linux/block/blk.h
Ming Lei f1be1788a3 block: model freeze & enter queue as lock for supporting lockdep
Recently we got several deadlock report[1][2][3] caused by
blk_mq_freeze_queue and blk_enter_queue().

Turns out the two are just like acquiring read/write lock, so model them
as read/write lock for supporting lockdep:

1) model q->q_usage_counter as two locks(io and queue lock)

- queue lock covers sync with blk_enter_queue()

- io lock covers sync with bio_enter_queue()

2) make the lockdep class/key as per-queue:

- different subsystem has very different lock use pattern, shared lock
 class causes false positive easily

- freeze_queue degrades to no lock in case that disk state becomes DEAD
  because bio_enter_queue() won't be blocked any more

- freeze_queue degrades to no lock in case that request queue becomes dying
  because blk_enter_queue() won't be blocked any more

3) model blk_mq_freeze_queue() as acquire_exclusive & try_lock
- it is exclusive lock, so dependency with blk_enter_queue() is covered

- it is trylock because blk_mq_freeze_queue() are allowed to run
  concurrently

4) model blk_enter_queue() & bio_enter_queue() as acquire_read()
- nested blk_enter_queue() are allowed

- dependency with blk_mq_freeze_queue() is covered

- blk_queue_exit() is often called from other contexts(such as irq), and
it can't be annotated as lock_release(), so simply do it in
blk_enter_queue(), this way still covered cases as many as possible

With lockdep support, such kind of reports may be reported asap and
needn't wait until the real deadlock is triggered.

For example, lockdep report can be triggered in the report[3] with this
patch applied.

[1] occasional block layer hang when setting 'echo noop > /sys/block/sda/queue/scheduler'
https://bugzilla.kernel.org/show_bug.cgi?id=219166

[2] del_gendisk() vs blk_queue_enter() race condition
https://lore.kernel.org/linux-block/20241003085610.GK11458@google.com/

[3] queue_freeze & queue_enter deadlock in scsi
https://lore.kernel.org/linux-block/ZxG38G9BuFdBpBHZ@fedora/T/#u

Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Ming Lei <ming.lei@redhat.com>
Link: https://lore.kernel.org/r/20241025003722.3630252-4-ming.lei@redhat.com
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2024-10-26 07:14:53 -06:00

751 lines
22 KiB
C

/* SPDX-License-Identifier: GPL-2.0 */
#ifndef BLK_INTERNAL_H
#define BLK_INTERNAL_H
#include <linux/bio-integrity.h>
#include <linux/blk-crypto.h>
#include <linux/lockdep.h>
#include <linux/memblock.h> /* for max_pfn/max_low_pfn */
#include <linux/sched/sysctl.h>
#include <linux/timekeeping.h>
#include <xen/xen.h>
#include "blk-crypto-internal.h"
struct elevator_type;
/* Max future timer expiry for timeouts */
#define BLK_MAX_TIMEOUT (5 * HZ)
extern struct dentry *blk_debugfs_root;
struct blk_flush_queue {
spinlock_t mq_flush_lock;
unsigned int flush_pending_idx:1;
unsigned int flush_running_idx:1;
blk_status_t rq_status;
unsigned long flush_pending_since;
struct list_head flush_queue[2];
unsigned long flush_data_in_flight;
struct request *flush_rq;
};
bool is_flush_rq(struct request *req);
struct blk_flush_queue *blk_alloc_flush_queue(int node, int cmd_size,
gfp_t flags);
void blk_free_flush_queue(struct blk_flush_queue *q);
void blk_freeze_queue(struct request_queue *q);
bool __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic);
bool blk_queue_start_drain(struct request_queue *q);
bool __blk_freeze_queue_start(struct request_queue *q);
int __bio_queue_enter(struct request_queue *q, struct bio *bio);
void submit_bio_noacct_nocheck(struct bio *bio);
void bio_await_chain(struct bio *bio);
static inline bool blk_try_enter_queue(struct request_queue *q, bool pm)
{
rcu_read_lock();
if (!percpu_ref_tryget_live_rcu(&q->q_usage_counter))
goto fail;
/*
* The code that increments the pm_only counter must ensure that the
* counter is globally visible before the queue is unfrozen.
*/
if (blk_queue_pm_only(q) &&
(!pm || queue_rpm_status(q) == RPM_SUSPENDED))
goto fail_put;
rcu_read_unlock();
return true;
fail_put:
blk_queue_exit(q);
fail:
rcu_read_unlock();
return false;
}
static inline int bio_queue_enter(struct bio *bio)
{
struct request_queue *q = bdev_get_queue(bio->bi_bdev);
if (blk_try_enter_queue(q, false)) {
rwsem_acquire_read(&q->io_lockdep_map, 0, 0, _RET_IP_);
rwsem_release(&q->io_lockdep_map, _RET_IP_);
return 0;
}
return __bio_queue_enter(q, bio);
}
static inline void blk_wait_io(struct completion *done)
{
/* Prevent hang_check timer from firing at us during very long I/O */
unsigned long timeout = sysctl_hung_task_timeout_secs * HZ / 2;
if (timeout)
while (!wait_for_completion_io_timeout(done, timeout))
;
else
wait_for_completion_io(done);
}
#define BIO_INLINE_VECS 4
struct bio_vec *bvec_alloc(mempool_t *pool, unsigned short *nr_vecs,
gfp_t gfp_mask);
void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned short nr_vecs);
bool bvec_try_merge_hw_page(struct request_queue *q, struct bio_vec *bv,
struct page *page, unsigned len, unsigned offset,
bool *same_page);
static inline bool biovec_phys_mergeable(struct request_queue *q,
struct bio_vec *vec1, struct bio_vec *vec2)
{
unsigned long mask = queue_segment_boundary(q);
phys_addr_t addr1 = bvec_phys(vec1);
phys_addr_t addr2 = bvec_phys(vec2);
/*
* Merging adjacent physical pages may not work correctly under KMSAN
* if their metadata pages aren't adjacent. Just disable merging.
*/
if (IS_ENABLED(CONFIG_KMSAN))
return false;
if (addr1 + vec1->bv_len != addr2)
return false;
if (xen_domain() && !xen_biovec_phys_mergeable(vec1, vec2->bv_page))
return false;
if ((addr1 | mask) != ((addr2 + vec2->bv_len - 1) | mask))
return false;
return true;
}
static inline bool __bvec_gap_to_prev(const struct queue_limits *lim,
struct bio_vec *bprv, unsigned int offset)
{
return (offset & lim->virt_boundary_mask) ||
((bprv->bv_offset + bprv->bv_len) & lim->virt_boundary_mask);
}
/*
* Check if adding a bio_vec after bprv with offset would create a gap in
* the SG list. Most drivers don't care about this, but some do.
*/
static inline bool bvec_gap_to_prev(const struct queue_limits *lim,
struct bio_vec *bprv, unsigned int offset)
{
if (!lim->virt_boundary_mask)
return false;
return __bvec_gap_to_prev(lim, bprv, offset);
}
static inline bool rq_mergeable(struct request *rq)
{
if (blk_rq_is_passthrough(rq))
return false;
if (req_op(rq) == REQ_OP_FLUSH)
return false;
if (req_op(rq) == REQ_OP_WRITE_ZEROES)
return false;
if (req_op(rq) == REQ_OP_ZONE_APPEND)
return false;
if (rq->cmd_flags & REQ_NOMERGE_FLAGS)
return false;
if (rq->rq_flags & RQF_NOMERGE_FLAGS)
return false;
return true;
}
/*
* There are two different ways to handle DISCARD merges:
* 1) If max_discard_segments > 1, the driver treats every bio as a range and
* send the bios to controller together. The ranges don't need to be
* contiguous.
* 2) Otherwise, the request will be normal read/write requests. The ranges
* need to be contiguous.
*/
static inline bool blk_discard_mergable(struct request *req)
{
if (req_op(req) == REQ_OP_DISCARD &&
queue_max_discard_segments(req->q) > 1)
return true;
return false;
}
static inline unsigned int blk_rq_get_max_segments(struct request *rq)
{
if (req_op(rq) == REQ_OP_DISCARD)
return queue_max_discard_segments(rq->q);
return queue_max_segments(rq->q);
}
static inline unsigned int blk_queue_get_max_sectors(struct request *rq)
{
struct request_queue *q = rq->q;
enum req_op op = req_op(rq);
if (unlikely(op == REQ_OP_DISCARD || op == REQ_OP_SECURE_ERASE))
return min(q->limits.max_discard_sectors,
UINT_MAX >> SECTOR_SHIFT);
if (unlikely(op == REQ_OP_WRITE_ZEROES))
return q->limits.max_write_zeroes_sectors;
if (rq->cmd_flags & REQ_ATOMIC)
return q->limits.atomic_write_max_sectors;
return q->limits.max_sectors;
}
#ifdef CONFIG_BLK_DEV_INTEGRITY
void blk_flush_integrity(void);
void bio_integrity_free(struct bio *bio);
/*
* Integrity payloads can either be owned by the submitter, in which case
* bio_uninit will free them, or owned and generated by the block layer,
* in which case we'll verify them here (for reads) and free them before
* the bio is handed back to the submitted.
*/
bool __bio_integrity_endio(struct bio *bio);
static inline bool bio_integrity_endio(struct bio *bio)
{
struct bio_integrity_payload *bip = bio_integrity(bio);
if (bip && (bip->bip_flags & BIP_BLOCK_INTEGRITY))
return __bio_integrity_endio(bio);
return true;
}
bool blk_integrity_merge_rq(struct request_queue *, struct request *,
struct request *);
bool blk_integrity_merge_bio(struct request_queue *, struct request *,
struct bio *);
static inline bool integrity_req_gap_back_merge(struct request *req,
struct bio *next)
{
struct bio_integrity_payload *bip = bio_integrity(req->bio);
struct bio_integrity_payload *bip_next = bio_integrity(next);
return bvec_gap_to_prev(&req->q->limits,
&bip->bip_vec[bip->bip_vcnt - 1],
bip_next->bip_vec[0].bv_offset);
}
static inline bool integrity_req_gap_front_merge(struct request *req,
struct bio *bio)
{
struct bio_integrity_payload *bip = bio_integrity(bio);
struct bio_integrity_payload *bip_next = bio_integrity(req->bio);
return bvec_gap_to_prev(&req->q->limits,
&bip->bip_vec[bip->bip_vcnt - 1],
bip_next->bip_vec[0].bv_offset);
}
extern const struct attribute_group blk_integrity_attr_group;
#else /* CONFIG_BLK_DEV_INTEGRITY */
static inline bool blk_integrity_merge_rq(struct request_queue *rq,
struct request *r1, struct request *r2)
{
return true;
}
static inline bool blk_integrity_merge_bio(struct request_queue *rq,
struct request *r, struct bio *b)
{
return true;
}
static inline bool integrity_req_gap_back_merge(struct request *req,
struct bio *next)
{
return false;
}
static inline bool integrity_req_gap_front_merge(struct request *req,
struct bio *bio)
{
return false;
}
static inline void blk_flush_integrity(void)
{
}
static inline bool bio_integrity_endio(struct bio *bio)
{
return true;
}
static inline void bio_integrity_free(struct bio *bio)
{
}
#endif /* CONFIG_BLK_DEV_INTEGRITY */
unsigned long blk_rq_timeout(unsigned long timeout);
void blk_add_timer(struct request *req);
enum bio_merge_status {
BIO_MERGE_OK,
BIO_MERGE_NONE,
BIO_MERGE_FAILED,
};
enum bio_merge_status bio_attempt_back_merge(struct request *req,
struct bio *bio, unsigned int nr_segs);
bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
unsigned int nr_segs);
bool blk_bio_list_merge(struct request_queue *q, struct list_head *list,
struct bio *bio, unsigned int nr_segs);
/*
* Plug flush limits
*/
#define BLK_MAX_REQUEST_COUNT 32
#define BLK_PLUG_FLUSH_SIZE (128 * 1024)
/*
* Internal elevator interface
*/
#define ELV_ON_HASH(rq) ((rq)->rq_flags & RQF_HASHED)
bool blk_insert_flush(struct request *rq);
int elevator_switch(struct request_queue *q, struct elevator_type *new_e);
void elevator_disable(struct request_queue *q);
void elevator_exit(struct request_queue *q);
int elv_register_queue(struct request_queue *q, bool uevent);
void elv_unregister_queue(struct request_queue *q);
ssize_t part_size_show(struct device *dev, struct device_attribute *attr,
char *buf);
ssize_t part_stat_show(struct device *dev, struct device_attribute *attr,
char *buf);
ssize_t part_inflight_show(struct device *dev, struct device_attribute *attr,
char *buf);
ssize_t part_fail_show(struct device *dev, struct device_attribute *attr,
char *buf);
ssize_t part_fail_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count);
ssize_t part_timeout_show(struct device *, struct device_attribute *, char *);
ssize_t part_timeout_store(struct device *, struct device_attribute *,
const char *, size_t);
struct bio *bio_split_discard(struct bio *bio, const struct queue_limits *lim,
unsigned *nsegs);
struct bio *bio_split_write_zeroes(struct bio *bio,
const struct queue_limits *lim, unsigned *nsegs);
struct bio *bio_split_rw(struct bio *bio, const struct queue_limits *lim,
unsigned *nr_segs);
struct bio *bio_split_zone_append(struct bio *bio,
const struct queue_limits *lim, unsigned *nr_segs);
/*
* All drivers must accept single-segments bios that are smaller than PAGE_SIZE.
*
* This is a quick and dirty check that relies on the fact that bi_io_vec[0] is
* always valid if a bio has data. The check might lead to occasional false
* positives when bios are cloned, but compared to the performance impact of
* cloned bios themselves the loop below doesn't matter anyway.
*/
static inline bool bio_may_need_split(struct bio *bio,
const struct queue_limits *lim)
{
return lim->chunk_sectors || bio->bi_vcnt != 1 ||
bio->bi_io_vec->bv_len + bio->bi_io_vec->bv_offset > PAGE_SIZE;
}
/**
* __bio_split_to_limits - split a bio to fit the queue limits
* @bio: bio to be split
* @lim: queue limits to split based on
* @nr_segs: returns the number of segments in the returned bio
*
* Check if @bio needs splitting based on the queue limits, and if so split off
* a bio fitting the limits from the beginning of @bio and return it. @bio is
* shortened to the remainder and re-submitted.
*
* The split bio is allocated from @q->bio_split, which is provided by the
* block layer.
*/
static inline struct bio *__bio_split_to_limits(struct bio *bio,
const struct queue_limits *lim, unsigned int *nr_segs)
{
switch (bio_op(bio)) {
case REQ_OP_READ:
case REQ_OP_WRITE:
if (bio_may_need_split(bio, lim))
return bio_split_rw(bio, lim, nr_segs);
*nr_segs = 1;
return bio;
case REQ_OP_ZONE_APPEND:
return bio_split_zone_append(bio, lim, nr_segs);
case REQ_OP_DISCARD:
case REQ_OP_SECURE_ERASE:
return bio_split_discard(bio, lim, nr_segs);
case REQ_OP_WRITE_ZEROES:
return bio_split_write_zeroes(bio, lim, nr_segs);
default:
/* other operations can't be split */
*nr_segs = 0;
return bio;
}
}
int ll_back_merge_fn(struct request *req, struct bio *bio,
unsigned int nr_segs);
bool blk_attempt_req_merge(struct request_queue *q, struct request *rq,
struct request *next);
unsigned int blk_recalc_rq_segments(struct request *rq);
bool blk_rq_merge_ok(struct request *rq, struct bio *bio);
enum elv_merge blk_try_merge(struct request *rq, struct bio *bio);
int blk_set_default_limits(struct queue_limits *lim);
void blk_apply_bdi_limits(struct backing_dev_info *bdi,
struct queue_limits *lim);
int blk_dev_init(void);
void update_io_ticks(struct block_device *part, unsigned long now, bool end);
unsigned int part_in_flight(struct block_device *part);
static inline void req_set_nomerge(struct request_queue *q, struct request *req)
{
req->cmd_flags |= REQ_NOMERGE;
if (req == q->last_merge)
q->last_merge = NULL;
}
/*
* Internal io_context interface
*/
struct io_cq *ioc_find_get_icq(struct request_queue *q);
struct io_cq *ioc_lookup_icq(struct request_queue *q);
#ifdef CONFIG_BLK_ICQ
void ioc_clear_queue(struct request_queue *q);
#else
static inline void ioc_clear_queue(struct request_queue *q)
{
}
#endif /* CONFIG_BLK_ICQ */
struct bio *__blk_queue_bounce(struct bio *bio, struct request_queue *q);
static inline bool blk_queue_may_bounce(struct request_queue *q)
{
return IS_ENABLED(CONFIG_BOUNCE) &&
(q->limits.features & BLK_FEAT_BOUNCE_HIGH) &&
max_low_pfn >= max_pfn;
}
static inline struct bio *blk_queue_bounce(struct bio *bio,
struct request_queue *q)
{
if (unlikely(blk_queue_may_bounce(q) && bio_has_data(bio)))
return __blk_queue_bounce(bio, q);
return bio;
}
#ifdef CONFIG_BLK_DEV_ZONED
void disk_init_zone_resources(struct gendisk *disk);
void disk_free_zone_resources(struct gendisk *disk);
static inline bool bio_zone_write_plugging(struct bio *bio)
{
return bio_flagged(bio, BIO_ZONE_WRITE_PLUGGING);
}
static inline bool bio_is_zone_append(struct bio *bio)
{
return bio_op(bio) == REQ_OP_ZONE_APPEND ||
bio_flagged(bio, BIO_EMULATES_ZONE_APPEND);
}
void blk_zone_write_plug_bio_merged(struct bio *bio);
void blk_zone_write_plug_init_request(struct request *rq);
static inline void blk_zone_update_request_bio(struct request *rq,
struct bio *bio)
{
/*
* For zone append requests, the request sector indicates the location
* at which the BIO data was written. Return this value to the BIO
* issuer through the BIO iter sector.
* For plugged zone writes, which include emulated zone append, we need
* the original BIO sector so that blk_zone_write_plug_bio_endio() can
* lookup the zone write plug.
*/
if (req_op(rq) == REQ_OP_ZONE_APPEND || bio_zone_write_plugging(bio))
bio->bi_iter.bi_sector = rq->__sector;
}
void blk_zone_write_plug_bio_endio(struct bio *bio);
static inline void blk_zone_bio_endio(struct bio *bio)
{
/*
* For write BIOs to zoned devices, signal the completion of the BIO so
* that the next write BIO can be submitted by zone write plugging.
*/
if (bio_zone_write_plugging(bio))
blk_zone_write_plug_bio_endio(bio);
}
void blk_zone_write_plug_finish_request(struct request *rq);
static inline void blk_zone_finish_request(struct request *rq)
{
if (rq->rq_flags & RQF_ZONE_WRITE_PLUGGING)
blk_zone_write_plug_finish_request(rq);
}
int blkdev_report_zones_ioctl(struct block_device *bdev, unsigned int cmd,
unsigned long arg);
int blkdev_zone_mgmt_ioctl(struct block_device *bdev, blk_mode_t mode,
unsigned int cmd, unsigned long arg);
#else /* CONFIG_BLK_DEV_ZONED */
static inline void disk_init_zone_resources(struct gendisk *disk)
{
}
static inline void disk_free_zone_resources(struct gendisk *disk)
{
}
static inline bool bio_zone_write_plugging(struct bio *bio)
{
return false;
}
static inline bool bio_is_zone_append(struct bio *bio)
{
return false;
}
static inline void blk_zone_write_plug_bio_merged(struct bio *bio)
{
}
static inline void blk_zone_write_plug_init_request(struct request *rq)
{
}
static inline void blk_zone_update_request_bio(struct request *rq,
struct bio *bio)
{
}
static inline void blk_zone_bio_endio(struct bio *bio)
{
}
static inline void blk_zone_finish_request(struct request *rq)
{
}
static inline int blkdev_report_zones_ioctl(struct block_device *bdev,
unsigned int cmd, unsigned long arg)
{
return -ENOTTY;
}
static inline int blkdev_zone_mgmt_ioctl(struct block_device *bdev,
blk_mode_t mode, unsigned int cmd, unsigned long arg)
{
return -ENOTTY;
}
#endif /* CONFIG_BLK_DEV_ZONED */
struct block_device *bdev_alloc(struct gendisk *disk, u8 partno);
void bdev_add(struct block_device *bdev, dev_t dev);
void bdev_unhash(struct block_device *bdev);
void bdev_drop(struct block_device *bdev);
int blk_alloc_ext_minor(void);
void blk_free_ext_minor(unsigned int minor);
#define ADDPART_FLAG_NONE 0
#define ADDPART_FLAG_RAID 1
#define ADDPART_FLAG_WHOLEDISK 2
#define ADDPART_FLAG_READONLY 4
int bdev_add_partition(struct gendisk *disk, int partno, sector_t start,
sector_t length);
int bdev_del_partition(struct gendisk *disk, int partno);
int bdev_resize_partition(struct gendisk *disk, int partno, sector_t start,
sector_t length);
void drop_partition(struct block_device *part);
void bdev_set_nr_sectors(struct block_device *bdev, sector_t sectors);
struct gendisk *__alloc_disk_node(struct request_queue *q, int node_id,
struct lock_class_key *lkclass);
int bio_add_hw_page(struct request_queue *q, struct bio *bio,
struct page *page, unsigned int len, unsigned int offset,
unsigned int max_sectors, bool *same_page);
int bio_add_hw_folio(struct request_queue *q, struct bio *bio,
struct folio *folio, size_t len, size_t offset,
unsigned int max_sectors, bool *same_page);
/*
* Clean up a page appropriately, where the page may be pinned, may have a
* ref taken on it or neither.
*/
static inline void bio_release_page(struct bio *bio, struct page *page)
{
if (bio_flagged(bio, BIO_PAGE_PINNED))
unpin_user_page(page);
}
struct request_queue *blk_alloc_queue(struct queue_limits *lim, int node_id);
int disk_scan_partitions(struct gendisk *disk, blk_mode_t mode);
int disk_alloc_events(struct gendisk *disk);
void disk_add_events(struct gendisk *disk);
void disk_del_events(struct gendisk *disk);
void disk_release_events(struct gendisk *disk);
void disk_block_events(struct gendisk *disk);
void disk_unblock_events(struct gendisk *disk);
void disk_flush_events(struct gendisk *disk, unsigned int mask);
extern struct device_attribute dev_attr_events;
extern struct device_attribute dev_attr_events_async;
extern struct device_attribute dev_attr_events_poll_msecs;
extern struct attribute_group blk_trace_attr_group;
blk_mode_t file_to_blk_mode(struct file *file);
int truncate_bdev_range(struct block_device *bdev, blk_mode_t mode,
loff_t lstart, loff_t lend);
long blkdev_ioctl(struct file *file, unsigned cmd, unsigned long arg);
int blkdev_uring_cmd(struct io_uring_cmd *cmd, unsigned int issue_flags);
long compat_blkdev_ioctl(struct file *file, unsigned cmd, unsigned long arg);
extern const struct address_space_operations def_blk_aops;
int disk_register_independent_access_ranges(struct gendisk *disk);
void disk_unregister_independent_access_ranges(struct gendisk *disk);
#ifdef CONFIG_FAIL_MAKE_REQUEST
bool should_fail_request(struct block_device *part, unsigned int bytes);
#else /* CONFIG_FAIL_MAKE_REQUEST */
static inline bool should_fail_request(struct block_device *part,
unsigned int bytes)
{
return false;
}
#endif /* CONFIG_FAIL_MAKE_REQUEST */
/*
* Optimized request reference counting. Ideally we'd make timeouts be more
* clever, as that's the only reason we need references at all... But until
* this happens, this is faster than using refcount_t. Also see:
*
* abc54d634334 ("io_uring: switch to atomic_t for io_kiocb reference count")
*/
#define req_ref_zero_or_close_to_overflow(req) \
((unsigned int) atomic_read(&(req->ref)) + 127u <= 127u)
static inline bool req_ref_inc_not_zero(struct request *req)
{
return atomic_inc_not_zero(&req->ref);
}
static inline bool req_ref_put_and_test(struct request *req)
{
WARN_ON_ONCE(req_ref_zero_or_close_to_overflow(req));
return atomic_dec_and_test(&req->ref);
}
static inline void req_ref_set(struct request *req, int value)
{
atomic_set(&req->ref, value);
}
static inline int req_ref_read(struct request *req)
{
return atomic_read(&req->ref);
}
static inline u64 blk_time_get_ns(void)
{
struct blk_plug *plug = current->plug;
if (!plug || !in_task())
return ktime_get_ns();
/*
* 0 could very well be a valid time, but rather than flag "this is
* a valid timestamp" separately, just accept that we'll do an extra
* ktime_get_ns() if we just happen to get 0 as the current time.
*/
if (!plug->cur_ktime) {
plug->cur_ktime = ktime_get_ns();
current->flags |= PF_BLOCK_TS;
}
return plug->cur_ktime;
}
static inline ktime_t blk_time_get(void)
{
return ns_to_ktime(blk_time_get_ns());
}
/*
* From most significant bit:
* 1 bit: reserved for other usage, see below
* 12 bits: original size of bio
* 51 bits: issue time of bio
*/
#define BIO_ISSUE_RES_BITS 1
#define BIO_ISSUE_SIZE_BITS 12
#define BIO_ISSUE_RES_SHIFT (64 - BIO_ISSUE_RES_BITS)
#define BIO_ISSUE_SIZE_SHIFT (BIO_ISSUE_RES_SHIFT - BIO_ISSUE_SIZE_BITS)
#define BIO_ISSUE_TIME_MASK ((1ULL << BIO_ISSUE_SIZE_SHIFT) - 1)
#define BIO_ISSUE_SIZE_MASK \
(((1ULL << BIO_ISSUE_SIZE_BITS) - 1) << BIO_ISSUE_SIZE_SHIFT)
#define BIO_ISSUE_RES_MASK (~((1ULL << BIO_ISSUE_RES_SHIFT) - 1))
/* Reserved bit for blk-throtl */
#define BIO_ISSUE_THROTL_SKIP_LATENCY (1ULL << 63)
static inline u64 __bio_issue_time(u64 time)
{
return time & BIO_ISSUE_TIME_MASK;
}
static inline u64 bio_issue_time(struct bio_issue *issue)
{
return __bio_issue_time(issue->value);
}
static inline sector_t bio_issue_size(struct bio_issue *issue)
{
return ((issue->value & BIO_ISSUE_SIZE_MASK) >> BIO_ISSUE_SIZE_SHIFT);
}
static inline void bio_issue_init(struct bio_issue *issue,
sector_t size)
{
size &= (1ULL << BIO_ISSUE_SIZE_BITS) - 1;
issue->value = ((issue->value & BIO_ISSUE_RES_MASK) |
(blk_time_get_ns() & BIO_ISSUE_TIME_MASK) |
((u64)size << BIO_ISSUE_SIZE_SHIFT));
}
void bdev_release(struct file *bdev_file);
int bdev_open(struct block_device *bdev, blk_mode_t mode, void *holder,
const struct blk_holder_ops *hops, struct file *bdev_file);
int bdev_permission(dev_t dev, blk_mode_t mode, void *holder);
void blk_integrity_generate(struct bio *bio);
void blk_integrity_verify(struct bio *bio);
void blk_integrity_prepare(struct request *rq);
void blk_integrity_complete(struct request *rq, unsigned int nr_bytes);
static inline void blk_freeze_acquire_lock(struct request_queue *q, bool
disk_dead, bool queue_dying)
{
if (!disk_dead)
rwsem_acquire(&q->io_lockdep_map, 0, 1, _RET_IP_);
if (!queue_dying)
rwsem_acquire(&q->q_lockdep_map, 0, 1, _RET_IP_);
}
static inline void blk_unfreeze_release_lock(struct request_queue *q, bool
disk_dead, bool queue_dying)
{
if (!queue_dying)
rwsem_release(&q->q_lockdep_map, _RET_IP_);
if (!disk_dead)
rwsem_release(&q->io_lockdep_map, _RET_IP_);
}
#endif /* BLK_INTERNAL_H */