux/linkage.h>
#include <linux/module.h>
asmlinkage void aes_encrypt_zvkned(const struct crypto_aes_ctx *key,
const u8 in[AES_BLOCK_SIZE],
u8 out[AES_BLOCK_SIZE]);
asmlinkage void aes_decrypt_zvkned(const struct crypto_aes_ctx *key,
const u8 in[AES_BLOCK_SIZE],
u8 out[AES_BLOCK_SIZE]);
asmlinkage void aes_ecb_encrypt_zvkned(const struct crypto_aes_ctx *key,
const u8 *in, u8 *out, size_t len);
asmlinkage void aes_ecb_decrypt_zvkned(const struct crypto_aes_ctx *key,
const u8 *in, u8 *out, size_t len);
asmlinkage void aes_cbc_encrypt_zvkned(const struct crypto_aes_ctx *key,
const u8 *in, u8 *out, size_t len,
u8 iv[AES_BLOCK_SIZE]);
asmlinkage void aes_cbc_decrypt_zvkned(const struct crypto_aes_ctx *key,
const u8 *in, u8 *out, size_t len,
u8 iv[AES_BLOCK_SIZE]);
asmlinkage void aes_cbc_cts_crypt_zvkned(const struct crypto_aes_ctx *key,
const u8 *in, u8 *out, size_t len,
const u8 iv[AES_BLOCK_SIZE], bool enc);
asmlinkage void aes_ctr32_crypt_zvkned_zvkb(const struct crypto_aes_ctx *key,
const u8 *in, u8 *out, size_t len,
u8 iv[AES_BLOCK_SIZE]);
asmlinkage void aes_xts_encrypt_zvkned_zvbb_zvkg(
const struct crypto_aes_ctx *key,
const u8 *in, u8 *out, size_t len,
u8 tweak[AES_BLOCK_SIZE]);
asmlinkage void aes_xts_decrypt_zvkned_zvbb_zvkg(
const struct crypto_aes_ctx *key,
const u8 *in, u8 *out, size_t len,
u8 tweak[AES_BLOCK_SIZE]);
static int riscv64_aes_setkey(struct crypto_aes_ctx *ctx,
const u8 *key, unsigned int keylen)
{
/*
* For now we just use the generic key expansion, for these reasons:
*
* - zvkned's key expansion instructions don't support AES-192.
* So, non-zvkned fallback code would be needed anyway.
*
* - Users of AES in Linux usually don't change keys frequently.
* So, key expansion isn't performance-critical.
*
* - For single-block AES exposed as a "cipher" algorithm, it's
* necessary to use struct crypto_aes_ctx and initialize its 'key_dec'
* field with the round keys for the Equivalent Inverse Cipher. This
* is because with "cipher", decryption can be requested from a
* context where the vector unit isn't usable, necessitating a
* fallback to aes_decrypt(). But, zvkned can only generate and use
* the normal round keys. Of course, it's preferable to not have
* special code just for "cipher", as e.g. XTS also uses a
* single-block AES encryption. It's simplest to just use
* struct crypto_aes_ctx and aes_expandkey() everywhere.
*/
return aes_expandkey(ctx, key, keylen);
}
static int riscv64_aes_setkey_cipher(struct crypto_tfm *tfm,
const u8 *key, unsigned int keylen)
{
struct crypto_aes_ctx *ctx = crypto_tfm_ctx(tfm);
return riscv64_aes_setkey(ctx, key, keylen);
}
static int riscv64_aes_setkey_skcipher(struct crypto_skcipher *tfm,
const u8 *key, unsigned int keylen)
{
struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
return riscv64_aes_setkey(ctx, key, keylen);
}
/* Bare AES, without a mode of operation */
static void riscv64_aes_encrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
{
const struct crypto_aes_ctx *ctx = crypto_tfm_ctx(tfm);
if (crypto_simd_usable()) {
kernel_vector_begin();
aes_encrypt_zvkned(ctx, src, dst);
kernel_vector_end();
} else {
aes_encrypt(ctx, dst, src);
}
}
static void riscv64_aes_decrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
{
const struct crypto_aes_ctx *ctx = crypto_tfm_ctx(tfm);
if (crypto_simd_usable()) {
kernel_vector_begin();
aes_decrypt_zvkned(ctx, src, dst);
kernel_vector_end();
} else {
aes_decrypt(ctx, dst, src);
}
}
/* AES-ECB */
static inline int riscv64_aes_ecb_crypt(struct skcipher_request *req, bool enc)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
const struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
struct skcipher_walk walk;
unsigned int nbytes;
int err;
err = skcipher_walk_virt(&walk, req, false);
while ((nbytes = walk.nbytes) != 0) {
kernel_vector_begin();
if (enc)
aes_ecb_encrypt_zvkned(ctx, walk.src.virt.addr,
walk.dst.virt.addr,
nbytes & ~(AES_BLOCK_SIZE - 1));
else
aes_ecb_decrypt_zvkned(ctx, walk.src.virt.addr,
walk.dst.virt.addr,
nbytes & ~(AES_BLOCK_SIZE - 1));
kernel_vector_end();
err = skcipher_walk_done(&walk, nbytes & (AES_BLOCK_SIZE - 1));
}
return err;
}
static int riscv64_aes_ecb_encrypt(struct skcipher_request *req)
{
return riscv64_aes_ecb_crypt(req, true);
}
static int riscv64_aes_ecb_decrypt(struct skcipher_request *req)
{
return riscv64_aes_ecb_crypt(req, false);
}
/* AES-CBC */
static int riscv64_aes_cbc_crypt(struct skcipher_request *req, bool enc)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
const struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
struct skcipher_walk walk;
unsigned int nbytes;
int err;
err = skcipher_walk_virt(&walk, req, false);
while ((nbytes = walk.nbytes) != 0) {
kernel_vector_begin();
if (enc)
aes_cbc_encrypt_zvkned(ctx, walk.src.virt.addr,
walk.dst.virt.addr,
nbytes & ~(AES_BLOCK_SIZE - 1),
walk.iv);
else
aes_cbc_decrypt_zvkned(ctx, walk.src.virt.addr,
walk.dst.virt.addr,
nbytes & ~(AES_BLOCK_SIZE - 1),
walk.iv);
kernel_vector_end();
err = skcipher_walk_done(&walk, nbytes & (AES_BLOCK_SIZE - 1));
}
return err;
}
static int riscv64_aes_cbc_encrypt(struct skcipher_request *req)
{
return riscv64_aes_cbc_crypt(req, true);
}
static int riscv64_aes_cbc_decrypt(struct skcipher_request *req)
{
return riscv64_aes_cbc_crypt(req, false);
}
/* AES-CBC-CTS */
static int riscv64_aes_cbc_cts_crypt(struct skcipher_request *req, bool enc)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
const struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
struct scatterlist sg_src[2], sg_dst[2];
struct skcipher_request subreq;
struct scatterlist *src, *dst;
struct skcipher_walk walk;
unsigned int cbc_len;
int err;
if (req->cryptlen < AES_BLOCK_SIZE)
return -EINVAL;
err = skcipher_walk_virt(&walk, req, false);
if (err)
return err;
/*
* If the full message is available in one step, decrypt it in one call
* to the CBC-CTS assembly function. This reduces overhead, especially
* on short messages. Otherwise, fall back to doing CBC up to the last
* two blocks, then invoke CTS just for the ciphertext stealing.
*/
if (unlikely(walk.nbytes != req->cryptlen)) {
cbc_len = round_down(req->cryptlen - AES_BLOCK_SIZE - 1,
AES_BLOCK_SIZE);
skcipher_walk_abort(&walk);
skcipher_request_set_tfm(&subreq, tfm);
skcipher_request_set_callback(&subreq,
skcipher_request_flags(req),
NULL, NULL);
skcipher_request_set_crypt(&subreq, req->src, req->dst,
cbc_len, req->iv);
err = riscv64_aes_cbc_crypt(&subreq, enc);
if (err)
return err;
dst = src = scatterwalk_ffwd(sg_src, req->src, cbc_len);
if (req->dst != req->src)
dst = scatterwalk_ffwd(sg_dst, req->dst, cbc_len);
skcipher_request_set_crypt(&subreq, src, dst,
req->cryptlen - cbc_len, req->iv);
err = skcipher_walk_virt(&walk, &subreq, false);
if (err)
return err;
}
kernel_vector_begin();
aes_cbc_cts_crypt_zvkned(ctx, walk.src.virt.addr, walk.dst.virt.addr,
walk.nbytes, req->iv, enc);
kernel_vector_end();
return skcipher_walk_done(&walk, 0);
}
static int riscv64_aes_cbc_cts_encrypt(struct skcipher_request *req)
{
return riscv64_aes_cbc_cts_crypt(req, true);
}
static int riscv64_aes_cbc_cts_decrypt(struct skcipher_request *req)
{
return riscv64_aes_cbc_cts_crypt(req, false);
}
/* AES-CTR */
static int riscv64_aes_ctr_crypt(struct skcipher_request *req)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
const struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
unsigned int nbytes, p1_nbytes;
struct skcipher_walk walk;
u32 ctr32, nblocks;
int err;
/* Get the low 32-bit word of the 128-bit big endian counter. */
ctr32 = get_unaligned_be32(req->iv + 12);
err = skcipher_walk_virt(&walk, req, false);
while ((nbytes = walk.nbytes) != 0) {
if (nbytes < walk.total) {
/* Not the end yet, so keep the length block-aligned. */
nbytes = round_down(nbytes, AES_BLOCK_SIZE);
nblocks = nbytes / AES_BLOCK_SIZE;
} else {
/* It's the end, so include any final partial block. */
nblocks = DIV_ROUND_UP(nbytes, AES_BLOCK_SIZE);
}
ctr32 += nblocks;
kernel_vector_begin();
if (ctr32 >= nblocks) {
/* The low 32-bit word of the counter won't overflow. */
aes_ctr32_crypt_zvkned_zvkb(ctx, walk.src.virt.addr,
walk.dst.virt.addr, nbytes,
req->iv);
} else {
/*
* The low 32-bit word of the counter will overflow.
* The assembly doesn't handle this case, so split the
* operation into two at the point where the overflow
* will occur. After the first part, add the carry bit.
*/
p1_nbytes = min_t(unsigned int, nbytes,
(nblocks - ctr32) * AES_BLOCK_SIZE);
aes_ctr32_crypt_zvkned_zvkb(ctx, walk.src.virt.addr,
walk.dst.virt.addr,
p1_nbytes, req->iv);
crypto_inc(req->iv, 12);
if (ctr32) {
aes_ctr32_crypt_zvkned_zvkb(
ctx,
walk.src.virt.addr + p1_nbytes,
walk.dst.virt.addr + p1_nbytes,
nbytes - p1_nbytes, req->iv);
}
}
kernel_vector_end();
err = skcipher_walk_done(&walk, walk.nbytes - nbytes);
}
return err;
}
/* AES-XTS */
struct riscv64_aes_xts_ctx {
struct crypto_aes_ctx ctx1;
struct crypto_aes_ctx ctx2;
};
static int riscv64_aes_xts_setkey(struct crypto_skcipher *tfm, const u8 *key,
unsigned int keylen)
{
struct riscv64_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
return xts_verify_key(tfm, key, keylen) ?:
riscv64_aes_setkey(&ctx->ctx1, key, keylen / 2) ?:
riscv64_aes_setkey(&ctx->ctx2, key + keylen / 2, keylen / 2);
}
static int riscv64_aes_xts_crypt(struct skcipher_request *req, bool enc)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
const struct riscv64_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
int tail = req->cryptlen % AES_BLOCK_SIZE;
struct scatterlist sg_src[2], sg_dst[2];
struct skcipher_request subreq;
struct scatterlist *src, *dst;
struct skcipher_walk walk;
int err;
if (req->cryptlen < AES_BLOCK_SIZE)
return -EINVAL;
/* Encrypt the IV with the tweak key to get the first tweak. */
kernel_vector_begin();
aes_encrypt_zvkned(&ctx->ctx2, req->iv, req->iv);
kernel_vector_end();
err = skcipher_walk_virt(&walk, req, false);
/*
* If the message length isn't divisible by the AES block size and the
* full message isn't available in one step of the scatterlist walk,
* then separate off the last full block and the partial block. This
* ensures that they are processed in the same call to the assembly
* function, which is required for ciphertext stealing.
*/
if (unlikely(tail > 0 && walk.nbytes < walk.total)) {
skcipher_walk_abort(&walk);
skcipher_request_set_tfm(&subreq, tfm);
skcipher_request_set_callback(&subreq,
skcipher_request_flags(req),
NULL, NULL);
skcipher_request_set_crypt(&subreq, req->src, req->dst,
req->cryptlen - tail - AES_BLOCK_SIZE,
req->iv);
req = &subreq;
err = skcipher_walk_virt(&walk, req, false);
} else {
tail = 0;
}
while (walk.nbytes) {
unsigned int nbytes = walk.nbytes;
if (nbytes < walk.total)
nbytes = round_down(nbytes, AES_BLOCK_SIZE);
kernel_vector_begin();
if (enc)
aes_xts_encrypt_zvkned_zvbb_zvkg(
&ctx->ctx1, walk.src.virt.addr,
walk.dst.virt.addr, nbytes, req->iv);
else
aes_xts_decrypt_zvkned_zvbb_zvkg(
&ctx->ctx1, walk.src.virt.addr,
walk.dst.virt.addr, nbytes, req->iv);
kernel_vector_end();
err = skcipher_walk_done(&walk, walk.nbytes - nbytes);
}
if (err || likely(!tail))
return err;
/* Do ciphertext stealing with the last full block and partial block. */
dst = src = scatterwalk_ffwd(sg_src, req->src, req->cryptlen);
if (req->dst != req->src)
dst = scatterwalk_ffwd(sg_dst, req->dst, req->cryptlen);
skcipher_request_set_crypt(req, src, dst, AES_BLOCK_SIZE + tail,
req->iv);
err = skcipher_walk_virt(&walk, req, false);
if (err)
return err;
kernel_vector_begin();
if (enc)
aes_xts_encrypt_zvkned_zvbb_zvkg(
&ctx->ctx1, walk.src.virt.addr,
walk.dst.virt.addr, walk.nbytes, req->iv);
else
aes_xts_decrypt_zvkned_zvbb_zvkg(
&ctx->ctx1, walk.src.virt.addr,
walk.dst.virt.addr, walk.nbytes, req->iv);
kernel_vector_end();
return skcipher_walk_done(&walk, 0);
}
static int riscv64_aes_xts_encrypt(struct skcipher_request *req)
{
return riscv64_aes_xts_crypt(req, true);
}
static int riscv64_aes_xts_decrypt(struct skcipher_request *req)
{
return riscv64_aes_xts_crypt(req, false);
}
/* Algorithm definitions */
static struct crypto_alg riscv64_zvkned_aes_cipher_alg = {
.cra_flags = CRYPTO_ALG_TYPE_CIPHER,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct crypto_aes_ctx),
.cra_priority = 300,
.cra_name = "aes",
.cra_driver_name = "aes-riscv64-zvkned",
.cra_cipher = {
.cia_min_keysize = AES_MIN_KEY_SIZE,
.cia_max_keysize = AES_MAX_KEY_SIZE,
.cia_setkey = riscv64_aes_setkey_cipher,
.cia_encrypt = riscv64_aes_encrypt,
.cia_decrypt = riscv64_aes_decrypt,
},
.cra_module = THIS_MODULE,
};
static struct skcipher_alg riscv64_zvkned_aes_skcipher_algs[] = {
{
.setkey = riscv64_aes_setkey_skcipher,
.encrypt = riscv64_aes_ecb_encrypt,
.decrypt = riscv64_aes_ecb_decrypt,
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.walksize = 8 * AES_BLOCK_SIZE, /* matches LMUL=8 */
.base = {
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct crypto_aes_ctx),
.cra_priority = 300,
.cra_name = "ecb(aes)",
.cra_driver_name = "ecb-aes-riscv64-zvkned",
.cra_module = THIS_MODULE,
},
}, {
.setkey = riscv64_aes_setkey_skcipher,
.encrypt = riscv64_aes_cbc_encrypt,
.decrypt = riscv64_aes_cbc_decrypt,
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
.base = {
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct crypto_aes_ctx),
.cra_priority = 300,
.cra_name = "cbc(aes)",
.cra_driver_name = "cbc-aes-riscv64-zvkned",
.cra_module = THIS_MODULE,
},
}, {
.setkey = riscv64_aes_setkey_skcipher,
.encrypt = riscv64_aes_cbc_cts_encrypt,
.decrypt = riscv64_aes_cbc_cts_decrypt,
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
.walksize = 4 * AES_BLOCK_SIZE, /* matches LMUL=4 */
.base = {
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct crypto_aes_ctx),
.cra_priority = 300,
.cra_name = "cts(cbc(aes))",
.cra_driver_name = "cts-cbc-aes-riscv64-zvkned",
.cra_module = THIS_MODULE,
},
}
};
static struct skcipher_alg riscv64_zvkned_zvkb_aes_skcipher_alg = {
.setkey = riscv64_aes_setkey_skcipher,
.encrypt = riscv64_aes_ctr_crypt,
.decrypt = riscv64_aes_ctr_crypt,
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
.chunksize = AES_BLOCK_SIZE,
.walksize = 4 * AES_BLOCK_SIZE, /* matches LMUL=4 */
.base = {
.cra_blocksize = 1,
.cra_ctxsize = sizeof(struct crypto_aes_ctx),
.cra_priority = 300,
.cra_name = "ctr(aes)",
.cra_driver_name = "ctr-aes-riscv64-zvkned-zvkb",
.cra_module = THIS_MODULE,
},
};
static struct skcipher_alg riscv64_zvkned_zvbb_zvkg_aes_skcipher_alg = {
.setkey = riscv64_aes_xts_setkey,
.encrypt = riscv64_aes_xts_encrypt,
.decrypt = riscv64_aes_xts_decrypt,
.min_keysize = 2 * AES_MIN_KEY_SIZE,
.max_keysize = 2 * AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
.chunksize = AES_BLOCK_SIZE,
.walksize = 4 * AES_BLOCK_SIZE, /* matches LMUL=4 */
.base = {
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct riscv64_aes_xts_ctx),
.cra_priority = 300,
.cra_name = "xts(aes)",
.cra_driver_name = "xts-aes-riscv64-zvkned-zvbb-zvkg",
.cra_module = THIS_MODULE,
},
};
static inline bool riscv64_aes_xts_supported(void)
{
return riscv_isa_extension_available(NULL, ZVBB) &&
riscv_isa_extension_available(NULL, ZVKG) &&
riscv_vector_vlen() < 2048 /* Implementation limitation */;
}
static int __init riscv64_aes_mod_init(void)
{
int err = -ENODEV;
if (riscv_isa_extension_available(NULL, ZVKNED) &&
riscv_vector_vlen() >= 128) {
err = crypto_register_alg(&riscv64_zvkned_aes_cipher_alg);
if (err)
return err;
err = crypto_register_skciphers(
riscv64_zvkned_aes_skcipher_algs,
ARRAY_SIZE(riscv64_zvkned_aes_skcipher_algs));
if (err)
goto unregister_zvkned_cipher_alg;
if (riscv_isa_extension_available(NULL, ZVKB)) {
err = crypto_register_skcipher(
&riscv64_zvkned_zvkb_aes_skcipher_alg);
if (err)
goto unregister_zvkned_skcipher_algs;
}
if (riscv64_aes_xts_supported()) {
err = crypto_register_skcipher(
&riscv64_zvkned_zvbb_zvkg_aes_skcipher_alg);
if (err)
goto unregister_zvkned_zvkb_skcipher_alg;
}
}
return err;
unregister_zvkned_zvkb_skcipher_alg:
if (riscv_isa_extension_available(NULL, ZVKB))
crypto_unregister_skcipher(&riscv64_zvkned_zvkb_aes_skcipher_alg);
unregister_zvkned_skcipher_algs:
crypto_unregister_skciphers(riscv64_zvkned_aes_skcipher_algs,
ARRAY_SIZE(riscv64_zvkned_aes_skcipher_algs));
unregister_zvkned_cipher_alg:
crypto_unregister_alg(&riscv64_zvkned_aes_cipher_alg);
return err;
}
static void __exit riscv64_aes_mod_exit(void)
{
if (riscv64_aes_xts_supported())
crypto_unregister_skcipher(&riscv64_zvkned_zvbb_zvkg_aes_skcipher_alg);
if (riscv_isa_extension_available(NULL, ZVKB))
crypto_unregister_skcipher(&riscv64_zvkned_zvkb_aes_skcipher_alg);
crypto_unregister_skciphers(riscv64_zvkned_aes_skcipher_algs,
ARRAY_SIZE(riscv64_zvkned_aes_skcipher_algs));
crypto_unregister_alg(&riscv64_zvkned_aes_cipher_alg);
}
module_init(riscv64_aes_mod_init);
module_exit(riscv64_aes_mod_exit);
MODULE_DESCRIPTION("AES-ECB/CBC/CTS/CTR/XTS (RISC-V accelerated)");
MODULE_AUTHOR("Jerry Shih <jerry.shih@sifive.com>");
MODULE_LICENSE("GPL");
MODULE_ALIAS_CRYPTO("aes");
MODULE_ALIAS_CRYPTO("ecb(aes)");
MODULE_ALIAS_CRYPTO("cbc(aes)");
MODULE_ALIAS_CRYPTO("cts(cbc(aes))");
MODULE_ALIAS_CRYPTO("ctr(aes)");
MODULE_ALIAS_CRYPTO("xts(aes)");