linux/drivers/spi/spi-microchip-core-qspi.c
Mark Brown fd811b6293
spi: Use devm_clk_get_*() helper function to
Merge series from Li Zetao <lizetao1@huawei.com>:

Commit 7ef9651e97 ("clk: Provide new devm_clk helpers for prepared
and enabled clocks") provides a new helper function for prepared and
enabled clocks when a driver keeps a clock prepared (or enabled) during
the whole lifetime of the driver. So where drivers get clocks and enable
them immediately, it can be combined into a single function
devm_clk_get_*(). Moreover, the unprepare and disable function
has been registered to devm_clk_state, and before devm_clk_state is
released, the clocks will be unprepareed and disable, so it is unnecessary
to unprepare and disable clocks explicitly when remove drivers or in the
error handling path.
2023-09-11 22:43:17 +01:00

584 lines
16 KiB
C

// SPDX-License-Identifier: (GPL-2.0)
/*
* Microchip coreQSPI QSPI controller driver
*
* Copyright (C) 2018-2022 Microchip Technology Inc. and its subsidiaries
*
* Author: Naga Sureshkumar Relli <nagasuresh.relli@microchip.com>
*
*/
#include <linux/clk.h>
#include <linux/err.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/iopoll.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_irq.h>
#include <linux/platform_device.h>
#include <linux/spi/spi.h>
#include <linux/spi/spi-mem.h>
/*
* QSPI Control register mask defines
*/
#define CONTROL_ENABLE BIT(0)
#define CONTROL_MASTER BIT(1)
#define CONTROL_XIP BIT(2)
#define CONTROL_XIPADDR BIT(3)
#define CONTROL_CLKIDLE BIT(10)
#define CONTROL_SAMPLE_MASK GENMASK(12, 11)
#define CONTROL_MODE0 BIT(13)
#define CONTROL_MODE12_MASK GENMASK(15, 14)
#define CONTROL_MODE12_EX_RO BIT(14)
#define CONTROL_MODE12_EX_RW BIT(15)
#define CONTROL_MODE12_FULL GENMASK(15, 14)
#define CONTROL_FLAGSX4 BIT(16)
#define CONTROL_CLKRATE_MASK GENMASK(27, 24)
#define CONTROL_CLKRATE_SHIFT 24
/*
* QSPI Frames register mask defines
*/
#define FRAMES_TOTALBYTES_MASK GENMASK(15, 0)
#define FRAMES_CMDBYTES_MASK GENMASK(24, 16)
#define FRAMES_CMDBYTES_SHIFT 16
#define FRAMES_SHIFT 25
#define FRAMES_IDLE_MASK GENMASK(29, 26)
#define FRAMES_IDLE_SHIFT 26
#define FRAMES_FLAGBYTE BIT(30)
#define FRAMES_FLAGWORD BIT(31)
/*
* QSPI Interrupt Enable register mask defines
*/
#define IEN_TXDONE BIT(0)
#define IEN_RXDONE BIT(1)
#define IEN_RXAVAILABLE BIT(2)
#define IEN_TXAVAILABLE BIT(3)
#define IEN_RXFIFOEMPTY BIT(4)
#define IEN_TXFIFOFULL BIT(5)
/*
* QSPI Status register mask defines
*/
#define STATUS_TXDONE BIT(0)
#define STATUS_RXDONE BIT(1)
#define STATUS_RXAVAILABLE BIT(2)
#define STATUS_TXAVAILABLE BIT(3)
#define STATUS_RXFIFOEMPTY BIT(4)
#define STATUS_TXFIFOFULL BIT(5)
#define STATUS_READY BIT(7)
#define STATUS_FLAGSX4 BIT(8)
#define STATUS_MASK GENMASK(8, 0)
#define BYTESUPPER_MASK GENMASK(31, 16)
#define BYTESLOWER_MASK GENMASK(15, 0)
#define MAX_DIVIDER 16
#define MIN_DIVIDER 0
#define MAX_DATA_CMD_LEN 256
/* QSPI ready time out value */
#define TIMEOUT_MS 500
/*
* QSPI Register offsets.
*/
#define REG_CONTROL (0x00)
#define REG_FRAMES (0x04)
#define REG_IEN (0x0c)
#define REG_STATUS (0x10)
#define REG_DIRECT_ACCESS (0x14)
#define REG_UPPER_ACCESS (0x18)
#define REG_RX_DATA (0x40)
#define REG_TX_DATA (0x44)
#define REG_X4_RX_DATA (0x48)
#define REG_X4_TX_DATA (0x4c)
#define REG_FRAMESUP (0x50)
/**
* struct mchp_coreqspi - Defines qspi driver instance
* @regs: Virtual address of the QSPI controller registers
* @clk: QSPI Operating clock
* @data_completion: completion structure
* @op_lock: lock access to the device
* @txbuf: TX buffer
* @rxbuf: RX buffer
* @irq: IRQ number
* @tx_len: Number of bytes left to transfer
* @rx_len: Number of bytes left to receive
*/
struct mchp_coreqspi {
void __iomem *regs;
struct clk *clk;
struct completion data_completion;
struct mutex op_lock; /* lock access to the device */
u8 *txbuf;
u8 *rxbuf;
int irq;
int tx_len;
int rx_len;
};
static int mchp_coreqspi_set_mode(struct mchp_coreqspi *qspi, const struct spi_mem_op *op)
{
u32 control = readl_relaxed(qspi->regs + REG_CONTROL);
/*
* The operating mode can be configured based on the command that needs to be send.
* bits[15:14]: Sets whether multiple bit SPI operates in normal, extended or full modes.
* 00: Normal (single DQ0 TX and single DQ1 RX lines)
* 01: Extended RO (command and address bytes on DQ0 only)
* 10: Extended RW (command byte on DQ0 only)
* 11: Full. (command and address are on all DQ lines)
* bit[13]: Sets whether multiple bit SPI uses 2 or 4 bits of data
* 0: 2-bits (BSPI)
* 1: 4-bits (QSPI)
*/
if (op->data.buswidth == 4 || op->data.buswidth == 2) {
control &= ~CONTROL_MODE12_MASK;
if (op->cmd.buswidth == 1 && (op->addr.buswidth == 1 || op->addr.buswidth == 0))
control |= CONTROL_MODE12_EX_RO;
else if (op->cmd.buswidth == 1)
control |= CONTROL_MODE12_EX_RW;
else
control |= CONTROL_MODE12_FULL;
control |= CONTROL_MODE0;
} else {
control &= ~(CONTROL_MODE12_MASK |
CONTROL_MODE0);
}
writel_relaxed(control, qspi->regs + REG_CONTROL);
return 0;
}
static inline void mchp_coreqspi_read_op(struct mchp_coreqspi *qspi)
{
u32 control, data;
if (!qspi->rx_len)
return;
control = readl_relaxed(qspi->regs + REG_CONTROL);
/*
* Read 4-bytes from the SPI FIFO in single transaction and then read
* the reamaining data byte wise.
*/
control |= CONTROL_FLAGSX4;
writel_relaxed(control, qspi->regs + REG_CONTROL);
while (qspi->rx_len >= 4) {
while (readl_relaxed(qspi->regs + REG_STATUS) & STATUS_RXFIFOEMPTY)
;
data = readl_relaxed(qspi->regs + REG_X4_RX_DATA);
*(u32 *)qspi->rxbuf = data;
qspi->rxbuf += 4;
qspi->rx_len -= 4;
}
control &= ~CONTROL_FLAGSX4;
writel_relaxed(control, qspi->regs + REG_CONTROL);
while (qspi->rx_len--) {
while (readl_relaxed(qspi->regs + REG_STATUS) & STATUS_RXFIFOEMPTY)
;
data = readl_relaxed(qspi->regs + REG_RX_DATA);
*qspi->rxbuf++ = (data & 0xFF);
}
}
static inline void mchp_coreqspi_write_op(struct mchp_coreqspi *qspi, bool word)
{
u32 control, data;
control = readl_relaxed(qspi->regs + REG_CONTROL);
control |= CONTROL_FLAGSX4;
writel_relaxed(control, qspi->regs + REG_CONTROL);
while (qspi->tx_len >= 4) {
while (readl_relaxed(qspi->regs + REG_STATUS) & STATUS_TXFIFOFULL)
;
data = *(u32 *)qspi->txbuf;
qspi->txbuf += 4;
qspi->tx_len -= 4;
writel_relaxed(data, qspi->regs + REG_X4_TX_DATA);
}
control &= ~CONTROL_FLAGSX4;
writel_relaxed(control, qspi->regs + REG_CONTROL);
while (qspi->tx_len--) {
while (readl_relaxed(qspi->regs + REG_STATUS) & STATUS_TXFIFOFULL)
;
data = *qspi->txbuf++;
writel_relaxed(data, qspi->regs + REG_TX_DATA);
}
}
static void mchp_coreqspi_enable_ints(struct mchp_coreqspi *qspi)
{
u32 mask = IEN_TXDONE |
IEN_RXDONE |
IEN_RXAVAILABLE;
writel_relaxed(mask, qspi->regs + REG_IEN);
}
static void mchp_coreqspi_disable_ints(struct mchp_coreqspi *qspi)
{
writel_relaxed(0, qspi->regs + REG_IEN);
}
static irqreturn_t mchp_coreqspi_isr(int irq, void *dev_id)
{
struct mchp_coreqspi *qspi = (struct mchp_coreqspi *)dev_id;
irqreturn_t ret = IRQ_NONE;
int intfield = readl_relaxed(qspi->regs + REG_STATUS) & STATUS_MASK;
if (intfield == 0)
return ret;
if (intfield & IEN_TXDONE) {
writel_relaxed(IEN_TXDONE, qspi->regs + REG_STATUS);
ret = IRQ_HANDLED;
}
if (intfield & IEN_RXAVAILABLE) {
writel_relaxed(IEN_RXAVAILABLE, qspi->regs + REG_STATUS);
mchp_coreqspi_read_op(qspi);
ret = IRQ_HANDLED;
}
if (intfield & IEN_RXDONE) {
writel_relaxed(IEN_RXDONE, qspi->regs + REG_STATUS);
complete(&qspi->data_completion);
ret = IRQ_HANDLED;
}
return ret;
}
static int mchp_coreqspi_setup_clock(struct mchp_coreqspi *qspi, struct spi_device *spi)
{
unsigned long clk_hz;
u32 control, baud_rate_val = 0;
clk_hz = clk_get_rate(qspi->clk);
if (!clk_hz)
return -EINVAL;
baud_rate_val = DIV_ROUND_UP(clk_hz, 2 * spi->max_speed_hz);
if (baud_rate_val > MAX_DIVIDER || baud_rate_val < MIN_DIVIDER) {
dev_err(&spi->dev,
"could not configure the clock for spi clock %d Hz & system clock %ld Hz\n",
spi->max_speed_hz, clk_hz);
return -EINVAL;
}
control = readl_relaxed(qspi->regs + REG_CONTROL);
control |= baud_rate_val << CONTROL_CLKRATE_SHIFT;
writel_relaxed(control, qspi->regs + REG_CONTROL);
control = readl_relaxed(qspi->regs + REG_CONTROL);
if ((spi->mode & SPI_CPOL) && (spi->mode & SPI_CPHA))
control |= CONTROL_CLKIDLE;
else
control &= ~CONTROL_CLKIDLE;
writel_relaxed(control, qspi->regs + REG_CONTROL);
return 0;
}
static int mchp_coreqspi_setup_op(struct spi_device *spi_dev)
{
struct spi_controller *ctlr = spi_dev->controller;
struct mchp_coreqspi *qspi = spi_controller_get_devdata(ctlr);
u32 control = readl_relaxed(qspi->regs + REG_CONTROL);
control |= (CONTROL_MASTER | CONTROL_ENABLE);
control &= ~CONTROL_CLKIDLE;
writel_relaxed(control, qspi->regs + REG_CONTROL);
return 0;
}
static inline void mchp_coreqspi_config_op(struct mchp_coreqspi *qspi, const struct spi_mem_op *op)
{
u32 idle_cycles = 0;
int total_bytes, cmd_bytes, frames, ctrl;
cmd_bytes = op->cmd.nbytes + op->addr.nbytes;
total_bytes = cmd_bytes + op->data.nbytes;
/*
* As per the coreQSPI IP spec,the number of command and data bytes are
* controlled by the frames register for each SPI sequence. This supports
* the SPI flash memory read and writes sequences as below. so configure
* the cmd and total bytes accordingly.
* ---------------------------------------------------------------------
* TOTAL BYTES | CMD BYTES | What happens |
* ______________________________________________________________________
* | | |
* 1 | 1 | The SPI core will transmit a single byte |
* | | and receive data is discarded |
* | | |
* 1 | 0 | The SPI core will transmit a single byte |
* | | and return a single byte |
* | | |
* 10 | 4 | The SPI core will transmit 4 command |
* | | bytes discarding the receive data and |
* | | transmits 6 dummy bytes returning the 6 |
* | | received bytes and return a single byte |
* | | |
* 10 | 10 | The SPI core will transmit 10 command |
* | | |
* 10 | 0 | The SPI core will transmit 10 command |
* | | bytes and returning 10 received bytes |
* ______________________________________________________________________
*/
if (!(op->data.dir == SPI_MEM_DATA_IN))
cmd_bytes = total_bytes;
frames = total_bytes & BYTESUPPER_MASK;
writel_relaxed(frames, qspi->regs + REG_FRAMESUP);
frames = total_bytes & BYTESLOWER_MASK;
frames |= cmd_bytes << FRAMES_CMDBYTES_SHIFT;
if (op->dummy.buswidth)
idle_cycles = op->dummy.nbytes * 8 / op->dummy.buswidth;
frames |= idle_cycles << FRAMES_IDLE_SHIFT;
ctrl = readl_relaxed(qspi->regs + REG_CONTROL);
if (ctrl & CONTROL_MODE12_MASK)
frames |= (1 << FRAMES_SHIFT);
frames |= FRAMES_FLAGWORD;
writel_relaxed(frames, qspi->regs + REG_FRAMES);
}
static int mchp_qspi_wait_for_ready(struct spi_mem *mem)
{
struct mchp_coreqspi *qspi = spi_controller_get_devdata
(mem->spi->controller);
u32 status;
int ret;
ret = readl_poll_timeout(qspi->regs + REG_STATUS, status,
(status & STATUS_READY), 0,
TIMEOUT_MS);
if (ret) {
dev_err(&mem->spi->dev,
"Timeout waiting on QSPI ready.\n");
return -ETIMEDOUT;
}
return ret;
}
static int mchp_coreqspi_exec_op(struct spi_mem *mem, const struct spi_mem_op *op)
{
struct mchp_coreqspi *qspi = spi_controller_get_devdata
(mem->spi->controller);
u32 address = op->addr.val;
u8 opcode = op->cmd.opcode;
u8 opaddr[5];
int err, i;
mutex_lock(&qspi->op_lock);
err = mchp_qspi_wait_for_ready(mem);
if (err)
goto error;
err = mchp_coreqspi_setup_clock(qspi, mem->spi);
if (err)
goto error;
err = mchp_coreqspi_set_mode(qspi, op);
if (err)
goto error;
reinit_completion(&qspi->data_completion);
mchp_coreqspi_config_op(qspi, op);
if (op->cmd.opcode) {
qspi->txbuf = &opcode;
qspi->rxbuf = NULL;
qspi->tx_len = op->cmd.nbytes;
qspi->rx_len = 0;
mchp_coreqspi_write_op(qspi, false);
}
qspi->txbuf = &opaddr[0];
if (op->addr.nbytes) {
for (i = 0; i < op->addr.nbytes; i++)
qspi->txbuf[i] = address >> (8 * (op->addr.nbytes - i - 1));
qspi->rxbuf = NULL;
qspi->tx_len = op->addr.nbytes;
qspi->rx_len = 0;
mchp_coreqspi_write_op(qspi, false);
}
if (op->data.nbytes) {
if (op->data.dir == SPI_MEM_DATA_OUT) {
qspi->txbuf = (u8 *)op->data.buf.out;
qspi->rxbuf = NULL;
qspi->rx_len = 0;
qspi->tx_len = op->data.nbytes;
mchp_coreqspi_write_op(qspi, true);
} else {
qspi->txbuf = NULL;
qspi->rxbuf = (u8 *)op->data.buf.in;
qspi->rx_len = op->data.nbytes;
qspi->tx_len = 0;
}
}
mchp_coreqspi_enable_ints(qspi);
if (!wait_for_completion_timeout(&qspi->data_completion, msecs_to_jiffies(1000)))
err = -ETIMEDOUT;
error:
mutex_unlock(&qspi->op_lock);
mchp_coreqspi_disable_ints(qspi);
return err;
}
static bool mchp_coreqspi_supports_op(struct spi_mem *mem, const struct spi_mem_op *op)
{
if (!spi_mem_default_supports_op(mem, op))
return false;
if ((op->data.buswidth == 4 || op->data.buswidth == 2) &&
(op->cmd.buswidth == 1 && (op->addr.buswidth == 1 || op->addr.buswidth == 0))) {
/*
* If the command and address are on DQ0 only, then this
* controller doesn't support sending data on dual and
* quad lines. but it supports reading data on dual and
* quad lines with same configuration as command and
* address on DQ0.
* i.e. The control register[15:13] :EX_RO(read only) is
* meant only for the command and address are on DQ0 but
* not to write data, it is just to read.
* Ex: 0x34h is Quad Load Program Data which is not
* supported. Then the spi-mem layer will iterate over
* each command and it will chose the supported one.
*/
if (op->data.dir == SPI_MEM_DATA_OUT)
return false;
}
return true;
}
static int mchp_coreqspi_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op)
{
if (op->data.dir == SPI_MEM_DATA_OUT || op->data.dir == SPI_MEM_DATA_IN) {
if (op->data.nbytes > MAX_DATA_CMD_LEN)
op->data.nbytes = MAX_DATA_CMD_LEN;
}
return 0;
}
static const struct spi_controller_mem_ops mchp_coreqspi_mem_ops = {
.adjust_op_size = mchp_coreqspi_adjust_op_size,
.supports_op = mchp_coreqspi_supports_op,
.exec_op = mchp_coreqspi_exec_op,
};
static int mchp_coreqspi_probe(struct platform_device *pdev)
{
struct spi_controller *ctlr;
struct mchp_coreqspi *qspi;
struct device *dev = &pdev->dev;
struct device_node *np = dev->of_node;
int ret;
ctlr = devm_spi_alloc_host(&pdev->dev, sizeof(*qspi));
if (!ctlr)
return dev_err_probe(&pdev->dev, -ENOMEM,
"unable to allocate host for QSPI controller\n");
qspi = spi_controller_get_devdata(ctlr);
platform_set_drvdata(pdev, qspi);
qspi->regs = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(qspi->regs))
return dev_err_probe(&pdev->dev, PTR_ERR(qspi->regs),
"failed to map registers\n");
qspi->clk = devm_clk_get_enabled(&pdev->dev, NULL);
if (IS_ERR(qspi->clk))
return dev_err_probe(&pdev->dev, PTR_ERR(qspi->clk),
"could not get clock\n");
init_completion(&qspi->data_completion);
mutex_init(&qspi->op_lock);
qspi->irq = platform_get_irq(pdev, 0);
if (qspi->irq < 0)
return qspi->irq;
ret = devm_request_irq(&pdev->dev, qspi->irq, mchp_coreqspi_isr,
IRQF_SHARED, pdev->name, qspi);
if (ret) {
dev_err(&pdev->dev, "request_irq failed %d\n", ret);
return ret;
}
ctlr->bits_per_word_mask = SPI_BPW_MASK(8);
ctlr->mem_ops = &mchp_coreqspi_mem_ops;
ctlr->setup = mchp_coreqspi_setup_op;
ctlr->mode_bits = SPI_CPOL | SPI_CPHA | SPI_RX_DUAL | SPI_RX_QUAD |
SPI_TX_DUAL | SPI_TX_QUAD;
ctlr->dev.of_node = np;
ret = devm_spi_register_controller(&pdev->dev, ctlr);
if (ret)
return dev_err_probe(&pdev->dev, ret,
"spi_register_controller failed\n");
return 0;
}
static void mchp_coreqspi_remove(struct platform_device *pdev)
{
struct mchp_coreqspi *qspi = platform_get_drvdata(pdev);
u32 control = readl_relaxed(qspi->regs + REG_CONTROL);
mchp_coreqspi_disable_ints(qspi);
control &= ~CONTROL_ENABLE;
writel_relaxed(control, qspi->regs + REG_CONTROL);
}
static const struct of_device_id mchp_coreqspi_of_match[] = {
{ .compatible = "microchip,coreqspi-rtl-v2" },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, mchp_coreqspi_of_match);
static struct platform_driver mchp_coreqspi_driver = {
.probe = mchp_coreqspi_probe,
.driver = {
.name = "microchip,coreqspi",
.of_match_table = mchp_coreqspi_of_match,
},
.remove_new = mchp_coreqspi_remove,
};
module_platform_driver(mchp_coreqspi_driver);
MODULE_AUTHOR("Naga Sureshkumar Relli <nagasuresh.relli@microchip.com");
MODULE_DESCRIPTION("Microchip coreQSPI QSPI controller driver");
MODULE_LICENSE("GPL");