linux/arch/x86/kernel/hw_breakpoint.c
Lai Jiangshan 3943abf2db x86/debug: Prevent data breakpoints on cpu_dr7
local_db_save() is called at the start of exc_debug_kernel(), reads DR7 and
disables breakpoints to prevent recursion.

When running in a guest (X86_FEATURE_HYPERVISOR), local_db_save() reads the
per-cpu variable cpu_dr7 to check whether a breakpoint is active or not
before it accesses DR7.

A data breakpoint on cpu_dr7 therefore results in infinite #DB recursion.

Disallow data breakpoints on cpu_dr7 to prevent that.

Fixes: 84b6a3491567a("x86/entry: Optimize local_db_save() for virt")
Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20210204152708.21308-2-jiangshanlai@gmail.com
2021-02-05 20:13:12 +01:00

593 lines
14 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
*
* Copyright (C) 2007 Alan Stern
* Copyright (C) 2009 IBM Corporation
* Copyright (C) 2009 Frederic Weisbecker <fweisbec@gmail.com>
*
* Authors: Alan Stern <stern@rowland.harvard.edu>
* K.Prasad <prasad@linux.vnet.ibm.com>
* Frederic Weisbecker <fweisbec@gmail.com>
*/
/*
* HW_breakpoint: a unified kernel/user-space hardware breakpoint facility,
* using the CPU's debug registers.
*/
#include <linux/perf_event.h>
#include <linux/hw_breakpoint.h>
#include <linux/irqflags.h>
#include <linux/notifier.h>
#include <linux/kallsyms.h>
#include <linux/kprobes.h>
#include <linux/percpu.h>
#include <linux/kdebug.h>
#include <linux/kernel.h>
#include <linux/export.h>
#include <linux/sched.h>
#include <linux/smp.h>
#include <asm/hw_breakpoint.h>
#include <asm/processor.h>
#include <asm/debugreg.h>
#include <asm/user.h>
#include <asm/desc.h>
#include <asm/tlbflush.h>
/* Per cpu debug control register value */
DEFINE_PER_CPU(unsigned long, cpu_dr7);
EXPORT_PER_CPU_SYMBOL(cpu_dr7);
/* Per cpu debug address registers values */
static DEFINE_PER_CPU(unsigned long, cpu_debugreg[HBP_NUM]);
/*
* Stores the breakpoints currently in use on each breakpoint address
* register for each cpus
*/
static DEFINE_PER_CPU(struct perf_event *, bp_per_reg[HBP_NUM]);
static inline unsigned long
__encode_dr7(int drnum, unsigned int len, unsigned int type)
{
unsigned long bp_info;
bp_info = (len | type) & 0xf;
bp_info <<= (DR_CONTROL_SHIFT + drnum * DR_CONTROL_SIZE);
bp_info |= (DR_GLOBAL_ENABLE << (drnum * DR_ENABLE_SIZE));
return bp_info;
}
/*
* Encode the length, type, Exact, and Enable bits for a particular breakpoint
* as stored in debug register 7.
*/
unsigned long encode_dr7(int drnum, unsigned int len, unsigned int type)
{
return __encode_dr7(drnum, len, type) | DR_GLOBAL_SLOWDOWN;
}
/*
* Decode the length and type bits for a particular breakpoint as
* stored in debug register 7. Return the "enabled" status.
*/
int decode_dr7(unsigned long dr7, int bpnum, unsigned *len, unsigned *type)
{
int bp_info = dr7 >> (DR_CONTROL_SHIFT + bpnum * DR_CONTROL_SIZE);
*len = (bp_info & 0xc) | 0x40;
*type = (bp_info & 0x3) | 0x80;
return (dr7 >> (bpnum * DR_ENABLE_SIZE)) & 0x3;
}
/*
* Install a perf counter breakpoint.
*
* We seek a free debug address register and use it for this
* breakpoint. Eventually we enable it in the debug control register.
*
* Atomic: we hold the counter->ctx->lock and we only handle variables
* and registers local to this cpu.
*/
int arch_install_hw_breakpoint(struct perf_event *bp)
{
struct arch_hw_breakpoint *info = counter_arch_bp(bp);
unsigned long *dr7;
int i;
lockdep_assert_irqs_disabled();
for (i = 0; i < HBP_NUM; i++) {
struct perf_event **slot = this_cpu_ptr(&bp_per_reg[i]);
if (!*slot) {
*slot = bp;
break;
}
}
if (WARN_ONCE(i == HBP_NUM, "Can't find any breakpoint slot"))
return -EBUSY;
set_debugreg(info->address, i);
__this_cpu_write(cpu_debugreg[i], info->address);
dr7 = this_cpu_ptr(&cpu_dr7);
*dr7 |= encode_dr7(i, info->len, info->type);
/*
* Ensure we first write cpu_dr7 before we set the DR7 register.
* This ensures an NMI never see cpu_dr7 0 when DR7 is not.
*/
barrier();
set_debugreg(*dr7, 7);
if (info->mask)
set_dr_addr_mask(info->mask, i);
return 0;
}
/*
* Uninstall the breakpoint contained in the given counter.
*
* First we search the debug address register it uses and then we disable
* it.
*
* Atomic: we hold the counter->ctx->lock and we only handle variables
* and registers local to this cpu.
*/
void arch_uninstall_hw_breakpoint(struct perf_event *bp)
{
struct arch_hw_breakpoint *info = counter_arch_bp(bp);
unsigned long dr7;
int i;
lockdep_assert_irqs_disabled();
for (i = 0; i < HBP_NUM; i++) {
struct perf_event **slot = this_cpu_ptr(&bp_per_reg[i]);
if (*slot == bp) {
*slot = NULL;
break;
}
}
if (WARN_ONCE(i == HBP_NUM, "Can't find any breakpoint slot"))
return;
dr7 = this_cpu_read(cpu_dr7);
dr7 &= ~__encode_dr7(i, info->len, info->type);
set_debugreg(dr7, 7);
if (info->mask)
set_dr_addr_mask(0, i);
/*
* Ensure the write to cpu_dr7 is after we've set the DR7 register.
* This ensures an NMI never see cpu_dr7 0 when DR7 is not.
*/
barrier();
this_cpu_write(cpu_dr7, dr7);
}
static int arch_bp_generic_len(int x86_len)
{
switch (x86_len) {
case X86_BREAKPOINT_LEN_1:
return HW_BREAKPOINT_LEN_1;
case X86_BREAKPOINT_LEN_2:
return HW_BREAKPOINT_LEN_2;
case X86_BREAKPOINT_LEN_4:
return HW_BREAKPOINT_LEN_4;
#ifdef CONFIG_X86_64
case X86_BREAKPOINT_LEN_8:
return HW_BREAKPOINT_LEN_8;
#endif
default:
return -EINVAL;
}
}
int arch_bp_generic_fields(int x86_len, int x86_type,
int *gen_len, int *gen_type)
{
int len;
/* Type */
switch (x86_type) {
case X86_BREAKPOINT_EXECUTE:
if (x86_len != X86_BREAKPOINT_LEN_X)
return -EINVAL;
*gen_type = HW_BREAKPOINT_X;
*gen_len = sizeof(long);
return 0;
case X86_BREAKPOINT_WRITE:
*gen_type = HW_BREAKPOINT_W;
break;
case X86_BREAKPOINT_RW:
*gen_type = HW_BREAKPOINT_W | HW_BREAKPOINT_R;
break;
default:
return -EINVAL;
}
/* Len */
len = arch_bp_generic_len(x86_len);
if (len < 0)
return -EINVAL;
*gen_len = len;
return 0;
}
/*
* Check for virtual address in kernel space.
*/
int arch_check_bp_in_kernelspace(struct arch_hw_breakpoint *hw)
{
unsigned long va;
int len;
va = hw->address;
len = arch_bp_generic_len(hw->len);
WARN_ON_ONCE(len < 0);
/*
* We don't need to worry about va + len - 1 overflowing:
* we already require that va is aligned to a multiple of len.
*/
return (va >= TASK_SIZE_MAX) || ((va + len - 1) >= TASK_SIZE_MAX);
}
/*
* Checks whether the range [addr, end], overlaps the area [base, base + size).
*/
static inline bool within_area(unsigned long addr, unsigned long end,
unsigned long base, unsigned long size)
{
return end >= base && addr < (base + size);
}
/*
* Checks whether the range from addr to end, inclusive, overlaps the fixed
* mapped CPU entry area range or other ranges used for CPU entry.
*/
static inline bool within_cpu_entry(unsigned long addr, unsigned long end)
{
int cpu;
/* CPU entry erea is always used for CPU entry */
if (within_area(addr, end, CPU_ENTRY_AREA_BASE,
CPU_ENTRY_AREA_TOTAL_SIZE))
return true;
/*
* When FSGSBASE is enabled, paranoid_entry() fetches the per-CPU
* GSBASE value via __per_cpu_offset or pcpu_unit_offsets.
*/
#ifdef CONFIG_SMP
if (within_area(addr, end, (unsigned long)__per_cpu_offset,
sizeof(unsigned long) * nr_cpu_ids))
return true;
#else
if (within_area(addr, end, (unsigned long)&pcpu_unit_offsets,
sizeof(pcpu_unit_offsets)))
return true;
#endif
for_each_possible_cpu(cpu) {
/* The original rw GDT is being used after load_direct_gdt() */
if (within_area(addr, end, (unsigned long)get_cpu_gdt_rw(cpu),
GDT_SIZE))
return true;
/*
* cpu_tss_rw is not directly referenced by hardware, but
* cpu_tss_rw is also used in CPU entry code,
*/
if (within_area(addr, end,
(unsigned long)&per_cpu(cpu_tss_rw, cpu),
sizeof(struct tss_struct)))
return true;
/*
* cpu_tlbstate.user_pcid_flush_mask is used for CPU entry.
* If a data breakpoint on it, it will cause an unwanted #DB.
* Protect the full cpu_tlbstate structure to be sure.
*/
if (within_area(addr, end,
(unsigned long)&per_cpu(cpu_tlbstate, cpu),
sizeof(struct tlb_state)))
return true;
/*
* When in guest (X86_FEATURE_HYPERVISOR), local_db_save()
* will read per-cpu cpu_dr7 before clear dr7 register.
*/
if (within_area(addr, end, (unsigned long)&per_cpu(cpu_dr7, cpu),
sizeof(cpu_dr7)))
return true;
}
return false;
}
static int arch_build_bp_info(struct perf_event *bp,
const struct perf_event_attr *attr,
struct arch_hw_breakpoint *hw)
{
unsigned long bp_end;
bp_end = attr->bp_addr + attr->bp_len - 1;
if (bp_end < attr->bp_addr)
return -EINVAL;
/*
* Prevent any breakpoint of any type that overlaps the CPU
* entry area and data. This protects the IST stacks and also
* reduces the chance that we ever find out what happens if
* there's a data breakpoint on the GDT, IDT, or TSS.
*/
if (within_cpu_entry(attr->bp_addr, bp_end))
return -EINVAL;
hw->address = attr->bp_addr;
hw->mask = 0;
/* Type */
switch (attr->bp_type) {
case HW_BREAKPOINT_W:
hw->type = X86_BREAKPOINT_WRITE;
break;
case HW_BREAKPOINT_W | HW_BREAKPOINT_R:
hw->type = X86_BREAKPOINT_RW;
break;
case HW_BREAKPOINT_X:
/*
* We don't allow kernel breakpoints in places that are not
* acceptable for kprobes. On non-kprobes kernels, we don't
* allow kernel breakpoints at all.
*/
if (attr->bp_addr >= TASK_SIZE_MAX) {
if (within_kprobe_blacklist(attr->bp_addr))
return -EINVAL;
}
hw->type = X86_BREAKPOINT_EXECUTE;
/*
* x86 inst breakpoints need to have a specific undefined len.
* But we still need to check userspace is not trying to setup
* an unsupported length, to get a range breakpoint for example.
*/
if (attr->bp_len == sizeof(long)) {
hw->len = X86_BREAKPOINT_LEN_X;
return 0;
}
fallthrough;
default:
return -EINVAL;
}
/* Len */
switch (attr->bp_len) {
case HW_BREAKPOINT_LEN_1:
hw->len = X86_BREAKPOINT_LEN_1;
break;
case HW_BREAKPOINT_LEN_2:
hw->len = X86_BREAKPOINT_LEN_2;
break;
case HW_BREAKPOINT_LEN_4:
hw->len = X86_BREAKPOINT_LEN_4;
break;
#ifdef CONFIG_X86_64
case HW_BREAKPOINT_LEN_8:
hw->len = X86_BREAKPOINT_LEN_8;
break;
#endif
default:
/* AMD range breakpoint */
if (!is_power_of_2(attr->bp_len))
return -EINVAL;
if (attr->bp_addr & (attr->bp_len - 1))
return -EINVAL;
if (!boot_cpu_has(X86_FEATURE_BPEXT))
return -EOPNOTSUPP;
/*
* It's impossible to use a range breakpoint to fake out
* user vs kernel detection because bp_len - 1 can't
* have the high bit set. If we ever allow range instruction
* breakpoints, then we'll have to check for kprobe-blacklisted
* addresses anywhere in the range.
*/
hw->mask = attr->bp_len - 1;
hw->len = X86_BREAKPOINT_LEN_1;
}
return 0;
}
/*
* Validate the arch-specific HW Breakpoint register settings
*/
int hw_breakpoint_arch_parse(struct perf_event *bp,
const struct perf_event_attr *attr,
struct arch_hw_breakpoint *hw)
{
unsigned int align;
int ret;
ret = arch_build_bp_info(bp, attr, hw);
if (ret)
return ret;
switch (hw->len) {
case X86_BREAKPOINT_LEN_1:
align = 0;
if (hw->mask)
align = hw->mask;
break;
case X86_BREAKPOINT_LEN_2:
align = 1;
break;
case X86_BREAKPOINT_LEN_4:
align = 3;
break;
#ifdef CONFIG_X86_64
case X86_BREAKPOINT_LEN_8:
align = 7;
break;
#endif
default:
WARN_ON_ONCE(1);
return -EINVAL;
}
/*
* Check that the low-order bits of the address are appropriate
* for the alignment implied by len.
*/
if (hw->address & align)
return -EINVAL;
return 0;
}
/*
* Release the user breakpoints used by ptrace
*/
void flush_ptrace_hw_breakpoint(struct task_struct *tsk)
{
int i;
struct thread_struct *t = &tsk->thread;
for (i = 0; i < HBP_NUM; i++) {
unregister_hw_breakpoint(t->ptrace_bps[i]);
t->ptrace_bps[i] = NULL;
}
t->virtual_dr6 = 0;
t->ptrace_dr7 = 0;
}
void hw_breakpoint_restore(void)
{
set_debugreg(__this_cpu_read(cpu_debugreg[0]), 0);
set_debugreg(__this_cpu_read(cpu_debugreg[1]), 1);
set_debugreg(__this_cpu_read(cpu_debugreg[2]), 2);
set_debugreg(__this_cpu_read(cpu_debugreg[3]), 3);
set_debugreg(DR6_RESERVED, 6);
set_debugreg(__this_cpu_read(cpu_dr7), 7);
}
EXPORT_SYMBOL_GPL(hw_breakpoint_restore);
/*
* Handle debug exception notifications.
*
* Return value is either NOTIFY_STOP or NOTIFY_DONE as explained below.
*
* NOTIFY_DONE returned if one of the following conditions is true.
* i) When the causative address is from user-space and the exception
* is a valid one, i.e. not triggered as a result of lazy debug register
* switching
* ii) When there are more bits than trap<n> set in DR6 register (such
* as BD, BS or BT) indicating that more than one debug condition is
* met and requires some more action in do_debug().
*
* NOTIFY_STOP returned for all other cases
*
*/
static int hw_breakpoint_handler(struct die_args *args)
{
int i, rc = NOTIFY_STOP;
struct perf_event *bp;
unsigned long *dr6_p;
unsigned long dr6;
bool bpx;
/* The DR6 value is pointed by args->err */
dr6_p = (unsigned long *)ERR_PTR(args->err);
dr6 = *dr6_p;
/* Do an early return if no trap bits are set in DR6 */
if ((dr6 & DR_TRAP_BITS) == 0)
return NOTIFY_DONE;
/* Handle all the breakpoints that were triggered */
for (i = 0; i < HBP_NUM; ++i) {
if (likely(!(dr6 & (DR_TRAP0 << i))))
continue;
bp = this_cpu_read(bp_per_reg[i]);
if (!bp)
continue;
bpx = bp->hw.info.type == X86_BREAKPOINT_EXECUTE;
/*
* TF and data breakpoints are traps and can be merged, however
* instruction breakpoints are faults and will be raised
* separately.
*
* However DR6 can indicate both TF and instruction
* breakpoints. In that case take TF as that has precedence and
* delay the instruction breakpoint for the next exception.
*/
if (bpx && (dr6 & DR_STEP))
continue;
/*
* Reset the 'i'th TRAP bit in dr6 to denote completion of
* exception handling
*/
(*dr6_p) &= ~(DR_TRAP0 << i);
perf_bp_event(bp, args->regs);
/*
* Set up resume flag to avoid breakpoint recursion when
* returning back to origin.
*/
if (bpx)
args->regs->flags |= X86_EFLAGS_RF;
}
/*
* Further processing in do_debug() is needed for a) user-space
* breakpoints (to generate signals) and b) when the system has
* taken exception due to multiple causes
*/
if ((current->thread.virtual_dr6 & DR_TRAP_BITS) ||
(dr6 & (~DR_TRAP_BITS)))
rc = NOTIFY_DONE;
return rc;
}
/*
* Handle debug exception notifications.
*/
int hw_breakpoint_exceptions_notify(
struct notifier_block *unused, unsigned long val, void *data)
{
if (val != DIE_DEBUG)
return NOTIFY_DONE;
return hw_breakpoint_handler(data);
}
void hw_breakpoint_pmu_read(struct perf_event *bp)
{
/* TODO */
}