linux/tools/perf/util/callchain.c
Jin Yao 410024dbbc perf report: Add branch flag to callchain cursor node
Since the branch ip has been added to call stack for easier browsing,
this patch adds more branch information. For example, add a flag to
indicate if this ip is a branch, and also add with the branch flag.

Then we can know if the cursor node represents a branch and know what
the branch flag it has.

The branch history code has a loop detection pass that removes loops. It
would be nice for knowing how many loops were removed then in next
steps, we can compute out the average number of iterations.

For example:

Before remove_loops(),
entry0: from = 0x100, to = 0x200
entry1: from = 0x300, to = 0x250
entry2: from = 0x300, to = 0x250
entry3: from = 0x300, to = 0x250
entry4: from = 0x700, to = 0x800

After remove_loops()
entry0: from = 0x100, to = 0x200
entry1: from = 0x300, to = 0x250
entry2: from = 0x700, to = 0x800

The original entry2 and entry3 are removed. So the number of iterations
(from = 0x300, to = 0x250) is equal to removed number + 1 (2 + 1).

iterations = removed number + 1;
average iteractions = Sum(iteractions) / number of samples

This formula ignores other cases, for example, iterations cross multiple
buffers and one buffer contains 2+ loops. Because in practice, it's good
enough.

Signed-off-by: Yao Jin <yao.jin@linux.intel.com>
Acked-by: Andi Kleen <ak@linux.intel.com>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: Kan Liang <kan.liang@intel.com>
Cc: Linux-kernel@vger.kernel.org
Cc: Yao Jin <yao.jin@linux.intel.com>
Link: http://lkml.kernel.org/n/1477876794-30749-2-git-send-email-yao.jin@linux.intel.com
[ Renamed 'iter' to 'nr_loop_iter' for clarity ]
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2016-11-14 13:15:56 -03:00

1050 lines
24 KiB
C

/*
* Copyright (C) 2009-2011, Frederic Weisbecker <fweisbec@gmail.com>
*
* Handle the callchains from the stream in an ad-hoc radix tree and then
* sort them in an rbtree.
*
* Using a radix for code path provides a fast retrieval and factorizes
* memory use. Also that lets us use the paths in a hierarchical graph view.
*
*/
#include <stdlib.h>
#include <stdio.h>
#include <stdbool.h>
#include <errno.h>
#include <math.h>
#include "asm/bug.h"
#include "hist.h"
#include "util.h"
#include "sort.h"
#include "machine.h"
#include "callchain.h"
__thread struct callchain_cursor callchain_cursor;
int parse_callchain_record_opt(const char *arg, struct callchain_param *param)
{
return parse_callchain_record(arg, param);
}
static int parse_callchain_mode(const char *value)
{
if (!strncmp(value, "graph", strlen(value))) {
callchain_param.mode = CHAIN_GRAPH_ABS;
return 0;
}
if (!strncmp(value, "flat", strlen(value))) {
callchain_param.mode = CHAIN_FLAT;
return 0;
}
if (!strncmp(value, "fractal", strlen(value))) {
callchain_param.mode = CHAIN_GRAPH_REL;
return 0;
}
if (!strncmp(value, "folded", strlen(value))) {
callchain_param.mode = CHAIN_FOLDED;
return 0;
}
return -1;
}
static int parse_callchain_order(const char *value)
{
if (!strncmp(value, "caller", strlen(value))) {
callchain_param.order = ORDER_CALLER;
callchain_param.order_set = true;
return 0;
}
if (!strncmp(value, "callee", strlen(value))) {
callchain_param.order = ORDER_CALLEE;
callchain_param.order_set = true;
return 0;
}
return -1;
}
static int parse_callchain_sort_key(const char *value)
{
if (!strncmp(value, "function", strlen(value))) {
callchain_param.key = CCKEY_FUNCTION;
return 0;
}
if (!strncmp(value, "address", strlen(value))) {
callchain_param.key = CCKEY_ADDRESS;
return 0;
}
if (!strncmp(value, "branch", strlen(value))) {
callchain_param.branch_callstack = 1;
return 0;
}
return -1;
}
static int parse_callchain_value(const char *value)
{
if (!strncmp(value, "percent", strlen(value))) {
callchain_param.value = CCVAL_PERCENT;
return 0;
}
if (!strncmp(value, "period", strlen(value))) {
callchain_param.value = CCVAL_PERIOD;
return 0;
}
if (!strncmp(value, "count", strlen(value))) {
callchain_param.value = CCVAL_COUNT;
return 0;
}
return -1;
}
static int
__parse_callchain_report_opt(const char *arg, bool allow_record_opt)
{
char *tok;
char *endptr;
bool minpcnt_set = false;
bool record_opt_set = false;
bool try_stack_size = false;
callchain_param.enabled = true;
symbol_conf.use_callchain = true;
if (!arg)
return 0;
while ((tok = strtok((char *)arg, ",")) != NULL) {
if (!strncmp(tok, "none", strlen(tok))) {
callchain_param.mode = CHAIN_NONE;
callchain_param.enabled = false;
symbol_conf.use_callchain = false;
return 0;
}
if (!parse_callchain_mode(tok) ||
!parse_callchain_order(tok) ||
!parse_callchain_sort_key(tok) ||
!parse_callchain_value(tok)) {
/* parsing ok - move on to the next */
try_stack_size = false;
goto next;
} else if (allow_record_opt && !record_opt_set) {
if (parse_callchain_record(tok, &callchain_param))
goto try_numbers;
/* assume that number followed by 'dwarf' is stack size */
if (callchain_param.record_mode == CALLCHAIN_DWARF)
try_stack_size = true;
record_opt_set = true;
goto next;
}
try_numbers:
if (try_stack_size) {
unsigned long size = 0;
if (get_stack_size(tok, &size) < 0)
return -1;
callchain_param.dump_size = size;
try_stack_size = false;
} else if (!minpcnt_set) {
/* try to get the min percent */
callchain_param.min_percent = strtod(tok, &endptr);
if (tok == endptr)
return -1;
minpcnt_set = true;
} else {
/* try print limit at last */
callchain_param.print_limit = strtoul(tok, &endptr, 0);
if (tok == endptr)
return -1;
}
next:
arg = NULL;
}
if (callchain_register_param(&callchain_param) < 0) {
pr_err("Can't register callchain params\n");
return -1;
}
return 0;
}
int parse_callchain_report_opt(const char *arg)
{
return __parse_callchain_report_opt(arg, false);
}
int parse_callchain_top_opt(const char *arg)
{
return __parse_callchain_report_opt(arg, true);
}
int perf_callchain_config(const char *var, const char *value)
{
char *endptr;
if (prefixcmp(var, "call-graph."))
return 0;
var += sizeof("call-graph.") - 1;
if (!strcmp(var, "record-mode"))
return parse_callchain_record_opt(value, &callchain_param);
if (!strcmp(var, "dump-size")) {
unsigned long size = 0;
int ret;
ret = get_stack_size(value, &size);
callchain_param.dump_size = size;
return ret;
}
if (!strcmp(var, "print-type"))
return parse_callchain_mode(value);
if (!strcmp(var, "order"))
return parse_callchain_order(value);
if (!strcmp(var, "sort-key"))
return parse_callchain_sort_key(value);
if (!strcmp(var, "threshold")) {
callchain_param.min_percent = strtod(value, &endptr);
if (value == endptr)
return -1;
}
if (!strcmp(var, "print-limit")) {
callchain_param.print_limit = strtod(value, &endptr);
if (value == endptr)
return -1;
}
return 0;
}
static void
rb_insert_callchain(struct rb_root *root, struct callchain_node *chain,
enum chain_mode mode)
{
struct rb_node **p = &root->rb_node;
struct rb_node *parent = NULL;
struct callchain_node *rnode;
u64 chain_cumul = callchain_cumul_hits(chain);
while (*p) {
u64 rnode_cumul;
parent = *p;
rnode = rb_entry(parent, struct callchain_node, rb_node);
rnode_cumul = callchain_cumul_hits(rnode);
switch (mode) {
case CHAIN_FLAT:
case CHAIN_FOLDED:
if (rnode->hit < chain->hit)
p = &(*p)->rb_left;
else
p = &(*p)->rb_right;
break;
case CHAIN_GRAPH_ABS: /* Falldown */
case CHAIN_GRAPH_REL:
if (rnode_cumul < chain_cumul)
p = &(*p)->rb_left;
else
p = &(*p)->rb_right;
break;
case CHAIN_NONE:
default:
break;
}
}
rb_link_node(&chain->rb_node, parent, p);
rb_insert_color(&chain->rb_node, root);
}
static void
__sort_chain_flat(struct rb_root *rb_root, struct callchain_node *node,
u64 min_hit)
{
struct rb_node *n;
struct callchain_node *child;
n = rb_first(&node->rb_root_in);
while (n) {
child = rb_entry(n, struct callchain_node, rb_node_in);
n = rb_next(n);
__sort_chain_flat(rb_root, child, min_hit);
}
if (node->hit && node->hit >= min_hit)
rb_insert_callchain(rb_root, node, CHAIN_FLAT);
}
/*
* Once we get every callchains from the stream, we can now
* sort them by hit
*/
static void
sort_chain_flat(struct rb_root *rb_root, struct callchain_root *root,
u64 min_hit, struct callchain_param *param __maybe_unused)
{
*rb_root = RB_ROOT;
__sort_chain_flat(rb_root, &root->node, min_hit);
}
static void __sort_chain_graph_abs(struct callchain_node *node,
u64 min_hit)
{
struct rb_node *n;
struct callchain_node *child;
node->rb_root = RB_ROOT;
n = rb_first(&node->rb_root_in);
while (n) {
child = rb_entry(n, struct callchain_node, rb_node_in);
n = rb_next(n);
__sort_chain_graph_abs(child, min_hit);
if (callchain_cumul_hits(child) >= min_hit)
rb_insert_callchain(&node->rb_root, child,
CHAIN_GRAPH_ABS);
}
}
static void
sort_chain_graph_abs(struct rb_root *rb_root, struct callchain_root *chain_root,
u64 min_hit, struct callchain_param *param __maybe_unused)
{
__sort_chain_graph_abs(&chain_root->node, min_hit);
rb_root->rb_node = chain_root->node.rb_root.rb_node;
}
static void __sort_chain_graph_rel(struct callchain_node *node,
double min_percent)
{
struct rb_node *n;
struct callchain_node *child;
u64 min_hit;
node->rb_root = RB_ROOT;
min_hit = ceil(node->children_hit * min_percent);
n = rb_first(&node->rb_root_in);
while (n) {
child = rb_entry(n, struct callchain_node, rb_node_in);
n = rb_next(n);
__sort_chain_graph_rel(child, min_percent);
if (callchain_cumul_hits(child) >= min_hit)
rb_insert_callchain(&node->rb_root, child,
CHAIN_GRAPH_REL);
}
}
static void
sort_chain_graph_rel(struct rb_root *rb_root, struct callchain_root *chain_root,
u64 min_hit __maybe_unused, struct callchain_param *param)
{
__sort_chain_graph_rel(&chain_root->node, param->min_percent / 100.0);
rb_root->rb_node = chain_root->node.rb_root.rb_node;
}
int callchain_register_param(struct callchain_param *param)
{
switch (param->mode) {
case CHAIN_GRAPH_ABS:
param->sort = sort_chain_graph_abs;
break;
case CHAIN_GRAPH_REL:
param->sort = sort_chain_graph_rel;
break;
case CHAIN_FLAT:
case CHAIN_FOLDED:
param->sort = sort_chain_flat;
break;
case CHAIN_NONE:
default:
return -1;
}
return 0;
}
/*
* Create a child for a parent. If inherit_children, then the new child
* will become the new parent of it's parent children
*/
static struct callchain_node *
create_child(struct callchain_node *parent, bool inherit_children)
{
struct callchain_node *new;
new = zalloc(sizeof(*new));
if (!new) {
perror("not enough memory to create child for code path tree");
return NULL;
}
new->parent = parent;
INIT_LIST_HEAD(&new->val);
INIT_LIST_HEAD(&new->parent_val);
if (inherit_children) {
struct rb_node *n;
struct callchain_node *child;
new->rb_root_in = parent->rb_root_in;
parent->rb_root_in = RB_ROOT;
n = rb_first(&new->rb_root_in);
while (n) {
child = rb_entry(n, struct callchain_node, rb_node_in);
child->parent = new;
n = rb_next(n);
}
/* make it the first child */
rb_link_node(&new->rb_node_in, NULL, &parent->rb_root_in.rb_node);
rb_insert_color(&new->rb_node_in, &parent->rb_root_in);
}
return new;
}
/*
* Fill the node with callchain values
*/
static int
fill_node(struct callchain_node *node, struct callchain_cursor *cursor)
{
struct callchain_cursor_node *cursor_node;
node->val_nr = cursor->nr - cursor->pos;
if (!node->val_nr)
pr_warning("Warning: empty node in callchain tree\n");
cursor_node = callchain_cursor_current(cursor);
while (cursor_node) {
struct callchain_list *call;
call = zalloc(sizeof(*call));
if (!call) {
perror("not enough memory for the code path tree");
return -1;
}
call->ip = cursor_node->ip;
call->ms.sym = cursor_node->sym;
call->ms.map = cursor_node->map;
list_add_tail(&call->list, &node->val);
callchain_cursor_advance(cursor);
cursor_node = callchain_cursor_current(cursor);
}
return 0;
}
static struct callchain_node *
add_child(struct callchain_node *parent,
struct callchain_cursor *cursor,
u64 period)
{
struct callchain_node *new;
new = create_child(parent, false);
if (new == NULL)
return NULL;
if (fill_node(new, cursor) < 0) {
struct callchain_list *call, *tmp;
list_for_each_entry_safe(call, tmp, &new->val, list) {
list_del(&call->list);
free(call);
}
free(new);
return NULL;
}
new->children_hit = 0;
new->hit = period;
new->children_count = 0;
new->count = 1;
return new;
}
enum match_result {
MATCH_ERROR = -1,
MATCH_EQ,
MATCH_LT,
MATCH_GT,
};
static enum match_result match_chain(struct callchain_cursor_node *node,
struct callchain_list *cnode)
{
struct symbol *sym = node->sym;
u64 left, right;
if (cnode->ms.sym && sym &&
callchain_param.key == CCKEY_FUNCTION) {
left = cnode->ms.sym->start;
right = sym->start;
} else {
left = cnode->ip;
right = node->ip;
}
if (left == right)
return MATCH_EQ;
return left > right ? MATCH_GT : MATCH_LT;
}
/*
* Split the parent in two parts (a new child is created) and
* give a part of its callchain to the created child.
* Then create another child to host the given callchain of new branch
*/
static int
split_add_child(struct callchain_node *parent,
struct callchain_cursor *cursor,
struct callchain_list *to_split,
u64 idx_parents, u64 idx_local, u64 period)
{
struct callchain_node *new;
struct list_head *old_tail;
unsigned int idx_total = idx_parents + idx_local;
/* split */
new = create_child(parent, true);
if (new == NULL)
return -1;
/* split the callchain and move a part to the new child */
old_tail = parent->val.prev;
list_del_range(&to_split->list, old_tail);
new->val.next = &to_split->list;
new->val.prev = old_tail;
to_split->list.prev = &new->val;
old_tail->next = &new->val;
/* split the hits */
new->hit = parent->hit;
new->children_hit = parent->children_hit;
parent->children_hit = callchain_cumul_hits(new);
new->val_nr = parent->val_nr - idx_local;
parent->val_nr = idx_local;
new->count = parent->count;
new->children_count = parent->children_count;
parent->children_count = callchain_cumul_counts(new);
/* create a new child for the new branch if any */
if (idx_total < cursor->nr) {
struct callchain_node *first;
struct callchain_list *cnode;
struct callchain_cursor_node *node;
struct rb_node *p, **pp;
parent->hit = 0;
parent->children_hit += period;
parent->count = 0;
parent->children_count += 1;
node = callchain_cursor_current(cursor);
new = add_child(parent, cursor, period);
if (new == NULL)
return -1;
/*
* This is second child since we moved parent's children
* to new (first) child above.
*/
p = parent->rb_root_in.rb_node;
first = rb_entry(p, struct callchain_node, rb_node_in);
cnode = list_first_entry(&first->val, struct callchain_list,
list);
if (match_chain(node, cnode) == MATCH_LT)
pp = &p->rb_left;
else
pp = &p->rb_right;
rb_link_node(&new->rb_node_in, p, pp);
rb_insert_color(&new->rb_node_in, &parent->rb_root_in);
} else {
parent->hit = period;
parent->count = 1;
}
return 0;
}
static enum match_result
append_chain(struct callchain_node *root,
struct callchain_cursor *cursor,
u64 period);
static int
append_chain_children(struct callchain_node *root,
struct callchain_cursor *cursor,
u64 period)
{
struct callchain_node *rnode;
struct callchain_cursor_node *node;
struct rb_node **p = &root->rb_root_in.rb_node;
struct rb_node *parent = NULL;
node = callchain_cursor_current(cursor);
if (!node)
return -1;
/* lookup in childrens */
while (*p) {
enum match_result ret;
parent = *p;
rnode = rb_entry(parent, struct callchain_node, rb_node_in);
/* If at least first entry matches, rely to children */
ret = append_chain(rnode, cursor, period);
if (ret == MATCH_EQ)
goto inc_children_hit;
if (ret == MATCH_ERROR)
return -1;
if (ret == MATCH_LT)
p = &parent->rb_left;
else
p = &parent->rb_right;
}
/* nothing in children, add to the current node */
rnode = add_child(root, cursor, period);
if (rnode == NULL)
return -1;
rb_link_node(&rnode->rb_node_in, parent, p);
rb_insert_color(&rnode->rb_node_in, &root->rb_root_in);
inc_children_hit:
root->children_hit += period;
root->children_count++;
return 0;
}
static enum match_result
append_chain(struct callchain_node *root,
struct callchain_cursor *cursor,
u64 period)
{
struct callchain_list *cnode;
u64 start = cursor->pos;
bool found = false;
u64 matches;
enum match_result cmp = MATCH_ERROR;
/*
* Lookup in the current node
* If we have a symbol, then compare the start to match
* anywhere inside a function, unless function
* mode is disabled.
*/
list_for_each_entry(cnode, &root->val, list) {
struct callchain_cursor_node *node;
node = callchain_cursor_current(cursor);
if (!node)
break;
cmp = match_chain(node, cnode);
if (cmp != MATCH_EQ)
break;
found = true;
callchain_cursor_advance(cursor);
}
/* matches not, relay no the parent */
if (!found) {
WARN_ONCE(cmp == MATCH_ERROR, "Chain comparison error\n");
return cmp;
}
matches = cursor->pos - start;
/* we match only a part of the node. Split it and add the new chain */
if (matches < root->val_nr) {
if (split_add_child(root, cursor, cnode, start, matches,
period) < 0)
return MATCH_ERROR;
return MATCH_EQ;
}
/* we match 100% of the path, increment the hit */
if (matches == root->val_nr && cursor->pos == cursor->nr) {
root->hit += period;
root->count++;
return MATCH_EQ;
}
/* We match the node and still have a part remaining */
if (append_chain_children(root, cursor, period) < 0)
return MATCH_ERROR;
return MATCH_EQ;
}
int callchain_append(struct callchain_root *root,
struct callchain_cursor *cursor,
u64 period)
{
if (!cursor->nr)
return 0;
callchain_cursor_commit(cursor);
if (append_chain_children(&root->node, cursor, period) < 0)
return -1;
if (cursor->nr > root->max_depth)
root->max_depth = cursor->nr;
return 0;
}
static int
merge_chain_branch(struct callchain_cursor *cursor,
struct callchain_node *dst, struct callchain_node *src)
{
struct callchain_cursor_node **old_last = cursor->last;
struct callchain_node *child;
struct callchain_list *list, *next_list;
struct rb_node *n;
int old_pos = cursor->nr;
int err = 0;
list_for_each_entry_safe(list, next_list, &src->val, list) {
callchain_cursor_append(cursor, list->ip,
list->ms.map, list->ms.sym,
false, NULL, 0, 0);
list_del(&list->list);
free(list);
}
if (src->hit) {
callchain_cursor_commit(cursor);
if (append_chain_children(dst, cursor, src->hit) < 0)
return -1;
}
n = rb_first(&src->rb_root_in);
while (n) {
child = container_of(n, struct callchain_node, rb_node_in);
n = rb_next(n);
rb_erase(&child->rb_node_in, &src->rb_root_in);
err = merge_chain_branch(cursor, dst, child);
if (err)
break;
free(child);
}
cursor->nr = old_pos;
cursor->last = old_last;
return err;
}
int callchain_merge(struct callchain_cursor *cursor,
struct callchain_root *dst, struct callchain_root *src)
{
return merge_chain_branch(cursor, &dst->node, &src->node);
}
int callchain_cursor_append(struct callchain_cursor *cursor,
u64 ip, struct map *map, struct symbol *sym,
bool branch, struct branch_flags *flags,
int nr_loop_iter, int samples)
{
struct callchain_cursor_node *node = *cursor->last;
if (!node) {
node = calloc(1, sizeof(*node));
if (!node)
return -ENOMEM;
*cursor->last = node;
}
node->ip = ip;
node->map = map;
node->sym = sym;
node->branch = branch;
node->nr_loop_iter = nr_loop_iter;
node->samples = samples;
if (flags)
memcpy(&node->branch_flags, flags,
sizeof(struct branch_flags));
cursor->nr++;
cursor->last = &node->next;
return 0;
}
int sample__resolve_callchain(struct perf_sample *sample,
struct callchain_cursor *cursor, struct symbol **parent,
struct perf_evsel *evsel, struct addr_location *al,
int max_stack)
{
if (sample->callchain == NULL)
return 0;
if (symbol_conf.use_callchain || symbol_conf.cumulate_callchain ||
perf_hpp_list.parent) {
return thread__resolve_callchain(al->thread, cursor, evsel, sample,
parent, al, max_stack);
}
return 0;
}
int hist_entry__append_callchain(struct hist_entry *he, struct perf_sample *sample)
{
if (!symbol_conf.use_callchain || sample->callchain == NULL)
return 0;
return callchain_append(he->callchain, &callchain_cursor, sample->period);
}
int fill_callchain_info(struct addr_location *al, struct callchain_cursor_node *node,
bool hide_unresolved)
{
al->map = node->map;
al->sym = node->sym;
if (node->map)
al->addr = node->map->map_ip(node->map, node->ip);
else
al->addr = node->ip;
if (al->sym == NULL) {
if (hide_unresolved)
return 0;
if (al->map == NULL)
goto out;
}
if (al->map->groups == &al->machine->kmaps) {
if (machine__is_host(al->machine)) {
al->cpumode = PERF_RECORD_MISC_KERNEL;
al->level = 'k';
} else {
al->cpumode = PERF_RECORD_MISC_GUEST_KERNEL;
al->level = 'g';
}
} else {
if (machine__is_host(al->machine)) {
al->cpumode = PERF_RECORD_MISC_USER;
al->level = '.';
} else if (perf_guest) {
al->cpumode = PERF_RECORD_MISC_GUEST_USER;
al->level = 'u';
} else {
al->cpumode = PERF_RECORD_MISC_HYPERVISOR;
al->level = 'H';
}
}
out:
return 1;
}
char *callchain_list__sym_name(struct callchain_list *cl,
char *bf, size_t bfsize, bool show_dso)
{
int printed;
if (cl->ms.sym) {
if (callchain_param.key == CCKEY_ADDRESS &&
cl->ms.map && !cl->srcline)
cl->srcline = get_srcline(cl->ms.map->dso,
map__rip_2objdump(cl->ms.map,
cl->ip),
cl->ms.sym, false);
if (cl->srcline)
printed = scnprintf(bf, bfsize, "%s %s",
cl->ms.sym->name, cl->srcline);
else
printed = scnprintf(bf, bfsize, "%s", cl->ms.sym->name);
} else
printed = scnprintf(bf, bfsize, "%#" PRIx64, cl->ip);
if (show_dso)
scnprintf(bf + printed, bfsize - printed, " %s",
cl->ms.map ?
cl->ms.map->dso->short_name :
"unknown");
return bf;
}
char *callchain_node__scnprintf_value(struct callchain_node *node,
char *bf, size_t bfsize, u64 total)
{
double percent = 0.0;
u64 period = callchain_cumul_hits(node);
unsigned count = callchain_cumul_counts(node);
if (callchain_param.mode == CHAIN_FOLDED) {
period = node->hit;
count = node->count;
}
switch (callchain_param.value) {
case CCVAL_PERIOD:
scnprintf(bf, bfsize, "%"PRIu64, period);
break;
case CCVAL_COUNT:
scnprintf(bf, bfsize, "%u", count);
break;
case CCVAL_PERCENT:
default:
if (total)
percent = period * 100.0 / total;
scnprintf(bf, bfsize, "%.2f%%", percent);
break;
}
return bf;
}
int callchain_node__fprintf_value(struct callchain_node *node,
FILE *fp, u64 total)
{
double percent = 0.0;
u64 period = callchain_cumul_hits(node);
unsigned count = callchain_cumul_counts(node);
if (callchain_param.mode == CHAIN_FOLDED) {
period = node->hit;
count = node->count;
}
switch (callchain_param.value) {
case CCVAL_PERIOD:
return fprintf(fp, "%"PRIu64, period);
case CCVAL_COUNT:
return fprintf(fp, "%u", count);
case CCVAL_PERCENT:
default:
if (total)
percent = period * 100.0 / total;
return percent_color_fprintf(fp, "%.2f%%", percent);
}
return 0;
}
static void free_callchain_node(struct callchain_node *node)
{
struct callchain_list *list, *tmp;
struct callchain_node *child;
struct rb_node *n;
list_for_each_entry_safe(list, tmp, &node->parent_val, list) {
list_del(&list->list);
free(list);
}
list_for_each_entry_safe(list, tmp, &node->val, list) {
list_del(&list->list);
free(list);
}
n = rb_first(&node->rb_root_in);
while (n) {
child = container_of(n, struct callchain_node, rb_node_in);
n = rb_next(n);
rb_erase(&child->rb_node_in, &node->rb_root_in);
free_callchain_node(child);
free(child);
}
}
void free_callchain(struct callchain_root *root)
{
if (!symbol_conf.use_callchain)
return;
free_callchain_node(&root->node);
}
static u64 decay_callchain_node(struct callchain_node *node)
{
struct callchain_node *child;
struct rb_node *n;
u64 child_hits = 0;
n = rb_first(&node->rb_root_in);
while (n) {
child = container_of(n, struct callchain_node, rb_node_in);
child_hits += decay_callchain_node(child);
n = rb_next(n);
}
node->hit = (node->hit * 7) / 8;
node->children_hit = child_hits;
return node->hit;
}
void decay_callchain(struct callchain_root *root)
{
if (!symbol_conf.use_callchain)
return;
decay_callchain_node(&root->node);
}
int callchain_node__make_parent_list(struct callchain_node *node)
{
struct callchain_node *parent = node->parent;
struct callchain_list *chain, *new;
LIST_HEAD(head);
while (parent) {
list_for_each_entry_reverse(chain, &parent->val, list) {
new = malloc(sizeof(*new));
if (new == NULL)
goto out;
*new = *chain;
new->has_children = false;
list_add_tail(&new->list, &head);
}
parent = parent->parent;
}
list_for_each_entry_safe_reverse(chain, new, &head, list)
list_move_tail(&chain->list, &node->parent_val);
if (!list_empty(&node->parent_val)) {
chain = list_first_entry(&node->parent_val, struct callchain_list, list);
chain->has_children = rb_prev(&node->rb_node) || rb_next(&node->rb_node);
chain = list_first_entry(&node->val, struct callchain_list, list);
chain->has_children = false;
}
return 0;
out:
list_for_each_entry_safe(chain, new, &head, list) {
list_del(&chain->list);
free(chain);
}
return -ENOMEM;
}