mirror of
https://github.com/torvalds/linux.git
synced 2024-11-22 20:22:09 +00:00
8e7834a883
Split out base filesystem usage into its own type; prep work for breaking up bch2_trans_fs_usage_apply(). Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
2072 lines
51 KiB
C
2072 lines
51 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com>
|
|
* Copyright (C) 2014 Datera Inc.
|
|
*/
|
|
|
|
#include "bcachefs.h"
|
|
#include "alloc_background.h"
|
|
#include "alloc_foreground.h"
|
|
#include "bkey_methods.h"
|
|
#include "bkey_buf.h"
|
|
#include "btree_journal_iter.h"
|
|
#include "btree_key_cache.h"
|
|
#include "btree_locking.h"
|
|
#include "btree_update_interior.h"
|
|
#include "btree_io.h"
|
|
#include "btree_gc.h"
|
|
#include "buckets.h"
|
|
#include "clock.h"
|
|
#include "debug.h"
|
|
#include "ec.h"
|
|
#include "error.h"
|
|
#include "extents.h"
|
|
#include "journal.h"
|
|
#include "keylist.h"
|
|
#include "move.h"
|
|
#include "recovery.h"
|
|
#include "reflink.h"
|
|
#include "replicas.h"
|
|
#include "super-io.h"
|
|
#include "trace.h"
|
|
|
|
#include <linux/slab.h>
|
|
#include <linux/bitops.h>
|
|
#include <linux/freezer.h>
|
|
#include <linux/kthread.h>
|
|
#include <linux/preempt.h>
|
|
#include <linux/rcupdate.h>
|
|
#include <linux/sched/task.h>
|
|
|
|
#define DROP_THIS_NODE 10
|
|
#define DROP_PREV_NODE 11
|
|
|
|
static struct bkey_s unsafe_bkey_s_c_to_s(struct bkey_s_c k)
|
|
{
|
|
return (struct bkey_s) {{{
|
|
(struct bkey *) k.k,
|
|
(struct bch_val *) k.v
|
|
}}};
|
|
}
|
|
|
|
static bool should_restart_for_topology_repair(struct bch_fs *c)
|
|
{
|
|
return c->opts.fix_errors != FSCK_FIX_no &&
|
|
!(c->recovery_passes_complete & BIT_ULL(BCH_RECOVERY_PASS_check_topology));
|
|
}
|
|
|
|
static inline void __gc_pos_set(struct bch_fs *c, struct gc_pos new_pos)
|
|
{
|
|
preempt_disable();
|
|
write_seqcount_begin(&c->gc_pos_lock);
|
|
c->gc_pos = new_pos;
|
|
write_seqcount_end(&c->gc_pos_lock);
|
|
preempt_enable();
|
|
}
|
|
|
|
static inline void gc_pos_set(struct bch_fs *c, struct gc_pos new_pos)
|
|
{
|
|
BUG_ON(gc_pos_cmp(new_pos, c->gc_pos) <= 0);
|
|
__gc_pos_set(c, new_pos);
|
|
}
|
|
|
|
/*
|
|
* Missing: if an interior btree node is empty, we need to do something -
|
|
* perhaps just kill it
|
|
*/
|
|
static int bch2_gc_check_topology(struct bch_fs *c,
|
|
struct btree *b,
|
|
struct bkey_buf *prev,
|
|
struct bkey_buf cur,
|
|
bool is_last)
|
|
{
|
|
struct bpos node_start = b->data->min_key;
|
|
struct bpos node_end = b->data->max_key;
|
|
struct bpos expected_start = bkey_deleted(&prev->k->k)
|
|
? node_start
|
|
: bpos_successor(prev->k->k.p);
|
|
struct printbuf buf1 = PRINTBUF, buf2 = PRINTBUF;
|
|
int ret = 0;
|
|
|
|
if (cur.k->k.type == KEY_TYPE_btree_ptr_v2) {
|
|
struct bkey_i_btree_ptr_v2 *bp = bkey_i_to_btree_ptr_v2(cur.k);
|
|
|
|
if (!bpos_eq(expected_start, bp->v.min_key)) {
|
|
bch2_topology_error(c);
|
|
|
|
if (bkey_deleted(&prev->k->k)) {
|
|
prt_printf(&buf1, "start of node: ");
|
|
bch2_bpos_to_text(&buf1, node_start);
|
|
} else {
|
|
bch2_bkey_val_to_text(&buf1, c, bkey_i_to_s_c(prev->k));
|
|
}
|
|
bch2_bkey_val_to_text(&buf2, c, bkey_i_to_s_c(cur.k));
|
|
|
|
if (__fsck_err(c,
|
|
FSCK_CAN_FIX|
|
|
FSCK_CAN_IGNORE|
|
|
FSCK_NO_RATELIMIT,
|
|
btree_node_topology_bad_min_key,
|
|
"btree node with incorrect min_key at btree %s level %u:\n"
|
|
" prev %s\n"
|
|
" cur %s",
|
|
bch2_btree_id_str(b->c.btree_id), b->c.level,
|
|
buf1.buf, buf2.buf) && should_restart_for_topology_repair(c)) {
|
|
bch_info(c, "Halting mark and sweep to start topology repair pass");
|
|
ret = bch2_run_explicit_recovery_pass(c, BCH_RECOVERY_PASS_check_topology);
|
|
goto err;
|
|
} else {
|
|
set_bit(BCH_FS_initial_gc_unfixed, &c->flags);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (is_last && !bpos_eq(cur.k->k.p, node_end)) {
|
|
bch2_topology_error(c);
|
|
|
|
printbuf_reset(&buf1);
|
|
printbuf_reset(&buf2);
|
|
|
|
bch2_bkey_val_to_text(&buf1, c, bkey_i_to_s_c(cur.k));
|
|
bch2_bpos_to_text(&buf2, node_end);
|
|
|
|
if (__fsck_err(c, FSCK_CAN_FIX|FSCK_CAN_IGNORE|FSCK_NO_RATELIMIT,
|
|
btree_node_topology_bad_max_key,
|
|
"btree node with incorrect max_key at btree %s level %u:\n"
|
|
" %s\n"
|
|
" expected %s",
|
|
bch2_btree_id_str(b->c.btree_id), b->c.level,
|
|
buf1.buf, buf2.buf) &&
|
|
should_restart_for_topology_repair(c)) {
|
|
bch_info(c, "Halting mark and sweep to start topology repair pass");
|
|
ret = bch2_run_explicit_recovery_pass(c, BCH_RECOVERY_PASS_check_topology);
|
|
goto err;
|
|
} else {
|
|
set_bit(BCH_FS_initial_gc_unfixed, &c->flags);
|
|
}
|
|
}
|
|
|
|
bch2_bkey_buf_copy(prev, c, cur.k);
|
|
err:
|
|
fsck_err:
|
|
printbuf_exit(&buf2);
|
|
printbuf_exit(&buf1);
|
|
return ret;
|
|
}
|
|
|
|
static void btree_ptr_to_v2(struct btree *b, struct bkey_i_btree_ptr_v2 *dst)
|
|
{
|
|
switch (b->key.k.type) {
|
|
case KEY_TYPE_btree_ptr: {
|
|
struct bkey_i_btree_ptr *src = bkey_i_to_btree_ptr(&b->key);
|
|
|
|
dst->k.p = src->k.p;
|
|
dst->v.mem_ptr = 0;
|
|
dst->v.seq = b->data->keys.seq;
|
|
dst->v.sectors_written = 0;
|
|
dst->v.flags = 0;
|
|
dst->v.min_key = b->data->min_key;
|
|
set_bkey_val_bytes(&dst->k, sizeof(dst->v) + bkey_val_bytes(&src->k));
|
|
memcpy(dst->v.start, src->v.start, bkey_val_bytes(&src->k));
|
|
break;
|
|
}
|
|
case KEY_TYPE_btree_ptr_v2:
|
|
bkey_copy(&dst->k_i, &b->key);
|
|
break;
|
|
default:
|
|
BUG();
|
|
}
|
|
}
|
|
|
|
static void bch2_btree_node_update_key_early(struct btree_trans *trans,
|
|
enum btree_id btree, unsigned level,
|
|
struct bkey_s_c old, struct bkey_i *new)
|
|
{
|
|
struct bch_fs *c = trans->c;
|
|
struct btree *b;
|
|
struct bkey_buf tmp;
|
|
int ret;
|
|
|
|
bch2_bkey_buf_init(&tmp);
|
|
bch2_bkey_buf_reassemble(&tmp, c, old);
|
|
|
|
b = bch2_btree_node_get_noiter(trans, tmp.k, btree, level, true);
|
|
if (!IS_ERR_OR_NULL(b)) {
|
|
mutex_lock(&c->btree_cache.lock);
|
|
|
|
bch2_btree_node_hash_remove(&c->btree_cache, b);
|
|
|
|
bkey_copy(&b->key, new);
|
|
ret = __bch2_btree_node_hash_insert(&c->btree_cache, b);
|
|
BUG_ON(ret);
|
|
|
|
mutex_unlock(&c->btree_cache.lock);
|
|
six_unlock_read(&b->c.lock);
|
|
}
|
|
|
|
bch2_bkey_buf_exit(&tmp, c);
|
|
}
|
|
|
|
static int set_node_min(struct bch_fs *c, struct btree *b, struct bpos new_min)
|
|
{
|
|
struct bkey_i_btree_ptr_v2 *new;
|
|
int ret;
|
|
|
|
new = kmalloc_array(BKEY_BTREE_PTR_U64s_MAX, sizeof(u64), GFP_KERNEL);
|
|
if (!new)
|
|
return -BCH_ERR_ENOMEM_gc_repair_key;
|
|
|
|
btree_ptr_to_v2(b, new);
|
|
b->data->min_key = new_min;
|
|
new->v.min_key = new_min;
|
|
SET_BTREE_PTR_RANGE_UPDATED(&new->v, true);
|
|
|
|
ret = bch2_journal_key_insert_take(c, b->c.btree_id, b->c.level + 1, &new->k_i);
|
|
if (ret) {
|
|
kfree(new);
|
|
return ret;
|
|
}
|
|
|
|
bch2_btree_node_drop_keys_outside_node(b);
|
|
bkey_copy(&b->key, &new->k_i);
|
|
return 0;
|
|
}
|
|
|
|
static int set_node_max(struct bch_fs *c, struct btree *b, struct bpos new_max)
|
|
{
|
|
struct bkey_i_btree_ptr_v2 *new;
|
|
int ret;
|
|
|
|
ret = bch2_journal_key_delete(c, b->c.btree_id, b->c.level + 1, b->key.k.p);
|
|
if (ret)
|
|
return ret;
|
|
|
|
new = kmalloc_array(BKEY_BTREE_PTR_U64s_MAX, sizeof(u64), GFP_KERNEL);
|
|
if (!new)
|
|
return -BCH_ERR_ENOMEM_gc_repair_key;
|
|
|
|
btree_ptr_to_v2(b, new);
|
|
b->data->max_key = new_max;
|
|
new->k.p = new_max;
|
|
SET_BTREE_PTR_RANGE_UPDATED(&new->v, true);
|
|
|
|
ret = bch2_journal_key_insert_take(c, b->c.btree_id, b->c.level + 1, &new->k_i);
|
|
if (ret) {
|
|
kfree(new);
|
|
return ret;
|
|
}
|
|
|
|
bch2_btree_node_drop_keys_outside_node(b);
|
|
|
|
mutex_lock(&c->btree_cache.lock);
|
|
bch2_btree_node_hash_remove(&c->btree_cache, b);
|
|
|
|
bkey_copy(&b->key, &new->k_i);
|
|
ret = __bch2_btree_node_hash_insert(&c->btree_cache, b);
|
|
BUG_ON(ret);
|
|
mutex_unlock(&c->btree_cache.lock);
|
|
return 0;
|
|
}
|
|
|
|
static int btree_repair_node_boundaries(struct bch_fs *c, struct btree *b,
|
|
struct btree *prev, struct btree *cur)
|
|
{
|
|
struct bpos expected_start = !prev
|
|
? b->data->min_key
|
|
: bpos_successor(prev->key.k.p);
|
|
struct printbuf buf1 = PRINTBUF, buf2 = PRINTBUF;
|
|
int ret = 0;
|
|
|
|
if (!prev) {
|
|
prt_printf(&buf1, "start of node: ");
|
|
bch2_bpos_to_text(&buf1, b->data->min_key);
|
|
} else {
|
|
bch2_bkey_val_to_text(&buf1, c, bkey_i_to_s_c(&prev->key));
|
|
}
|
|
|
|
bch2_bkey_val_to_text(&buf2, c, bkey_i_to_s_c(&cur->key));
|
|
|
|
if (prev &&
|
|
bpos_gt(expected_start, cur->data->min_key) &&
|
|
BTREE_NODE_SEQ(cur->data) > BTREE_NODE_SEQ(prev->data)) {
|
|
/* cur overwrites prev: */
|
|
|
|
if (mustfix_fsck_err_on(bpos_ge(prev->data->min_key,
|
|
cur->data->min_key), c,
|
|
btree_node_topology_overwritten_by_next_node,
|
|
"btree node overwritten by next node at btree %s level %u:\n"
|
|
" node %s\n"
|
|
" next %s",
|
|
bch2_btree_id_str(b->c.btree_id), b->c.level,
|
|
buf1.buf, buf2.buf)) {
|
|
ret = DROP_PREV_NODE;
|
|
goto out;
|
|
}
|
|
|
|
if (mustfix_fsck_err_on(!bpos_eq(prev->key.k.p,
|
|
bpos_predecessor(cur->data->min_key)), c,
|
|
btree_node_topology_bad_max_key,
|
|
"btree node with incorrect max_key at btree %s level %u:\n"
|
|
" node %s\n"
|
|
" next %s",
|
|
bch2_btree_id_str(b->c.btree_id), b->c.level,
|
|
buf1.buf, buf2.buf))
|
|
ret = set_node_max(c, prev,
|
|
bpos_predecessor(cur->data->min_key));
|
|
} else {
|
|
/* prev overwrites cur: */
|
|
|
|
if (mustfix_fsck_err_on(bpos_ge(expected_start,
|
|
cur->data->max_key), c,
|
|
btree_node_topology_overwritten_by_prev_node,
|
|
"btree node overwritten by prev node at btree %s level %u:\n"
|
|
" prev %s\n"
|
|
" node %s",
|
|
bch2_btree_id_str(b->c.btree_id), b->c.level,
|
|
buf1.buf, buf2.buf)) {
|
|
ret = DROP_THIS_NODE;
|
|
goto out;
|
|
}
|
|
|
|
if (mustfix_fsck_err_on(!bpos_eq(expected_start, cur->data->min_key), c,
|
|
btree_node_topology_bad_min_key,
|
|
"btree node with incorrect min_key at btree %s level %u:\n"
|
|
" prev %s\n"
|
|
" node %s",
|
|
bch2_btree_id_str(b->c.btree_id), b->c.level,
|
|
buf1.buf, buf2.buf))
|
|
ret = set_node_min(c, cur, expected_start);
|
|
}
|
|
out:
|
|
fsck_err:
|
|
printbuf_exit(&buf2);
|
|
printbuf_exit(&buf1);
|
|
return ret;
|
|
}
|
|
|
|
static int btree_repair_node_end(struct bch_fs *c, struct btree *b,
|
|
struct btree *child)
|
|
{
|
|
struct printbuf buf1 = PRINTBUF, buf2 = PRINTBUF;
|
|
int ret = 0;
|
|
|
|
bch2_bkey_val_to_text(&buf1, c, bkey_i_to_s_c(&child->key));
|
|
bch2_bpos_to_text(&buf2, b->key.k.p);
|
|
|
|
if (mustfix_fsck_err_on(!bpos_eq(child->key.k.p, b->key.k.p), c,
|
|
btree_node_topology_bad_max_key,
|
|
"btree node with incorrect max_key at btree %s level %u:\n"
|
|
" %s\n"
|
|
" expected %s",
|
|
bch2_btree_id_str(b->c.btree_id), b->c.level,
|
|
buf1.buf, buf2.buf)) {
|
|
ret = set_node_max(c, child, b->key.k.p);
|
|
if (ret)
|
|
goto err;
|
|
}
|
|
err:
|
|
fsck_err:
|
|
printbuf_exit(&buf2);
|
|
printbuf_exit(&buf1);
|
|
return ret;
|
|
}
|
|
|
|
static int bch2_btree_repair_topology_recurse(struct btree_trans *trans, struct btree *b)
|
|
{
|
|
struct bch_fs *c = trans->c;
|
|
struct btree_and_journal_iter iter;
|
|
struct bkey_s_c k;
|
|
struct bkey_buf prev_k, cur_k;
|
|
struct btree *prev = NULL, *cur = NULL;
|
|
bool have_child, dropped_children = false;
|
|
struct printbuf buf = PRINTBUF;
|
|
int ret = 0;
|
|
|
|
if (!b->c.level)
|
|
return 0;
|
|
again:
|
|
prev = NULL;
|
|
have_child = dropped_children = false;
|
|
bch2_bkey_buf_init(&prev_k);
|
|
bch2_bkey_buf_init(&cur_k);
|
|
bch2_btree_and_journal_iter_init_node_iter(&iter, c, b);
|
|
|
|
while ((k = bch2_btree_and_journal_iter_peek(&iter)).k) {
|
|
BUG_ON(bpos_lt(k.k->p, b->data->min_key));
|
|
BUG_ON(bpos_gt(k.k->p, b->data->max_key));
|
|
|
|
bch2_btree_and_journal_iter_advance(&iter);
|
|
bch2_bkey_buf_reassemble(&cur_k, c, k);
|
|
|
|
cur = bch2_btree_node_get_noiter(trans, cur_k.k,
|
|
b->c.btree_id, b->c.level - 1,
|
|
false);
|
|
ret = PTR_ERR_OR_ZERO(cur);
|
|
|
|
printbuf_reset(&buf);
|
|
bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(cur_k.k));
|
|
|
|
if (mustfix_fsck_err_on(ret == -EIO, c,
|
|
btree_node_unreadable,
|
|
"Topology repair: unreadable btree node at btree %s level %u:\n"
|
|
" %s",
|
|
bch2_btree_id_str(b->c.btree_id),
|
|
b->c.level - 1,
|
|
buf.buf)) {
|
|
bch2_btree_node_evict(trans, cur_k.k);
|
|
ret = bch2_journal_key_delete(c, b->c.btree_id,
|
|
b->c.level, cur_k.k->k.p);
|
|
cur = NULL;
|
|
if (ret)
|
|
break;
|
|
continue;
|
|
}
|
|
|
|
bch_err_msg(c, ret, "getting btree node");
|
|
if (ret)
|
|
break;
|
|
|
|
ret = btree_repair_node_boundaries(c, b, prev, cur);
|
|
|
|
if (ret == DROP_THIS_NODE) {
|
|
six_unlock_read(&cur->c.lock);
|
|
bch2_btree_node_evict(trans, cur_k.k);
|
|
ret = bch2_journal_key_delete(c, b->c.btree_id,
|
|
b->c.level, cur_k.k->k.p);
|
|
cur = NULL;
|
|
if (ret)
|
|
break;
|
|
continue;
|
|
}
|
|
|
|
if (prev)
|
|
six_unlock_read(&prev->c.lock);
|
|
prev = NULL;
|
|
|
|
if (ret == DROP_PREV_NODE) {
|
|
bch2_btree_node_evict(trans, prev_k.k);
|
|
ret = bch2_journal_key_delete(c, b->c.btree_id,
|
|
b->c.level, prev_k.k->k.p);
|
|
if (ret)
|
|
break;
|
|
|
|
bch2_btree_and_journal_iter_exit(&iter);
|
|
bch2_bkey_buf_exit(&prev_k, c);
|
|
bch2_bkey_buf_exit(&cur_k, c);
|
|
goto again;
|
|
} else if (ret)
|
|
break;
|
|
|
|
prev = cur;
|
|
cur = NULL;
|
|
bch2_bkey_buf_copy(&prev_k, c, cur_k.k);
|
|
}
|
|
|
|
if (!ret && !IS_ERR_OR_NULL(prev)) {
|
|
BUG_ON(cur);
|
|
ret = btree_repair_node_end(c, b, prev);
|
|
}
|
|
|
|
if (!IS_ERR_OR_NULL(prev))
|
|
six_unlock_read(&prev->c.lock);
|
|
prev = NULL;
|
|
if (!IS_ERR_OR_NULL(cur))
|
|
six_unlock_read(&cur->c.lock);
|
|
cur = NULL;
|
|
|
|
if (ret)
|
|
goto err;
|
|
|
|
bch2_btree_and_journal_iter_exit(&iter);
|
|
bch2_btree_and_journal_iter_init_node_iter(&iter, c, b);
|
|
|
|
while ((k = bch2_btree_and_journal_iter_peek(&iter)).k) {
|
|
bch2_bkey_buf_reassemble(&cur_k, c, k);
|
|
bch2_btree_and_journal_iter_advance(&iter);
|
|
|
|
cur = bch2_btree_node_get_noiter(trans, cur_k.k,
|
|
b->c.btree_id, b->c.level - 1,
|
|
false);
|
|
ret = PTR_ERR_OR_ZERO(cur);
|
|
|
|
bch_err_msg(c, ret, "getting btree node");
|
|
if (ret)
|
|
goto err;
|
|
|
|
ret = bch2_btree_repair_topology_recurse(trans, cur);
|
|
six_unlock_read(&cur->c.lock);
|
|
cur = NULL;
|
|
|
|
if (ret == DROP_THIS_NODE) {
|
|
bch2_btree_node_evict(trans, cur_k.k);
|
|
ret = bch2_journal_key_delete(c, b->c.btree_id,
|
|
b->c.level, cur_k.k->k.p);
|
|
dropped_children = true;
|
|
}
|
|
|
|
if (ret)
|
|
goto err;
|
|
|
|
have_child = true;
|
|
}
|
|
|
|
printbuf_reset(&buf);
|
|
bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(&b->key));
|
|
|
|
if (mustfix_fsck_err_on(!have_child, c,
|
|
btree_node_topology_interior_node_empty,
|
|
"empty interior btree node at btree %s level %u\n"
|
|
" %s",
|
|
bch2_btree_id_str(b->c.btree_id),
|
|
b->c.level, buf.buf))
|
|
ret = DROP_THIS_NODE;
|
|
err:
|
|
fsck_err:
|
|
if (!IS_ERR_OR_NULL(prev))
|
|
six_unlock_read(&prev->c.lock);
|
|
if (!IS_ERR_OR_NULL(cur))
|
|
six_unlock_read(&cur->c.lock);
|
|
|
|
bch2_btree_and_journal_iter_exit(&iter);
|
|
bch2_bkey_buf_exit(&prev_k, c);
|
|
bch2_bkey_buf_exit(&cur_k, c);
|
|
|
|
if (!ret && dropped_children)
|
|
goto again;
|
|
|
|
printbuf_exit(&buf);
|
|
return ret;
|
|
}
|
|
|
|
int bch2_check_topology(struct bch_fs *c)
|
|
{
|
|
struct btree_trans *trans = bch2_trans_get(c);
|
|
struct btree *b;
|
|
unsigned i;
|
|
int ret = 0;
|
|
|
|
for (i = 0; i < btree_id_nr_alive(c) && !ret; i++) {
|
|
struct btree_root *r = bch2_btree_id_root(c, i);
|
|
|
|
if (!r->alive)
|
|
continue;
|
|
|
|
b = r->b;
|
|
if (btree_node_fake(b))
|
|
continue;
|
|
|
|
btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_read);
|
|
ret = bch2_btree_repair_topology_recurse(trans, b);
|
|
six_unlock_read(&b->c.lock);
|
|
|
|
if (ret == DROP_THIS_NODE) {
|
|
bch_err(c, "empty btree root - repair unimplemented");
|
|
ret = -BCH_ERR_fsck_repair_unimplemented;
|
|
}
|
|
}
|
|
|
|
bch2_trans_put(trans);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int bch2_check_fix_ptrs(struct btree_trans *trans, enum btree_id btree_id,
|
|
unsigned level, bool is_root,
|
|
struct bkey_s_c *k)
|
|
{
|
|
struct bch_fs *c = trans->c;
|
|
struct bkey_ptrs_c ptrs_c = bch2_bkey_ptrs_c(*k);
|
|
const union bch_extent_entry *entry_c;
|
|
struct extent_ptr_decoded p = { 0 };
|
|
bool do_update = false;
|
|
struct printbuf buf = PRINTBUF;
|
|
int ret = 0;
|
|
|
|
/*
|
|
* XXX
|
|
* use check_bucket_ref here
|
|
*/
|
|
bkey_for_each_ptr_decode(k->k, ptrs_c, p, entry_c) {
|
|
struct bch_dev *ca = bch_dev_bkey_exists(c, p.ptr.dev);
|
|
struct bucket *g = PTR_GC_BUCKET(ca, &p.ptr);
|
|
enum bch_data_type data_type = bch2_bkey_ptr_data_type(*k, &entry_c->ptr);
|
|
|
|
if (!g->gen_valid &&
|
|
(c->opts.reconstruct_alloc ||
|
|
fsck_err(c, ptr_to_missing_alloc_key,
|
|
"bucket %u:%zu data type %s ptr gen %u missing in alloc btree\n"
|
|
"while marking %s",
|
|
p.ptr.dev, PTR_BUCKET_NR(ca, &p.ptr),
|
|
bch2_data_type_str(ptr_data_type(k->k, &p.ptr)),
|
|
p.ptr.gen,
|
|
(printbuf_reset(&buf),
|
|
bch2_bkey_val_to_text(&buf, c, *k), buf.buf)))) {
|
|
if (!p.ptr.cached) {
|
|
g->gen_valid = true;
|
|
g->gen = p.ptr.gen;
|
|
} else {
|
|
do_update = true;
|
|
}
|
|
}
|
|
|
|
if (gen_cmp(p.ptr.gen, g->gen) > 0 &&
|
|
(c->opts.reconstruct_alloc ||
|
|
fsck_err(c, ptr_gen_newer_than_bucket_gen,
|
|
"bucket %u:%zu data type %s ptr gen in the future: %u > %u\n"
|
|
"while marking %s",
|
|
p.ptr.dev, PTR_BUCKET_NR(ca, &p.ptr),
|
|
bch2_data_type_str(ptr_data_type(k->k, &p.ptr)),
|
|
p.ptr.gen, g->gen,
|
|
(printbuf_reset(&buf),
|
|
bch2_bkey_val_to_text(&buf, c, *k), buf.buf)))) {
|
|
if (!p.ptr.cached) {
|
|
g->gen_valid = true;
|
|
g->gen = p.ptr.gen;
|
|
g->data_type = 0;
|
|
g->dirty_sectors = 0;
|
|
g->cached_sectors = 0;
|
|
set_bit(BCH_FS_need_another_gc, &c->flags);
|
|
} else {
|
|
do_update = true;
|
|
}
|
|
}
|
|
|
|
if (gen_cmp(g->gen, p.ptr.gen) > BUCKET_GC_GEN_MAX &&
|
|
(c->opts.reconstruct_alloc ||
|
|
fsck_err(c, ptr_gen_newer_than_bucket_gen,
|
|
"bucket %u:%zu gen %u data type %s: ptr gen %u too stale\n"
|
|
"while marking %s",
|
|
p.ptr.dev, PTR_BUCKET_NR(ca, &p.ptr), g->gen,
|
|
bch2_data_type_str(ptr_data_type(k->k, &p.ptr)),
|
|
p.ptr.gen,
|
|
(printbuf_reset(&buf),
|
|
bch2_bkey_val_to_text(&buf, c, *k), buf.buf))))
|
|
do_update = true;
|
|
|
|
if (!p.ptr.cached && gen_cmp(p.ptr.gen, g->gen) < 0 &&
|
|
(c->opts.reconstruct_alloc ||
|
|
fsck_err(c, stale_dirty_ptr,
|
|
"bucket %u:%zu data type %s stale dirty ptr: %u < %u\n"
|
|
"while marking %s",
|
|
p.ptr.dev, PTR_BUCKET_NR(ca, &p.ptr),
|
|
bch2_data_type_str(ptr_data_type(k->k, &p.ptr)),
|
|
p.ptr.gen, g->gen,
|
|
(printbuf_reset(&buf),
|
|
bch2_bkey_val_to_text(&buf, c, *k), buf.buf))))
|
|
do_update = true;
|
|
|
|
if (data_type != BCH_DATA_btree && p.ptr.gen != g->gen)
|
|
continue;
|
|
|
|
if (fsck_err_on(bucket_data_type(g->data_type) &&
|
|
bucket_data_type(g->data_type) != data_type, c,
|
|
ptr_bucket_data_type_mismatch,
|
|
"bucket %u:%zu different types of data in same bucket: %s, %s\n"
|
|
"while marking %s",
|
|
p.ptr.dev, PTR_BUCKET_NR(ca, &p.ptr),
|
|
bch2_data_type_str(g->data_type),
|
|
bch2_data_type_str(data_type),
|
|
(printbuf_reset(&buf),
|
|
bch2_bkey_val_to_text(&buf, c, *k), buf.buf))) {
|
|
if (data_type == BCH_DATA_btree) {
|
|
g->data_type = data_type;
|
|
set_bit(BCH_FS_need_another_gc, &c->flags);
|
|
} else {
|
|
do_update = true;
|
|
}
|
|
}
|
|
|
|
if (p.has_ec) {
|
|
struct gc_stripe *m = genradix_ptr(&c->gc_stripes, p.ec.idx);
|
|
|
|
if (fsck_err_on(!m || !m->alive, c,
|
|
ptr_to_missing_stripe,
|
|
"pointer to nonexistent stripe %llu\n"
|
|
"while marking %s",
|
|
(u64) p.ec.idx,
|
|
(printbuf_reset(&buf),
|
|
bch2_bkey_val_to_text(&buf, c, *k), buf.buf)))
|
|
do_update = true;
|
|
|
|
if (fsck_err_on(m && m->alive && !bch2_ptr_matches_stripe_m(m, p), c,
|
|
ptr_to_incorrect_stripe,
|
|
"pointer does not match stripe %llu\n"
|
|
"while marking %s",
|
|
(u64) p.ec.idx,
|
|
(printbuf_reset(&buf),
|
|
bch2_bkey_val_to_text(&buf, c, *k), buf.buf)))
|
|
do_update = true;
|
|
}
|
|
}
|
|
|
|
if (do_update) {
|
|
struct bkey_ptrs ptrs;
|
|
union bch_extent_entry *entry;
|
|
struct bch_extent_ptr *ptr;
|
|
struct bkey_i *new;
|
|
|
|
if (is_root) {
|
|
bch_err(c, "cannot update btree roots yet");
|
|
ret = -EINVAL;
|
|
goto err;
|
|
}
|
|
|
|
new = kmalloc(bkey_bytes(k->k), GFP_KERNEL);
|
|
if (!new) {
|
|
ret = -BCH_ERR_ENOMEM_gc_repair_key;
|
|
bch_err_msg(c, ret, "allocating new key");
|
|
goto err;
|
|
}
|
|
|
|
bkey_reassemble(new, *k);
|
|
|
|
if (level) {
|
|
/*
|
|
* We don't want to drop btree node pointers - if the
|
|
* btree node isn't there anymore, the read path will
|
|
* sort it out:
|
|
*/
|
|
ptrs = bch2_bkey_ptrs(bkey_i_to_s(new));
|
|
bkey_for_each_ptr(ptrs, ptr) {
|
|
struct bch_dev *ca = bch_dev_bkey_exists(c, ptr->dev);
|
|
struct bucket *g = PTR_GC_BUCKET(ca, ptr);
|
|
|
|
ptr->gen = g->gen;
|
|
}
|
|
} else {
|
|
bch2_bkey_drop_ptrs(bkey_i_to_s(new), ptr, ({
|
|
struct bch_dev *ca = bch_dev_bkey_exists(c, ptr->dev);
|
|
struct bucket *g = PTR_GC_BUCKET(ca, ptr);
|
|
enum bch_data_type data_type = bch2_bkey_ptr_data_type(*k, ptr);
|
|
|
|
(ptr->cached &&
|
|
(!g->gen_valid || gen_cmp(ptr->gen, g->gen) > 0)) ||
|
|
(!ptr->cached &&
|
|
gen_cmp(ptr->gen, g->gen) < 0) ||
|
|
gen_cmp(g->gen, ptr->gen) > BUCKET_GC_GEN_MAX ||
|
|
(g->data_type &&
|
|
g->data_type != data_type);
|
|
}));
|
|
again:
|
|
ptrs = bch2_bkey_ptrs(bkey_i_to_s(new));
|
|
bkey_extent_entry_for_each(ptrs, entry) {
|
|
if (extent_entry_type(entry) == BCH_EXTENT_ENTRY_stripe_ptr) {
|
|
struct gc_stripe *m = genradix_ptr(&c->gc_stripes,
|
|
entry->stripe_ptr.idx);
|
|
union bch_extent_entry *next_ptr;
|
|
|
|
bkey_extent_entry_for_each_from(ptrs, next_ptr, entry)
|
|
if (extent_entry_type(next_ptr) == BCH_EXTENT_ENTRY_ptr)
|
|
goto found;
|
|
next_ptr = NULL;
|
|
found:
|
|
if (!next_ptr) {
|
|
bch_err(c, "aieee, found stripe ptr with no data ptr");
|
|
continue;
|
|
}
|
|
|
|
if (!m || !m->alive ||
|
|
!__bch2_ptr_matches_stripe(&m->ptrs[entry->stripe_ptr.block],
|
|
&next_ptr->ptr,
|
|
m->sectors)) {
|
|
bch2_bkey_extent_entry_drop(new, entry);
|
|
goto again;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
ret = bch2_journal_key_insert_take(c, btree_id, level, new);
|
|
if (ret) {
|
|
kfree(new);
|
|
goto err;
|
|
}
|
|
|
|
if (level)
|
|
bch2_btree_node_update_key_early(trans, btree_id, level - 1, *k, new);
|
|
|
|
if (0) {
|
|
printbuf_reset(&buf);
|
|
bch2_bkey_val_to_text(&buf, c, *k);
|
|
bch_info(c, "updated %s", buf.buf);
|
|
|
|
printbuf_reset(&buf);
|
|
bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(new));
|
|
bch_info(c, "new key %s", buf.buf);
|
|
}
|
|
|
|
*k = bkey_i_to_s_c(new);
|
|
}
|
|
err:
|
|
fsck_err:
|
|
printbuf_exit(&buf);
|
|
return ret;
|
|
}
|
|
|
|
/* marking of btree keys/nodes: */
|
|
|
|
static int bch2_gc_mark_key(struct btree_trans *trans, enum btree_id btree_id,
|
|
unsigned level, bool is_root,
|
|
struct bkey_s_c *k,
|
|
bool initial)
|
|
{
|
|
struct bch_fs *c = trans->c;
|
|
struct bkey deleted = KEY(0, 0, 0);
|
|
struct bkey_s_c old = (struct bkey_s_c) { &deleted, NULL };
|
|
int ret = 0;
|
|
|
|
deleted.p = k->k->p;
|
|
|
|
if (initial) {
|
|
BUG_ON(bch2_journal_seq_verify &&
|
|
k->k->version.lo > atomic64_read(&c->journal.seq));
|
|
|
|
ret = bch2_check_fix_ptrs(trans, btree_id, level, is_root, k);
|
|
if (ret)
|
|
goto err;
|
|
|
|
if (fsck_err_on(k->k->version.lo > atomic64_read(&c->key_version), c,
|
|
bkey_version_in_future,
|
|
"key version number higher than recorded: %llu > %llu",
|
|
k->k->version.lo,
|
|
atomic64_read(&c->key_version)))
|
|
atomic64_set(&c->key_version, k->k->version.lo);
|
|
}
|
|
|
|
ret = commit_do(trans, NULL, NULL, 0,
|
|
bch2_key_trigger(trans, btree_id, level, old, unsafe_bkey_s_c_to_s(*k), BTREE_TRIGGER_GC));
|
|
fsck_err:
|
|
err:
|
|
bch_err_fn(c, ret);
|
|
return ret;
|
|
}
|
|
|
|
static int btree_gc_mark_node(struct btree_trans *trans, struct btree *b, bool initial)
|
|
{
|
|
struct bch_fs *c = trans->c;
|
|
struct btree_node_iter iter;
|
|
struct bkey unpacked;
|
|
struct bkey_s_c k;
|
|
struct bkey_buf prev, cur;
|
|
int ret = 0;
|
|
|
|
if (!btree_node_type_needs_gc(btree_node_type(b)))
|
|
return 0;
|
|
|
|
bch2_btree_node_iter_init_from_start(&iter, b);
|
|
bch2_bkey_buf_init(&prev);
|
|
bch2_bkey_buf_init(&cur);
|
|
bkey_init(&prev.k->k);
|
|
|
|
while ((k = bch2_btree_node_iter_peek_unpack(&iter, b, &unpacked)).k) {
|
|
ret = bch2_gc_mark_key(trans, b->c.btree_id, b->c.level, false,
|
|
&k, initial);
|
|
if (ret)
|
|
break;
|
|
|
|
bch2_btree_node_iter_advance(&iter, b);
|
|
|
|
if (b->c.level) {
|
|
bch2_bkey_buf_reassemble(&cur, c, k);
|
|
|
|
ret = bch2_gc_check_topology(c, b, &prev, cur,
|
|
bch2_btree_node_iter_end(&iter));
|
|
if (ret)
|
|
break;
|
|
}
|
|
}
|
|
|
|
bch2_bkey_buf_exit(&cur, c);
|
|
bch2_bkey_buf_exit(&prev, c);
|
|
return ret;
|
|
}
|
|
|
|
static int bch2_gc_btree(struct btree_trans *trans, enum btree_id btree_id,
|
|
bool initial, bool metadata_only)
|
|
{
|
|
struct bch_fs *c = trans->c;
|
|
struct btree_iter iter;
|
|
struct btree *b;
|
|
unsigned depth = metadata_only ? 1 : 0;
|
|
int ret = 0;
|
|
|
|
gc_pos_set(c, gc_pos_btree(btree_id, POS_MIN, 0));
|
|
|
|
__for_each_btree_node(trans, iter, btree_id, POS_MIN,
|
|
0, depth, BTREE_ITER_PREFETCH, b, ret) {
|
|
bch2_verify_btree_nr_keys(b);
|
|
|
|
gc_pos_set(c, gc_pos_btree_node(b));
|
|
|
|
ret = btree_gc_mark_node(trans, b, initial);
|
|
if (ret)
|
|
break;
|
|
}
|
|
bch2_trans_iter_exit(trans, &iter);
|
|
|
|
if (ret)
|
|
return ret;
|
|
|
|
mutex_lock(&c->btree_root_lock);
|
|
b = bch2_btree_id_root(c, btree_id)->b;
|
|
if (!btree_node_fake(b)) {
|
|
struct bkey_s_c k = bkey_i_to_s_c(&b->key);
|
|
|
|
ret = bch2_gc_mark_key(trans, b->c.btree_id, b->c.level + 1,
|
|
true, &k, initial);
|
|
}
|
|
gc_pos_set(c, gc_pos_btree_root(b->c.btree_id));
|
|
mutex_unlock(&c->btree_root_lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int bch2_gc_btree_init_recurse(struct btree_trans *trans, struct btree *b,
|
|
unsigned target_depth)
|
|
{
|
|
struct bch_fs *c = trans->c;
|
|
struct btree_and_journal_iter iter;
|
|
struct bkey_s_c k;
|
|
struct bkey_buf cur, prev;
|
|
struct printbuf buf = PRINTBUF;
|
|
int ret = 0;
|
|
|
|
bch2_btree_and_journal_iter_init_node_iter(&iter, c, b);
|
|
bch2_bkey_buf_init(&prev);
|
|
bch2_bkey_buf_init(&cur);
|
|
bkey_init(&prev.k->k);
|
|
|
|
while ((k = bch2_btree_and_journal_iter_peek(&iter)).k) {
|
|
BUG_ON(bpos_lt(k.k->p, b->data->min_key));
|
|
BUG_ON(bpos_gt(k.k->p, b->data->max_key));
|
|
|
|
ret = bch2_gc_mark_key(trans, b->c.btree_id, b->c.level,
|
|
false, &k, true);
|
|
if (ret)
|
|
goto fsck_err;
|
|
|
|
if (b->c.level) {
|
|
bch2_bkey_buf_reassemble(&cur, c, k);
|
|
k = bkey_i_to_s_c(cur.k);
|
|
|
|
bch2_btree_and_journal_iter_advance(&iter);
|
|
|
|
ret = bch2_gc_check_topology(c, b,
|
|
&prev, cur,
|
|
!bch2_btree_and_journal_iter_peek(&iter).k);
|
|
if (ret)
|
|
goto fsck_err;
|
|
} else {
|
|
bch2_btree_and_journal_iter_advance(&iter);
|
|
}
|
|
}
|
|
|
|
if (b->c.level > target_depth) {
|
|
bch2_btree_and_journal_iter_exit(&iter);
|
|
bch2_btree_and_journal_iter_init_node_iter(&iter, c, b);
|
|
|
|
while ((k = bch2_btree_and_journal_iter_peek(&iter)).k) {
|
|
struct btree *child;
|
|
|
|
bch2_bkey_buf_reassemble(&cur, c, k);
|
|
bch2_btree_and_journal_iter_advance(&iter);
|
|
|
|
child = bch2_btree_node_get_noiter(trans, cur.k,
|
|
b->c.btree_id, b->c.level - 1,
|
|
false);
|
|
ret = PTR_ERR_OR_ZERO(child);
|
|
|
|
if (ret == -EIO) {
|
|
bch2_topology_error(c);
|
|
|
|
if (__fsck_err(c,
|
|
FSCK_CAN_FIX|
|
|
FSCK_CAN_IGNORE|
|
|
FSCK_NO_RATELIMIT,
|
|
btree_node_read_error,
|
|
"Unreadable btree node at btree %s level %u:\n"
|
|
" %s",
|
|
bch2_btree_id_str(b->c.btree_id),
|
|
b->c.level - 1,
|
|
(printbuf_reset(&buf),
|
|
bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(cur.k)), buf.buf)) &&
|
|
should_restart_for_topology_repair(c)) {
|
|
bch_info(c, "Halting mark and sweep to start topology repair pass");
|
|
ret = bch2_run_explicit_recovery_pass(c, BCH_RECOVERY_PASS_check_topology);
|
|
goto fsck_err;
|
|
} else {
|
|
/* Continue marking when opted to not
|
|
* fix the error: */
|
|
ret = 0;
|
|
set_bit(BCH_FS_initial_gc_unfixed, &c->flags);
|
|
continue;
|
|
}
|
|
} else if (ret) {
|
|
bch_err_msg(c, ret, "getting btree node");
|
|
break;
|
|
}
|
|
|
|
ret = bch2_gc_btree_init_recurse(trans, child,
|
|
target_depth);
|
|
six_unlock_read(&child->c.lock);
|
|
|
|
if (ret)
|
|
break;
|
|
}
|
|
}
|
|
fsck_err:
|
|
bch2_bkey_buf_exit(&cur, c);
|
|
bch2_bkey_buf_exit(&prev, c);
|
|
bch2_btree_and_journal_iter_exit(&iter);
|
|
printbuf_exit(&buf);
|
|
return ret;
|
|
}
|
|
|
|
static int bch2_gc_btree_init(struct btree_trans *trans,
|
|
enum btree_id btree_id,
|
|
bool metadata_only)
|
|
{
|
|
struct bch_fs *c = trans->c;
|
|
struct btree *b;
|
|
unsigned target_depth = metadata_only ? 1 : 0;
|
|
struct printbuf buf = PRINTBUF;
|
|
int ret = 0;
|
|
|
|
b = bch2_btree_id_root(c, btree_id)->b;
|
|
|
|
if (btree_node_fake(b))
|
|
return 0;
|
|
|
|
six_lock_read(&b->c.lock, NULL, NULL);
|
|
printbuf_reset(&buf);
|
|
bch2_bpos_to_text(&buf, b->data->min_key);
|
|
if (mustfix_fsck_err_on(!bpos_eq(b->data->min_key, POS_MIN), c,
|
|
btree_root_bad_min_key,
|
|
"btree root with incorrect min_key: %s", buf.buf)) {
|
|
bch_err(c, "repair unimplemented");
|
|
ret = -BCH_ERR_fsck_repair_unimplemented;
|
|
goto fsck_err;
|
|
}
|
|
|
|
printbuf_reset(&buf);
|
|
bch2_bpos_to_text(&buf, b->data->max_key);
|
|
if (mustfix_fsck_err_on(!bpos_eq(b->data->max_key, SPOS_MAX), c,
|
|
btree_root_bad_max_key,
|
|
"btree root with incorrect max_key: %s", buf.buf)) {
|
|
bch_err(c, "repair unimplemented");
|
|
ret = -BCH_ERR_fsck_repair_unimplemented;
|
|
goto fsck_err;
|
|
}
|
|
|
|
if (b->c.level >= target_depth)
|
|
ret = bch2_gc_btree_init_recurse(trans, b, target_depth);
|
|
|
|
if (!ret) {
|
|
struct bkey_s_c k = bkey_i_to_s_c(&b->key);
|
|
|
|
ret = bch2_gc_mark_key(trans, b->c.btree_id, b->c.level + 1, true,
|
|
&k, true);
|
|
}
|
|
fsck_err:
|
|
six_unlock_read(&b->c.lock);
|
|
|
|
bch_err_fn(c, ret);
|
|
printbuf_exit(&buf);
|
|
return ret;
|
|
}
|
|
|
|
static inline int btree_id_gc_phase_cmp(enum btree_id l, enum btree_id r)
|
|
{
|
|
return (int) btree_id_to_gc_phase(l) -
|
|
(int) btree_id_to_gc_phase(r);
|
|
}
|
|
|
|
static int bch2_gc_btrees(struct bch_fs *c, bool initial, bool metadata_only)
|
|
{
|
|
struct btree_trans *trans = bch2_trans_get(c);
|
|
enum btree_id ids[BTREE_ID_NR];
|
|
unsigned i;
|
|
int ret = 0;
|
|
|
|
for (i = 0; i < BTREE_ID_NR; i++)
|
|
ids[i] = i;
|
|
bubble_sort(ids, BTREE_ID_NR, btree_id_gc_phase_cmp);
|
|
|
|
for (i = 0; i < BTREE_ID_NR && !ret; i++)
|
|
ret = initial
|
|
? bch2_gc_btree_init(trans, ids[i], metadata_only)
|
|
: bch2_gc_btree(trans, ids[i], initial, metadata_only);
|
|
|
|
for (i = BTREE_ID_NR; i < btree_id_nr_alive(c) && !ret; i++) {
|
|
if (!bch2_btree_id_root(c, i)->alive)
|
|
continue;
|
|
|
|
ret = initial
|
|
? bch2_gc_btree_init(trans, i, metadata_only)
|
|
: bch2_gc_btree(trans, i, initial, metadata_only);
|
|
}
|
|
|
|
bch2_trans_put(trans);
|
|
bch_err_fn(c, ret);
|
|
return ret;
|
|
}
|
|
|
|
static void mark_metadata_sectors(struct bch_fs *c, struct bch_dev *ca,
|
|
u64 start, u64 end,
|
|
enum bch_data_type type,
|
|
unsigned flags)
|
|
{
|
|
u64 b = sector_to_bucket(ca, start);
|
|
|
|
do {
|
|
unsigned sectors =
|
|
min_t(u64, bucket_to_sector(ca, b + 1), end) - start;
|
|
|
|
bch2_mark_metadata_bucket(c, ca, b, type, sectors,
|
|
gc_phase(GC_PHASE_SB), flags);
|
|
b++;
|
|
start += sectors;
|
|
} while (start < end);
|
|
}
|
|
|
|
static void bch2_mark_dev_superblock(struct bch_fs *c, struct bch_dev *ca,
|
|
unsigned flags)
|
|
{
|
|
struct bch_sb_layout *layout = &ca->disk_sb.sb->layout;
|
|
unsigned i;
|
|
u64 b;
|
|
|
|
for (i = 0; i < layout->nr_superblocks; i++) {
|
|
u64 offset = le64_to_cpu(layout->sb_offset[i]);
|
|
|
|
if (offset == BCH_SB_SECTOR)
|
|
mark_metadata_sectors(c, ca, 0, BCH_SB_SECTOR,
|
|
BCH_DATA_sb, flags);
|
|
|
|
mark_metadata_sectors(c, ca, offset,
|
|
offset + (1 << layout->sb_max_size_bits),
|
|
BCH_DATA_sb, flags);
|
|
}
|
|
|
|
for (i = 0; i < ca->journal.nr; i++) {
|
|
b = ca->journal.buckets[i];
|
|
bch2_mark_metadata_bucket(c, ca, b, BCH_DATA_journal,
|
|
ca->mi.bucket_size,
|
|
gc_phase(GC_PHASE_SB), flags);
|
|
}
|
|
}
|
|
|
|
static void bch2_mark_superblocks(struct bch_fs *c)
|
|
{
|
|
mutex_lock(&c->sb_lock);
|
|
gc_pos_set(c, gc_phase(GC_PHASE_SB));
|
|
|
|
for_each_online_member(c, ca)
|
|
bch2_mark_dev_superblock(c, ca, BTREE_TRIGGER_GC);
|
|
mutex_unlock(&c->sb_lock);
|
|
}
|
|
|
|
#if 0
|
|
/* Also see bch2_pending_btree_node_free_insert_done() */
|
|
static void bch2_mark_pending_btree_node_frees(struct bch_fs *c)
|
|
{
|
|
struct btree_update *as;
|
|
struct pending_btree_node_free *d;
|
|
|
|
mutex_lock(&c->btree_interior_update_lock);
|
|
gc_pos_set(c, gc_phase(GC_PHASE_PENDING_DELETE));
|
|
|
|
for_each_pending_btree_node_free(c, as, d)
|
|
if (d->index_update_done)
|
|
bch2_mark_key(c, bkey_i_to_s_c(&d->key), BTREE_TRIGGER_GC);
|
|
|
|
mutex_unlock(&c->btree_interior_update_lock);
|
|
}
|
|
#endif
|
|
|
|
static void bch2_gc_free(struct bch_fs *c)
|
|
{
|
|
genradix_free(&c->reflink_gc_table);
|
|
genradix_free(&c->gc_stripes);
|
|
|
|
for_each_member_device(c, ca) {
|
|
kvpfree(rcu_dereference_protected(ca->buckets_gc, 1),
|
|
sizeof(struct bucket_array) +
|
|
ca->mi.nbuckets * sizeof(struct bucket));
|
|
ca->buckets_gc = NULL;
|
|
|
|
free_percpu(ca->usage_gc);
|
|
ca->usage_gc = NULL;
|
|
}
|
|
|
|
free_percpu(c->usage_gc);
|
|
c->usage_gc = NULL;
|
|
}
|
|
|
|
static int bch2_gc_done(struct bch_fs *c,
|
|
bool initial, bool metadata_only)
|
|
{
|
|
struct bch_dev *ca = NULL;
|
|
struct printbuf buf = PRINTBUF;
|
|
bool verify = !metadata_only &&
|
|
!c->opts.reconstruct_alloc &&
|
|
(!initial || (c->sb.compat & (1ULL << BCH_COMPAT_alloc_info)));
|
|
unsigned i;
|
|
int ret = 0;
|
|
|
|
percpu_down_write(&c->mark_lock);
|
|
|
|
#define copy_field(_err, _f, _msg, ...) \
|
|
if (dst->_f != src->_f && \
|
|
(!verify || \
|
|
fsck_err(c, _err, _msg ": got %llu, should be %llu" \
|
|
, ##__VA_ARGS__, dst->_f, src->_f))) \
|
|
dst->_f = src->_f
|
|
#define copy_dev_field(_err, _f, _msg, ...) \
|
|
copy_field(_err, _f, "dev %u has wrong " _msg, ca->dev_idx, ##__VA_ARGS__)
|
|
#define copy_fs_field(_err, _f, _msg, ...) \
|
|
copy_field(_err, _f, "fs has wrong " _msg, ##__VA_ARGS__)
|
|
|
|
for (i = 0; i < ARRAY_SIZE(c->usage); i++)
|
|
bch2_fs_usage_acc_to_base(c, i);
|
|
|
|
__for_each_member_device(c, ca) {
|
|
struct bch_dev_usage *dst = ca->usage_base;
|
|
struct bch_dev_usage *src = (void *)
|
|
bch2_acc_percpu_u64s((u64 __percpu *) ca->usage_gc,
|
|
dev_usage_u64s());
|
|
|
|
for (i = 0; i < BCH_DATA_NR; i++) {
|
|
copy_dev_field(dev_usage_buckets_wrong,
|
|
d[i].buckets, "%s buckets", bch2_data_type_str(i));
|
|
copy_dev_field(dev_usage_sectors_wrong,
|
|
d[i].sectors, "%s sectors", bch2_data_type_str(i));
|
|
copy_dev_field(dev_usage_fragmented_wrong,
|
|
d[i].fragmented, "%s fragmented", bch2_data_type_str(i));
|
|
}
|
|
}
|
|
|
|
{
|
|
unsigned nr = fs_usage_u64s(c);
|
|
struct bch_fs_usage *dst = c->usage_base;
|
|
struct bch_fs_usage *src = (void *)
|
|
bch2_acc_percpu_u64s((u64 __percpu *) c->usage_gc, nr);
|
|
|
|
copy_fs_field(fs_usage_hidden_wrong,
|
|
b.hidden, "hidden");
|
|
copy_fs_field(fs_usage_btree_wrong,
|
|
b.btree, "btree");
|
|
|
|
if (!metadata_only) {
|
|
copy_fs_field(fs_usage_data_wrong,
|
|
b.data, "data");
|
|
copy_fs_field(fs_usage_cached_wrong,
|
|
b.cached, "cached");
|
|
copy_fs_field(fs_usage_reserved_wrong,
|
|
b.reserved, "reserved");
|
|
copy_fs_field(fs_usage_nr_inodes_wrong,
|
|
b.nr_inodes,"nr_inodes");
|
|
|
|
for (i = 0; i < BCH_REPLICAS_MAX; i++)
|
|
copy_fs_field(fs_usage_persistent_reserved_wrong,
|
|
persistent_reserved[i],
|
|
"persistent_reserved[%i]", i);
|
|
}
|
|
|
|
for (i = 0; i < c->replicas.nr; i++) {
|
|
struct bch_replicas_entry_v1 *e =
|
|
cpu_replicas_entry(&c->replicas, i);
|
|
|
|
if (metadata_only &&
|
|
(e->data_type == BCH_DATA_user ||
|
|
e->data_type == BCH_DATA_cached))
|
|
continue;
|
|
|
|
printbuf_reset(&buf);
|
|
bch2_replicas_entry_to_text(&buf, e);
|
|
|
|
copy_fs_field(fs_usage_replicas_wrong,
|
|
replicas[i], "%s", buf.buf);
|
|
}
|
|
}
|
|
|
|
#undef copy_fs_field
|
|
#undef copy_dev_field
|
|
#undef copy_stripe_field
|
|
#undef copy_field
|
|
fsck_err:
|
|
if (ca)
|
|
percpu_ref_put(&ca->ref);
|
|
bch_err_fn(c, ret);
|
|
|
|
percpu_up_write(&c->mark_lock);
|
|
printbuf_exit(&buf);
|
|
return ret;
|
|
}
|
|
|
|
static int bch2_gc_start(struct bch_fs *c)
|
|
{
|
|
BUG_ON(c->usage_gc);
|
|
|
|
c->usage_gc = __alloc_percpu_gfp(fs_usage_u64s(c) * sizeof(u64),
|
|
sizeof(u64), GFP_KERNEL);
|
|
if (!c->usage_gc) {
|
|
bch_err(c, "error allocating c->usage_gc");
|
|
return -BCH_ERR_ENOMEM_gc_start;
|
|
}
|
|
|
|
for_each_member_device(c, ca) {
|
|
BUG_ON(ca->usage_gc);
|
|
|
|
ca->usage_gc = alloc_percpu(struct bch_dev_usage);
|
|
if (!ca->usage_gc) {
|
|
bch_err(c, "error allocating ca->usage_gc");
|
|
percpu_ref_put(&ca->ref);
|
|
return -BCH_ERR_ENOMEM_gc_start;
|
|
}
|
|
|
|
this_cpu_write(ca->usage_gc->d[BCH_DATA_free].buckets,
|
|
ca->mi.nbuckets - ca->mi.first_bucket);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int bch2_gc_reset(struct bch_fs *c)
|
|
{
|
|
for_each_member_device(c, ca) {
|
|
free_percpu(ca->usage_gc);
|
|
ca->usage_gc = NULL;
|
|
}
|
|
|
|
free_percpu(c->usage_gc);
|
|
c->usage_gc = NULL;
|
|
|
|
return bch2_gc_start(c);
|
|
}
|
|
|
|
/* returns true if not equal */
|
|
static inline bool bch2_alloc_v4_cmp(struct bch_alloc_v4 l,
|
|
struct bch_alloc_v4 r)
|
|
{
|
|
return l.gen != r.gen ||
|
|
l.oldest_gen != r.oldest_gen ||
|
|
l.data_type != r.data_type ||
|
|
l.dirty_sectors != r.dirty_sectors ||
|
|
l.cached_sectors != r.cached_sectors ||
|
|
l.stripe_redundancy != r.stripe_redundancy ||
|
|
l.stripe != r.stripe;
|
|
}
|
|
|
|
static int bch2_alloc_write_key(struct btree_trans *trans,
|
|
struct btree_iter *iter,
|
|
struct bkey_s_c k,
|
|
bool metadata_only)
|
|
{
|
|
struct bch_fs *c = trans->c;
|
|
struct bch_dev *ca = bch_dev_bkey_exists(c, iter->pos.inode);
|
|
struct bucket gc, *b;
|
|
struct bkey_i_alloc_v4 *a;
|
|
struct bch_alloc_v4 old_convert, new;
|
|
const struct bch_alloc_v4 *old;
|
|
enum bch_data_type type;
|
|
int ret;
|
|
|
|
old = bch2_alloc_to_v4(k, &old_convert);
|
|
new = *old;
|
|
|
|
percpu_down_read(&c->mark_lock);
|
|
b = gc_bucket(ca, iter->pos.offset);
|
|
|
|
/*
|
|
* b->data_type doesn't yet include need_discard & need_gc_gen states -
|
|
* fix that here:
|
|
*/
|
|
type = __alloc_data_type(b->dirty_sectors,
|
|
b->cached_sectors,
|
|
b->stripe,
|
|
*old,
|
|
b->data_type);
|
|
if (b->data_type != type) {
|
|
struct bch_dev_usage *u;
|
|
|
|
preempt_disable();
|
|
u = this_cpu_ptr(ca->usage_gc);
|
|
u->d[b->data_type].buckets--;
|
|
b->data_type = type;
|
|
u->d[b->data_type].buckets++;
|
|
preempt_enable();
|
|
}
|
|
|
|
gc = *b;
|
|
percpu_up_read(&c->mark_lock);
|
|
|
|
if (metadata_only &&
|
|
gc.data_type != BCH_DATA_sb &&
|
|
gc.data_type != BCH_DATA_journal &&
|
|
gc.data_type != BCH_DATA_btree)
|
|
return 0;
|
|
|
|
if (gen_after(old->gen, gc.gen))
|
|
return 0;
|
|
|
|
if (c->opts.reconstruct_alloc ||
|
|
fsck_err_on(new.data_type != gc.data_type, c,
|
|
alloc_key_data_type_wrong,
|
|
"bucket %llu:%llu gen %u has wrong data_type"
|
|
": got %s, should be %s",
|
|
iter->pos.inode, iter->pos.offset,
|
|
gc.gen,
|
|
bch2_data_type_str(new.data_type),
|
|
bch2_data_type_str(gc.data_type)))
|
|
new.data_type = gc.data_type;
|
|
|
|
#define copy_bucket_field(_errtype, _f) \
|
|
if (c->opts.reconstruct_alloc || \
|
|
fsck_err_on(new._f != gc._f, c, _errtype, \
|
|
"bucket %llu:%llu gen %u data type %s has wrong " #_f \
|
|
": got %u, should be %u", \
|
|
iter->pos.inode, iter->pos.offset, \
|
|
gc.gen, \
|
|
bch2_data_type_str(gc.data_type), \
|
|
new._f, gc._f)) \
|
|
new._f = gc._f; \
|
|
|
|
copy_bucket_field(alloc_key_gen_wrong,
|
|
gen);
|
|
copy_bucket_field(alloc_key_dirty_sectors_wrong,
|
|
dirty_sectors);
|
|
copy_bucket_field(alloc_key_cached_sectors_wrong,
|
|
cached_sectors);
|
|
copy_bucket_field(alloc_key_stripe_wrong,
|
|
stripe);
|
|
copy_bucket_field(alloc_key_stripe_redundancy_wrong,
|
|
stripe_redundancy);
|
|
#undef copy_bucket_field
|
|
|
|
if (!bch2_alloc_v4_cmp(*old, new))
|
|
return 0;
|
|
|
|
a = bch2_alloc_to_v4_mut(trans, k);
|
|
ret = PTR_ERR_OR_ZERO(a);
|
|
if (ret)
|
|
return ret;
|
|
|
|
a->v = new;
|
|
|
|
/*
|
|
* The trigger normally makes sure this is set, but we're not running
|
|
* triggers:
|
|
*/
|
|
if (a->v.data_type == BCH_DATA_cached && !a->v.io_time[READ])
|
|
a->v.io_time[READ] = max_t(u64, 1, atomic64_read(&c->io_clock[READ].now));
|
|
|
|
ret = bch2_trans_update(trans, iter, &a->k_i, BTREE_TRIGGER_NORUN);
|
|
fsck_err:
|
|
return ret;
|
|
}
|
|
|
|
static int bch2_gc_alloc_done(struct bch_fs *c, bool metadata_only)
|
|
{
|
|
int ret = 0;
|
|
|
|
for_each_member_device(c, ca) {
|
|
ret = bch2_trans_run(c,
|
|
for_each_btree_key_upto_commit(trans, iter, BTREE_ID_alloc,
|
|
POS(ca->dev_idx, ca->mi.first_bucket),
|
|
POS(ca->dev_idx, ca->mi.nbuckets - 1),
|
|
BTREE_ITER_SLOTS|BTREE_ITER_PREFETCH, k,
|
|
NULL, NULL, BCH_TRANS_COMMIT_lazy_rw,
|
|
bch2_alloc_write_key(trans, &iter, k, metadata_only)));
|
|
if (ret) {
|
|
percpu_ref_put(&ca->ref);
|
|
break;
|
|
}
|
|
}
|
|
|
|
bch_err_fn(c, ret);
|
|
return ret;
|
|
}
|
|
|
|
static int bch2_gc_alloc_start(struct bch_fs *c, bool metadata_only)
|
|
{
|
|
for_each_member_device(c, ca) {
|
|
struct bucket_array *buckets = kvpmalloc(sizeof(struct bucket_array) +
|
|
ca->mi.nbuckets * sizeof(struct bucket),
|
|
GFP_KERNEL|__GFP_ZERO);
|
|
if (!buckets) {
|
|
percpu_ref_put(&ca->ref);
|
|
bch_err(c, "error allocating ca->buckets[gc]");
|
|
return -BCH_ERR_ENOMEM_gc_alloc_start;
|
|
}
|
|
|
|
buckets->first_bucket = ca->mi.first_bucket;
|
|
buckets->nbuckets = ca->mi.nbuckets;
|
|
rcu_assign_pointer(ca->buckets_gc, buckets);
|
|
}
|
|
|
|
int ret = bch2_trans_run(c,
|
|
for_each_btree_key(trans, iter, BTREE_ID_alloc, POS_MIN,
|
|
BTREE_ITER_PREFETCH, k, ({
|
|
struct bch_dev *ca = bch_dev_bkey_exists(c, k.k->p.inode);
|
|
struct bucket *g = gc_bucket(ca, k.k->p.offset);
|
|
|
|
struct bch_alloc_v4 a_convert;
|
|
const struct bch_alloc_v4 *a = bch2_alloc_to_v4(k, &a_convert);
|
|
|
|
g->gen_valid = 1;
|
|
g->gen = a->gen;
|
|
|
|
if (metadata_only &&
|
|
(a->data_type == BCH_DATA_user ||
|
|
a->data_type == BCH_DATA_cached ||
|
|
a->data_type == BCH_DATA_parity)) {
|
|
g->data_type = a->data_type;
|
|
g->dirty_sectors = a->dirty_sectors;
|
|
g->cached_sectors = a->cached_sectors;
|
|
g->stripe = a->stripe;
|
|
g->stripe_redundancy = a->stripe_redundancy;
|
|
}
|
|
|
|
0;
|
|
})));
|
|
bch_err_fn(c, ret);
|
|
return ret;
|
|
}
|
|
|
|
static void bch2_gc_alloc_reset(struct bch_fs *c, bool metadata_only)
|
|
{
|
|
for_each_member_device(c, ca) {
|
|
struct bucket_array *buckets = gc_bucket_array(ca);
|
|
struct bucket *g;
|
|
|
|
for_each_bucket(g, buckets) {
|
|
if (metadata_only &&
|
|
(g->data_type == BCH_DATA_user ||
|
|
g->data_type == BCH_DATA_cached ||
|
|
g->data_type == BCH_DATA_parity))
|
|
continue;
|
|
g->data_type = 0;
|
|
g->dirty_sectors = 0;
|
|
g->cached_sectors = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
static int bch2_gc_write_reflink_key(struct btree_trans *trans,
|
|
struct btree_iter *iter,
|
|
struct bkey_s_c k,
|
|
size_t *idx)
|
|
{
|
|
struct bch_fs *c = trans->c;
|
|
const __le64 *refcount = bkey_refcount_c(k);
|
|
struct printbuf buf = PRINTBUF;
|
|
struct reflink_gc *r;
|
|
int ret = 0;
|
|
|
|
if (!refcount)
|
|
return 0;
|
|
|
|
while ((r = genradix_ptr(&c->reflink_gc_table, *idx)) &&
|
|
r->offset < k.k->p.offset)
|
|
++*idx;
|
|
|
|
if (!r ||
|
|
r->offset != k.k->p.offset ||
|
|
r->size != k.k->size) {
|
|
bch_err(c, "unexpected inconsistency walking reflink table at gc finish");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (fsck_err_on(r->refcount != le64_to_cpu(*refcount), c,
|
|
reflink_v_refcount_wrong,
|
|
"reflink key has wrong refcount:\n"
|
|
" %s\n"
|
|
" should be %u",
|
|
(bch2_bkey_val_to_text(&buf, c, k), buf.buf),
|
|
r->refcount)) {
|
|
struct bkey_i *new = bch2_bkey_make_mut(trans, iter, &k, 0);
|
|
|
|
ret = PTR_ERR_OR_ZERO(new);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (!r->refcount)
|
|
new->k.type = KEY_TYPE_deleted;
|
|
else
|
|
*bkey_refcount(bkey_i_to_s(new)) = cpu_to_le64(r->refcount);
|
|
}
|
|
fsck_err:
|
|
printbuf_exit(&buf);
|
|
return ret;
|
|
}
|
|
|
|
static int bch2_gc_reflink_done(struct bch_fs *c, bool metadata_only)
|
|
{
|
|
size_t idx = 0;
|
|
|
|
if (metadata_only)
|
|
return 0;
|
|
|
|
int ret = bch2_trans_run(c,
|
|
for_each_btree_key_commit(trans, iter,
|
|
BTREE_ID_reflink, POS_MIN,
|
|
BTREE_ITER_PREFETCH, k,
|
|
NULL, NULL, BCH_TRANS_COMMIT_no_enospc,
|
|
bch2_gc_write_reflink_key(trans, &iter, k, &idx)));
|
|
c->reflink_gc_nr = 0;
|
|
return ret;
|
|
}
|
|
|
|
static int bch2_gc_reflink_start(struct bch_fs *c,
|
|
bool metadata_only)
|
|
{
|
|
|
|
if (metadata_only)
|
|
return 0;
|
|
|
|
c->reflink_gc_nr = 0;
|
|
|
|
int ret = bch2_trans_run(c,
|
|
for_each_btree_key(trans, iter, BTREE_ID_reflink, POS_MIN,
|
|
BTREE_ITER_PREFETCH, k, ({
|
|
const __le64 *refcount = bkey_refcount_c(k);
|
|
|
|
if (!refcount)
|
|
continue;
|
|
|
|
struct reflink_gc *r = genradix_ptr_alloc(&c->reflink_gc_table,
|
|
c->reflink_gc_nr++, GFP_KERNEL);
|
|
if (!r) {
|
|
ret = -BCH_ERR_ENOMEM_gc_reflink_start;
|
|
break;
|
|
}
|
|
|
|
r->offset = k.k->p.offset;
|
|
r->size = k.k->size;
|
|
r->refcount = 0;
|
|
0;
|
|
})));
|
|
|
|
bch_err_fn(c, ret);
|
|
return ret;
|
|
}
|
|
|
|
static void bch2_gc_reflink_reset(struct bch_fs *c, bool metadata_only)
|
|
{
|
|
struct genradix_iter iter;
|
|
struct reflink_gc *r;
|
|
|
|
genradix_for_each(&c->reflink_gc_table, iter, r)
|
|
r->refcount = 0;
|
|
}
|
|
|
|
static int bch2_gc_write_stripes_key(struct btree_trans *trans,
|
|
struct btree_iter *iter,
|
|
struct bkey_s_c k)
|
|
{
|
|
struct bch_fs *c = trans->c;
|
|
struct printbuf buf = PRINTBUF;
|
|
const struct bch_stripe *s;
|
|
struct gc_stripe *m;
|
|
bool bad = false;
|
|
unsigned i;
|
|
int ret = 0;
|
|
|
|
if (k.k->type != KEY_TYPE_stripe)
|
|
return 0;
|
|
|
|
s = bkey_s_c_to_stripe(k).v;
|
|
m = genradix_ptr(&c->gc_stripes, k.k->p.offset);
|
|
|
|
for (i = 0; i < s->nr_blocks; i++) {
|
|
u32 old = stripe_blockcount_get(s, i);
|
|
u32 new = (m ? m->block_sectors[i] : 0);
|
|
|
|
if (old != new) {
|
|
prt_printf(&buf, "stripe block %u has wrong sector count: got %u, should be %u\n",
|
|
i, old, new);
|
|
bad = true;
|
|
}
|
|
}
|
|
|
|
if (bad)
|
|
bch2_bkey_val_to_text(&buf, c, k);
|
|
|
|
if (fsck_err_on(bad, c, stripe_sector_count_wrong,
|
|
"%s", buf.buf)) {
|
|
struct bkey_i_stripe *new;
|
|
|
|
new = bch2_trans_kmalloc(trans, bkey_bytes(k.k));
|
|
ret = PTR_ERR_OR_ZERO(new);
|
|
if (ret)
|
|
return ret;
|
|
|
|
bkey_reassemble(&new->k_i, k);
|
|
|
|
for (i = 0; i < new->v.nr_blocks; i++)
|
|
stripe_blockcount_set(&new->v, i, m ? m->block_sectors[i] : 0);
|
|
|
|
ret = bch2_trans_update(trans, iter, &new->k_i, 0);
|
|
}
|
|
fsck_err:
|
|
printbuf_exit(&buf);
|
|
return ret;
|
|
}
|
|
|
|
static int bch2_gc_stripes_done(struct bch_fs *c, bool metadata_only)
|
|
{
|
|
if (metadata_only)
|
|
return 0;
|
|
|
|
return bch2_trans_run(c,
|
|
for_each_btree_key_commit(trans, iter,
|
|
BTREE_ID_stripes, POS_MIN,
|
|
BTREE_ITER_PREFETCH, k,
|
|
NULL, NULL, BCH_TRANS_COMMIT_no_enospc,
|
|
bch2_gc_write_stripes_key(trans, &iter, k)));
|
|
}
|
|
|
|
static void bch2_gc_stripes_reset(struct bch_fs *c, bool metadata_only)
|
|
{
|
|
genradix_free(&c->gc_stripes);
|
|
}
|
|
|
|
/**
|
|
* bch2_gc - walk _all_ references to buckets, and recompute them:
|
|
*
|
|
* @c: filesystem object
|
|
* @initial: are we in recovery?
|
|
* @metadata_only: are we just checking metadata references, or everything?
|
|
*
|
|
* Returns: 0 on success, or standard errcode on failure
|
|
*
|
|
* Order matters here:
|
|
* - Concurrent GC relies on the fact that we have a total ordering for
|
|
* everything that GC walks - see gc_will_visit_node(),
|
|
* gc_will_visit_root()
|
|
*
|
|
* - also, references move around in the course of index updates and
|
|
* various other crap: everything needs to agree on the ordering
|
|
* references are allowed to move around in - e.g., we're allowed to
|
|
* start with a reference owned by an open_bucket (the allocator) and
|
|
* move it to the btree, but not the reverse.
|
|
*
|
|
* This is necessary to ensure that gc doesn't miss references that
|
|
* move around - if references move backwards in the ordering GC
|
|
* uses, GC could skip past them
|
|
*/
|
|
int bch2_gc(struct bch_fs *c, bool initial, bool metadata_only)
|
|
{
|
|
unsigned iter = 0;
|
|
int ret;
|
|
|
|
lockdep_assert_held(&c->state_lock);
|
|
|
|
down_write(&c->gc_lock);
|
|
|
|
bch2_btree_interior_updates_flush(c);
|
|
|
|
ret = bch2_gc_start(c) ?:
|
|
bch2_gc_alloc_start(c, metadata_only) ?:
|
|
bch2_gc_reflink_start(c, metadata_only);
|
|
if (ret)
|
|
goto out;
|
|
again:
|
|
gc_pos_set(c, gc_phase(GC_PHASE_START));
|
|
|
|
bch2_mark_superblocks(c);
|
|
|
|
ret = bch2_gc_btrees(c, initial, metadata_only);
|
|
|
|
if (ret)
|
|
goto out;
|
|
|
|
#if 0
|
|
bch2_mark_pending_btree_node_frees(c);
|
|
#endif
|
|
c->gc_count++;
|
|
|
|
if (test_bit(BCH_FS_need_another_gc, &c->flags) ||
|
|
(!iter && bch2_test_restart_gc)) {
|
|
if (iter++ > 2) {
|
|
bch_info(c, "Unable to fix bucket gens, looping");
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* XXX: make sure gens we fixed got saved
|
|
*/
|
|
bch_info(c, "Second GC pass needed, restarting:");
|
|
clear_bit(BCH_FS_need_another_gc, &c->flags);
|
|
__gc_pos_set(c, gc_phase(GC_PHASE_NOT_RUNNING));
|
|
|
|
bch2_gc_stripes_reset(c, metadata_only);
|
|
bch2_gc_alloc_reset(c, metadata_only);
|
|
bch2_gc_reflink_reset(c, metadata_only);
|
|
ret = bch2_gc_reset(c);
|
|
if (ret)
|
|
goto out;
|
|
|
|
/* flush fsck errors, reset counters */
|
|
bch2_flush_fsck_errs(c);
|
|
goto again;
|
|
}
|
|
out:
|
|
if (!ret) {
|
|
bch2_journal_block(&c->journal);
|
|
|
|
ret = bch2_gc_stripes_done(c, metadata_only) ?:
|
|
bch2_gc_reflink_done(c, metadata_only) ?:
|
|
bch2_gc_alloc_done(c, metadata_only) ?:
|
|
bch2_gc_done(c, initial, metadata_only);
|
|
|
|
bch2_journal_unblock(&c->journal);
|
|
}
|
|
|
|
percpu_down_write(&c->mark_lock);
|
|
/* Indicates that gc is no longer in progress: */
|
|
__gc_pos_set(c, gc_phase(GC_PHASE_NOT_RUNNING));
|
|
|
|
bch2_gc_free(c);
|
|
percpu_up_write(&c->mark_lock);
|
|
|
|
up_write(&c->gc_lock);
|
|
|
|
/*
|
|
* At startup, allocations can happen directly instead of via the
|
|
* allocator thread - issue wakeup in case they blocked on gc_lock:
|
|
*/
|
|
closure_wake_up(&c->freelist_wait);
|
|
bch_err_fn(c, ret);
|
|
return ret;
|
|
}
|
|
|
|
static int gc_btree_gens_key(struct btree_trans *trans,
|
|
struct btree_iter *iter,
|
|
struct bkey_s_c k)
|
|
{
|
|
struct bch_fs *c = trans->c;
|
|
struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
|
|
struct bkey_i *u;
|
|
int ret;
|
|
|
|
percpu_down_read(&c->mark_lock);
|
|
bkey_for_each_ptr(ptrs, ptr) {
|
|
struct bch_dev *ca = bch_dev_bkey_exists(c, ptr->dev);
|
|
|
|
if (ptr_stale(ca, ptr) > 16) {
|
|
percpu_up_read(&c->mark_lock);
|
|
goto update;
|
|
}
|
|
}
|
|
|
|
bkey_for_each_ptr(ptrs, ptr) {
|
|
struct bch_dev *ca = bch_dev_bkey_exists(c, ptr->dev);
|
|
u8 *gen = &ca->oldest_gen[PTR_BUCKET_NR(ca, ptr)];
|
|
|
|
if (gen_after(*gen, ptr->gen))
|
|
*gen = ptr->gen;
|
|
}
|
|
percpu_up_read(&c->mark_lock);
|
|
return 0;
|
|
update:
|
|
u = bch2_bkey_make_mut(trans, iter, &k, 0);
|
|
ret = PTR_ERR_OR_ZERO(u);
|
|
if (ret)
|
|
return ret;
|
|
|
|
bch2_extent_normalize(c, bkey_i_to_s(u));
|
|
return 0;
|
|
}
|
|
|
|
static int bch2_alloc_write_oldest_gen(struct btree_trans *trans, struct btree_iter *iter,
|
|
struct bkey_s_c k)
|
|
{
|
|
struct bch_dev *ca = bch_dev_bkey_exists(trans->c, iter->pos.inode);
|
|
struct bch_alloc_v4 a_convert;
|
|
const struct bch_alloc_v4 *a = bch2_alloc_to_v4(k, &a_convert);
|
|
struct bkey_i_alloc_v4 *a_mut;
|
|
int ret;
|
|
|
|
if (a->oldest_gen == ca->oldest_gen[iter->pos.offset])
|
|
return 0;
|
|
|
|
a_mut = bch2_alloc_to_v4_mut(trans, k);
|
|
ret = PTR_ERR_OR_ZERO(a_mut);
|
|
if (ret)
|
|
return ret;
|
|
|
|
a_mut->v.oldest_gen = ca->oldest_gen[iter->pos.offset];
|
|
a_mut->v.data_type = alloc_data_type(a_mut->v, a_mut->v.data_type);
|
|
|
|
return bch2_trans_update(trans, iter, &a_mut->k_i, 0);
|
|
}
|
|
|
|
int bch2_gc_gens(struct bch_fs *c)
|
|
{
|
|
u64 b, start_time = local_clock();
|
|
int ret;
|
|
|
|
/*
|
|
* Ideally we would be using state_lock and not gc_lock here, but that
|
|
* introduces a deadlock in the RO path - we currently take the state
|
|
* lock at the start of going RO, thus the gc thread may get stuck:
|
|
*/
|
|
if (!mutex_trylock(&c->gc_gens_lock))
|
|
return 0;
|
|
|
|
trace_and_count(c, gc_gens_start, c);
|
|
down_read(&c->gc_lock);
|
|
|
|
for_each_member_device(c, ca) {
|
|
struct bucket_gens *gens = bucket_gens(ca);
|
|
|
|
BUG_ON(ca->oldest_gen);
|
|
|
|
ca->oldest_gen = kvmalloc(gens->nbuckets, GFP_KERNEL);
|
|
if (!ca->oldest_gen) {
|
|
percpu_ref_put(&ca->ref);
|
|
ret = -BCH_ERR_ENOMEM_gc_gens;
|
|
goto err;
|
|
}
|
|
|
|
for (b = gens->first_bucket;
|
|
b < gens->nbuckets; b++)
|
|
ca->oldest_gen[b] = gens->b[b];
|
|
}
|
|
|
|
for (unsigned i = 0; i < BTREE_ID_NR; i++)
|
|
if (btree_type_has_ptrs(i)) {
|
|
c->gc_gens_btree = i;
|
|
c->gc_gens_pos = POS_MIN;
|
|
|
|
ret = bch2_trans_run(c,
|
|
for_each_btree_key_commit(trans, iter, i,
|
|
POS_MIN,
|
|
BTREE_ITER_PREFETCH|BTREE_ITER_ALL_SNAPSHOTS,
|
|
k,
|
|
NULL, NULL,
|
|
BCH_TRANS_COMMIT_no_enospc,
|
|
gc_btree_gens_key(trans, &iter, k)));
|
|
if (ret)
|
|
goto err;
|
|
}
|
|
|
|
ret = bch2_trans_run(c,
|
|
for_each_btree_key_commit(trans, iter, BTREE_ID_alloc,
|
|
POS_MIN,
|
|
BTREE_ITER_PREFETCH,
|
|
k,
|
|
NULL, NULL,
|
|
BCH_TRANS_COMMIT_no_enospc,
|
|
bch2_alloc_write_oldest_gen(trans, &iter, k)));
|
|
if (ret)
|
|
goto err;
|
|
|
|
c->gc_gens_btree = 0;
|
|
c->gc_gens_pos = POS_MIN;
|
|
|
|
c->gc_count++;
|
|
|
|
bch2_time_stats_update(&c->times[BCH_TIME_btree_gc], start_time);
|
|
trace_and_count(c, gc_gens_end, c);
|
|
err:
|
|
for_each_member_device(c, ca) {
|
|
kvfree(ca->oldest_gen);
|
|
ca->oldest_gen = NULL;
|
|
}
|
|
|
|
up_read(&c->gc_lock);
|
|
mutex_unlock(&c->gc_gens_lock);
|
|
if (!bch2_err_matches(ret, EROFS))
|
|
bch_err_fn(c, ret);
|
|
return ret;
|
|
}
|
|
|
|
static int bch2_gc_thread(void *arg)
|
|
{
|
|
struct bch_fs *c = arg;
|
|
struct io_clock *clock = &c->io_clock[WRITE];
|
|
unsigned long last = atomic64_read(&clock->now);
|
|
unsigned last_kick = atomic_read(&c->kick_gc);
|
|
|
|
set_freezable();
|
|
|
|
while (1) {
|
|
while (1) {
|
|
set_current_state(TASK_INTERRUPTIBLE);
|
|
|
|
if (kthread_should_stop()) {
|
|
__set_current_state(TASK_RUNNING);
|
|
return 0;
|
|
}
|
|
|
|
if (atomic_read(&c->kick_gc) != last_kick)
|
|
break;
|
|
|
|
if (c->btree_gc_periodic) {
|
|
unsigned long next = last + c->capacity / 16;
|
|
|
|
if (atomic64_read(&clock->now) >= next)
|
|
break;
|
|
|
|
bch2_io_clock_schedule_timeout(clock, next);
|
|
} else {
|
|
schedule();
|
|
}
|
|
|
|
try_to_freeze();
|
|
}
|
|
__set_current_state(TASK_RUNNING);
|
|
|
|
last = atomic64_read(&clock->now);
|
|
last_kick = atomic_read(&c->kick_gc);
|
|
|
|
/*
|
|
* Full gc is currently incompatible with btree key cache:
|
|
*/
|
|
#if 0
|
|
ret = bch2_gc(c, false, false);
|
|
#else
|
|
bch2_gc_gens(c);
|
|
#endif
|
|
debug_check_no_locks_held();
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void bch2_gc_thread_stop(struct bch_fs *c)
|
|
{
|
|
struct task_struct *p;
|
|
|
|
p = c->gc_thread;
|
|
c->gc_thread = NULL;
|
|
|
|
if (p) {
|
|
kthread_stop(p);
|
|
put_task_struct(p);
|
|
}
|
|
}
|
|
|
|
int bch2_gc_thread_start(struct bch_fs *c)
|
|
{
|
|
struct task_struct *p;
|
|
|
|
if (c->gc_thread)
|
|
return 0;
|
|
|
|
p = kthread_create(bch2_gc_thread, c, "bch-gc/%s", c->name);
|
|
if (IS_ERR(p)) {
|
|
bch_err_fn(c, PTR_ERR(p));
|
|
return PTR_ERR(p);
|
|
}
|
|
|
|
get_task_struct(p);
|
|
c->gc_thread = p;
|
|
wake_up_process(p);
|
|
return 0;
|
|
}
|