mirror of
https://github.com/torvalds/linux.git
synced 2024-11-23 04:31:50 +00:00
ecae0bd517
included in this merge do the following: - Kemeng Shi has contributed some compation maintenance work in the series "Fixes and cleanups to compaction". - Joel Fernandes has a patchset ("Optimize mremap during mutual alignment within PMD") which fixes an obscure issue with mremap()'s pagetable handling during a subsequent exec(), based upon an implementation which Linus suggested. - More DAMON/DAMOS maintenance and feature work from SeongJae Park i the following patch series: mm/damon: misc fixups for documents, comments and its tracepoint mm/damon: add a tracepoint for damos apply target regions mm/damon: provide pseudo-moving sum based access rate mm/damon: implement DAMOS apply intervals mm/damon/core-test: Fix memory leaks in core-test mm/damon/sysfs-schemes: Do DAMOS tried regions update for only one apply interval - In the series "Do not try to access unaccepted memory" Adrian Hunter provides some fixups for the recently-added "unaccepted memory' feature. To increase the feature's checking coverage. "Plug a few gaps where RAM is exposed without checking if it is unaccepted memory". - In the series "cleanups for lockless slab shrink" Qi Zheng has done some maintenance work which is preparation for the lockless slab shrinking code. - Qi Zheng has redone the earlier (and reverted) attempt to make slab shrinking lockless in the series "use refcount+RCU method to implement lockless slab shrink". - David Hildenbrand contributes some maintenance work for the rmap code in the series "Anon rmap cleanups". - Kefeng Wang does more folio conversions and some maintenance work in the migration code. Series "mm: migrate: more folio conversion and unification". - Matthew Wilcox has fixed an issue in the buffer_head code which was causing long stalls under some heavy memory/IO loads. Some cleanups were added on the way. Series "Add and use bdev_getblk()". - In the series "Use nth_page() in place of direct struct page manipulation" Zi Yan has fixed a potential issue with the direct manipulation of hugetlb page frames. - In the series "mm: hugetlb: Skip initialization of gigantic tail struct pages if freed by HVO" has improved our handling of gigantic pages in the hugetlb vmmemmep optimizaton code. This provides significant boot time improvements when significant amounts of gigantic pages are in use. - Matthew Wilcox has sent the series "Small hugetlb cleanups" - code rationalization and folio conversions in the hugetlb code. - Yin Fengwei has improved mlock()'s handling of large folios in the series "support large folio for mlock" - In the series "Expose swapcache stat for memcg v1" Liu Shixin has added statistics for memcg v1 users which are available (and useful) under memcg v2. - Florent Revest has enhanced the MDWE (Memory-Deny-Write-Executable) prctl so that userspace may direct the kernel to not automatically propagate the denial to child processes. The series is named "MDWE without inheritance". - Kefeng Wang has provided the series "mm: convert numa balancing functions to use a folio" which does what it says. - In the series "mm/ksm: add fork-exec support for prctl" Stefan Roesch makes is possible for a process to propagate KSM treatment across exec(). - Huang Ying has enhanced memory tiering's calculation of memory distances. This is used to permit the dax/kmem driver to use "high bandwidth memory" in addition to Optane Data Center Persistent Memory Modules (DCPMM). The series is named "memory tiering: calculate abstract distance based on ACPI HMAT" - In the series "Smart scanning mode for KSM" Stefan Roesch has optimized KSM by teaching it to retain and use some historical information from previous scans. - Yosry Ahmed has fixed some inconsistencies in memcg statistics in the series "mm: memcg: fix tracking of pending stats updates values". - In the series "Implement IOCTL to get and optionally clear info about PTEs" Peter Xu has added an ioctl to /proc/<pid>/pagemap which permits us to atomically read-then-clear page softdirty state. This is mainly used by CRIU. - Hugh Dickins contributed the series "shmem,tmpfs: general maintenance" - a bunch of relatively minor maintenance tweaks to this code. - Matthew Wilcox has increased the use of the VMA lock over file-backed page faults in the series "Handle more faults under the VMA lock". Some rationalizations of the fault path became possible as a result. - In the series "mm/rmap: convert page_move_anon_rmap() to folio_move_anon_rmap()" David Hildenbrand has implemented some cleanups and folio conversions. - In the series "various improvements to the GUP interface" Lorenzo Stoakes has simplified and improved the GUP interface with an eye to providing groundwork for future improvements. - Andrey Konovalov has sent along the series "kasan: assorted fixes and improvements" which does those things. - Some page allocator maintenance work from Kemeng Shi in the series "Two minor cleanups to break_down_buddy_pages". - In thes series "New selftest for mm" Breno Leitao has developed another MM self test which tickles a race we had between madvise() and page faults. - In the series "Add folio_end_read" Matthew Wilcox provides cleanups and an optimization to the core pagecache code. - Nhat Pham has added memcg accounting for hugetlb memory in the series "hugetlb memcg accounting". - Cleanups and rationalizations to the pagemap code from Lorenzo Stoakes, in the series "Abstract vma_merge() and split_vma()". - Audra Mitchell has fixed issues in the procfs page_owner code's new timestamping feature which was causing some misbehaviours. In the series "Fix page_owner's use of free timestamps". - Lorenzo Stoakes has fixed the handling of new mappings of sealed files in the series "permit write-sealed memfd read-only shared mappings". - Mike Kravetz has optimized the hugetlb vmemmap optimization in the series "Batch hugetlb vmemmap modification operations". - Some buffer_head folio conversions and cleanups from Matthew Wilcox in the series "Finish the create_empty_buffers() transition". - As a page allocator performance optimization Huang Ying has added automatic tuning to the allocator's per-cpu-pages feature, in the series "mm: PCP high auto-tuning". - Roman Gushchin has contributed the patchset "mm: improve performance of accounted kernel memory allocations" which improves their performance by ~30% as measured by a micro-benchmark. - folio conversions from Kefeng Wang in the series "mm: convert page cpupid functions to folios". - Some kmemleak fixups in Liu Shixin's series "Some bugfix about kmemleak". - Qi Zheng has improved our handling of memoryless nodes by keeping them off the allocation fallback list. This is done in the series "handle memoryless nodes more appropriately". - khugepaged conversions from Vishal Moola in the series "Some khugepaged folio conversions". -----BEGIN PGP SIGNATURE----- iHUEABYIAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCZULEMwAKCRDdBJ7gKXxA jhQHAQCYpD3g849x69DmHnHWHm/EHQLvQmRMDeYZI+nx/sCJOwEAw4AKg0Oemv9y FgeUPAD1oasg6CP+INZvCj34waNxwAc= =E+Y4 -----END PGP SIGNATURE----- Merge tag 'mm-stable-2023-11-01-14-33' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm Pull MM updates from Andrew Morton: "Many singleton patches against the MM code. The patch series which are included in this merge do the following: - Kemeng Shi has contributed some compation maintenance work in the series 'Fixes and cleanups to compaction' - Joel Fernandes has a patchset ('Optimize mremap during mutual alignment within PMD') which fixes an obscure issue with mremap()'s pagetable handling during a subsequent exec(), based upon an implementation which Linus suggested - More DAMON/DAMOS maintenance and feature work from SeongJae Park i the following patch series: mm/damon: misc fixups for documents, comments and its tracepoint mm/damon: add a tracepoint for damos apply target regions mm/damon: provide pseudo-moving sum based access rate mm/damon: implement DAMOS apply intervals mm/damon/core-test: Fix memory leaks in core-test mm/damon/sysfs-schemes: Do DAMOS tried regions update for only one apply interval - In the series 'Do not try to access unaccepted memory' Adrian Hunter provides some fixups for the recently-added 'unaccepted memory' feature. To increase the feature's checking coverage. 'Plug a few gaps where RAM is exposed without checking if it is unaccepted memory' - In the series 'cleanups for lockless slab shrink' Qi Zheng has done some maintenance work which is preparation for the lockless slab shrinking code - Qi Zheng has redone the earlier (and reverted) attempt to make slab shrinking lockless in the series 'use refcount+RCU method to implement lockless slab shrink' - David Hildenbrand contributes some maintenance work for the rmap code in the series 'Anon rmap cleanups' - Kefeng Wang does more folio conversions and some maintenance work in the migration code. Series 'mm: migrate: more folio conversion and unification' - Matthew Wilcox has fixed an issue in the buffer_head code which was causing long stalls under some heavy memory/IO loads. Some cleanups were added on the way. Series 'Add and use bdev_getblk()' - In the series 'Use nth_page() in place of direct struct page manipulation' Zi Yan has fixed a potential issue with the direct manipulation of hugetlb page frames - In the series 'mm: hugetlb: Skip initialization of gigantic tail struct pages if freed by HVO' has improved our handling of gigantic pages in the hugetlb vmmemmep optimizaton code. This provides significant boot time improvements when significant amounts of gigantic pages are in use - Matthew Wilcox has sent the series 'Small hugetlb cleanups' - code rationalization and folio conversions in the hugetlb code - Yin Fengwei has improved mlock()'s handling of large folios in the series 'support large folio for mlock' - In the series 'Expose swapcache stat for memcg v1' Liu Shixin has added statistics for memcg v1 users which are available (and useful) under memcg v2 - Florent Revest has enhanced the MDWE (Memory-Deny-Write-Executable) prctl so that userspace may direct the kernel to not automatically propagate the denial to child processes. The series is named 'MDWE without inheritance' - Kefeng Wang has provided the series 'mm: convert numa balancing functions to use a folio' which does what it says - In the series 'mm/ksm: add fork-exec support for prctl' Stefan Roesch makes is possible for a process to propagate KSM treatment across exec() - Huang Ying has enhanced memory tiering's calculation of memory distances. This is used to permit the dax/kmem driver to use 'high bandwidth memory' in addition to Optane Data Center Persistent Memory Modules (DCPMM). The series is named 'memory tiering: calculate abstract distance based on ACPI HMAT' - In the series 'Smart scanning mode for KSM' Stefan Roesch has optimized KSM by teaching it to retain and use some historical information from previous scans - Yosry Ahmed has fixed some inconsistencies in memcg statistics in the series 'mm: memcg: fix tracking of pending stats updates values' - In the series 'Implement IOCTL to get and optionally clear info about PTEs' Peter Xu has added an ioctl to /proc/<pid>/pagemap which permits us to atomically read-then-clear page softdirty state. This is mainly used by CRIU - Hugh Dickins contributed the series 'shmem,tmpfs: general maintenance', a bunch of relatively minor maintenance tweaks to this code - Matthew Wilcox has increased the use of the VMA lock over file-backed page faults in the series 'Handle more faults under the VMA lock'. Some rationalizations of the fault path became possible as a result - In the series 'mm/rmap: convert page_move_anon_rmap() to folio_move_anon_rmap()' David Hildenbrand has implemented some cleanups and folio conversions - In the series 'various improvements to the GUP interface' Lorenzo Stoakes has simplified and improved the GUP interface with an eye to providing groundwork for future improvements - Andrey Konovalov has sent along the series 'kasan: assorted fixes and improvements' which does those things - Some page allocator maintenance work from Kemeng Shi in the series 'Two minor cleanups to break_down_buddy_pages' - In thes series 'New selftest for mm' Breno Leitao has developed another MM self test which tickles a race we had between madvise() and page faults - In the series 'Add folio_end_read' Matthew Wilcox provides cleanups and an optimization to the core pagecache code - Nhat Pham has added memcg accounting for hugetlb memory in the series 'hugetlb memcg accounting' - Cleanups and rationalizations to the pagemap code from Lorenzo Stoakes, in the series 'Abstract vma_merge() and split_vma()' - Audra Mitchell has fixed issues in the procfs page_owner code's new timestamping feature which was causing some misbehaviours. In the series 'Fix page_owner's use of free timestamps' - Lorenzo Stoakes has fixed the handling of new mappings of sealed files in the series 'permit write-sealed memfd read-only shared mappings' - Mike Kravetz has optimized the hugetlb vmemmap optimization in the series 'Batch hugetlb vmemmap modification operations' - Some buffer_head folio conversions and cleanups from Matthew Wilcox in the series 'Finish the create_empty_buffers() transition' - As a page allocator performance optimization Huang Ying has added automatic tuning to the allocator's per-cpu-pages feature, in the series 'mm: PCP high auto-tuning' - Roman Gushchin has contributed the patchset 'mm: improve performance of accounted kernel memory allocations' which improves their performance by ~30% as measured by a micro-benchmark - folio conversions from Kefeng Wang in the series 'mm: convert page cpupid functions to folios' - Some kmemleak fixups in Liu Shixin's series 'Some bugfix about kmemleak' - Qi Zheng has improved our handling of memoryless nodes by keeping them off the allocation fallback list. This is done in the series 'handle memoryless nodes more appropriately' - khugepaged conversions from Vishal Moola in the series 'Some khugepaged folio conversions'" [ bcachefs conflicts with the dynamically allocated shrinkers have been resolved as per Stephen Rothwell in https://lore.kernel.org/all/20230913093553.4290421e@canb.auug.org.au/ with help from Qi Zheng. The clone3 test filtering conflict was half-arsed by yours truly ] * tag 'mm-stable-2023-11-01-14-33' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (406 commits) mm/damon/sysfs: update monitoring target regions for online input commit mm/damon/sysfs: remove requested targets when online-commit inputs selftests: add a sanity check for zswap Documentation: maple_tree: fix word spelling error mm/vmalloc: fix the unchecked dereference warning in vread_iter() zswap: export compression failure stats Documentation: ubsan: drop "the" from article title mempolicy: migration attempt to match interleave nodes mempolicy: mmap_lock is not needed while migrating folios mempolicy: alloc_pages_mpol() for NUMA policy without vma mm: add page_rmappable_folio() wrapper mempolicy: remove confusing MPOL_MF_LAZY dead code mempolicy: mpol_shared_policy_init() without pseudo-vma mempolicy trivia: use pgoff_t in shared mempolicy tree mempolicy trivia: slightly more consistent naming mempolicy trivia: delete those ancient pr_debug()s mempolicy: fix migrate_pages(2) syscall return nr_failed kernfs: drop shared NUMA mempolicy hooks hugetlbfs: drop shared NUMA mempolicy pretence mm/damon/sysfs-test: add a unit test for damon_sysfs_set_targets() ...
2313 lines
63 KiB
C
2313 lines
63 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* fs/ext4/extents_status.c
|
|
*
|
|
* Written by Yongqiang Yang <xiaoqiangnk@gmail.com>
|
|
* Modified by
|
|
* Allison Henderson <achender@linux.vnet.ibm.com>
|
|
* Hugh Dickins <hughd@google.com>
|
|
* Zheng Liu <wenqing.lz@taobao.com>
|
|
*
|
|
* Ext4 extents status tree core functions.
|
|
*/
|
|
#include <linux/list_sort.h>
|
|
#include <linux/proc_fs.h>
|
|
#include <linux/seq_file.h>
|
|
#include "ext4.h"
|
|
|
|
#include <trace/events/ext4.h>
|
|
|
|
/*
|
|
* According to previous discussion in Ext4 Developer Workshop, we
|
|
* will introduce a new structure called io tree to track all extent
|
|
* status in order to solve some problems that we have met
|
|
* (e.g. Reservation space warning), and provide extent-level locking.
|
|
* Delay extent tree is the first step to achieve this goal. It is
|
|
* original built by Yongqiang Yang. At that time it is called delay
|
|
* extent tree, whose goal is only track delayed extents in memory to
|
|
* simplify the implementation of fiemap and bigalloc, and introduce
|
|
* lseek SEEK_DATA/SEEK_HOLE support. That is why it is still called
|
|
* delay extent tree at the first commit. But for better understand
|
|
* what it does, it has been rename to extent status tree.
|
|
*
|
|
* Step1:
|
|
* Currently the first step has been done. All delayed extents are
|
|
* tracked in the tree. It maintains the delayed extent when a delayed
|
|
* allocation is issued, and the delayed extent is written out or
|
|
* invalidated. Therefore the implementation of fiemap and bigalloc
|
|
* are simplified, and SEEK_DATA/SEEK_HOLE are introduced.
|
|
*
|
|
* The following comment describes the implemenmtation of extent
|
|
* status tree and future works.
|
|
*
|
|
* Step2:
|
|
* In this step all extent status are tracked by extent status tree.
|
|
* Thus, we can first try to lookup a block mapping in this tree before
|
|
* finding it in extent tree. Hence, single extent cache can be removed
|
|
* because extent status tree can do a better job. Extents in status
|
|
* tree are loaded on-demand. Therefore, the extent status tree may not
|
|
* contain all of the extents in a file. Meanwhile we define a shrinker
|
|
* to reclaim memory from extent status tree because fragmented extent
|
|
* tree will make status tree cost too much memory. written/unwritten/-
|
|
* hole extents in the tree will be reclaimed by this shrinker when we
|
|
* are under high memory pressure. Delayed extents will not be
|
|
* reclimed because fiemap, bigalloc, and seek_data/hole need it.
|
|
*/
|
|
|
|
/*
|
|
* Extent status tree implementation for ext4.
|
|
*
|
|
*
|
|
* ==========================================================================
|
|
* Extent status tree tracks all extent status.
|
|
*
|
|
* 1. Why we need to implement extent status tree?
|
|
*
|
|
* Without extent status tree, ext4 identifies a delayed extent by looking
|
|
* up page cache, this has several deficiencies - complicated, buggy,
|
|
* and inefficient code.
|
|
*
|
|
* FIEMAP, SEEK_HOLE/DATA, bigalloc, and writeout all need to know if a
|
|
* block or a range of blocks are belonged to a delayed extent.
|
|
*
|
|
* Let us have a look at how they do without extent status tree.
|
|
* -- FIEMAP
|
|
* FIEMAP looks up page cache to identify delayed allocations from holes.
|
|
*
|
|
* -- SEEK_HOLE/DATA
|
|
* SEEK_HOLE/DATA has the same problem as FIEMAP.
|
|
*
|
|
* -- bigalloc
|
|
* bigalloc looks up page cache to figure out if a block is
|
|
* already under delayed allocation or not to determine whether
|
|
* quota reserving is needed for the cluster.
|
|
*
|
|
* -- writeout
|
|
* Writeout looks up whole page cache to see if a buffer is
|
|
* mapped, If there are not very many delayed buffers, then it is
|
|
* time consuming.
|
|
*
|
|
* With extent status tree implementation, FIEMAP, SEEK_HOLE/DATA,
|
|
* bigalloc and writeout can figure out if a block or a range of
|
|
* blocks is under delayed allocation(belonged to a delayed extent) or
|
|
* not by searching the extent tree.
|
|
*
|
|
*
|
|
* ==========================================================================
|
|
* 2. Ext4 extent status tree impelmentation
|
|
*
|
|
* -- extent
|
|
* A extent is a range of blocks which are contiguous logically and
|
|
* physically. Unlike extent in extent tree, this extent in ext4 is
|
|
* a in-memory struct, there is no corresponding on-disk data. There
|
|
* is no limit on length of extent, so an extent can contain as many
|
|
* blocks as they are contiguous logically and physically.
|
|
*
|
|
* -- extent status tree
|
|
* Every inode has an extent status tree and all allocation blocks
|
|
* are added to the tree with different status. The extent in the
|
|
* tree are ordered by logical block no.
|
|
*
|
|
* -- operations on a extent status tree
|
|
* There are three important operations on a delayed extent tree: find
|
|
* next extent, adding a extent(a range of blocks) and removing a extent.
|
|
*
|
|
* -- race on a extent status tree
|
|
* Extent status tree is protected by inode->i_es_lock.
|
|
*
|
|
* -- memory consumption
|
|
* Fragmented extent tree will make extent status tree cost too much
|
|
* memory. Hence, we will reclaim written/unwritten/hole extents from
|
|
* the tree under a heavy memory pressure.
|
|
*
|
|
*
|
|
* ==========================================================================
|
|
* 3. Performance analysis
|
|
*
|
|
* -- overhead
|
|
* 1. There is a cache extent for write access, so if writes are
|
|
* not very random, adding space operaions are in O(1) time.
|
|
*
|
|
* -- gain
|
|
* 2. Code is much simpler, more readable, more maintainable and
|
|
* more efficient.
|
|
*
|
|
*
|
|
* ==========================================================================
|
|
* 4. TODO list
|
|
*
|
|
* -- Refactor delayed space reservation
|
|
*
|
|
* -- Extent-level locking
|
|
*/
|
|
|
|
static struct kmem_cache *ext4_es_cachep;
|
|
static struct kmem_cache *ext4_pending_cachep;
|
|
|
|
static int __es_insert_extent(struct inode *inode, struct extent_status *newes,
|
|
struct extent_status *prealloc);
|
|
static int __es_remove_extent(struct inode *inode, ext4_lblk_t lblk,
|
|
ext4_lblk_t end, int *reserved,
|
|
struct extent_status *prealloc);
|
|
static int es_reclaim_extents(struct ext4_inode_info *ei, int *nr_to_scan);
|
|
static int __es_shrink(struct ext4_sb_info *sbi, int nr_to_scan,
|
|
struct ext4_inode_info *locked_ei);
|
|
static int __revise_pending(struct inode *inode, ext4_lblk_t lblk,
|
|
ext4_lblk_t len,
|
|
struct pending_reservation **prealloc);
|
|
|
|
int __init ext4_init_es(void)
|
|
{
|
|
ext4_es_cachep = KMEM_CACHE(extent_status, SLAB_RECLAIM_ACCOUNT);
|
|
if (ext4_es_cachep == NULL)
|
|
return -ENOMEM;
|
|
return 0;
|
|
}
|
|
|
|
void ext4_exit_es(void)
|
|
{
|
|
kmem_cache_destroy(ext4_es_cachep);
|
|
}
|
|
|
|
void ext4_es_init_tree(struct ext4_es_tree *tree)
|
|
{
|
|
tree->root = RB_ROOT;
|
|
tree->cache_es = NULL;
|
|
}
|
|
|
|
#ifdef ES_DEBUG__
|
|
static void ext4_es_print_tree(struct inode *inode)
|
|
{
|
|
struct ext4_es_tree *tree;
|
|
struct rb_node *node;
|
|
|
|
printk(KERN_DEBUG "status extents for inode %lu:", inode->i_ino);
|
|
tree = &EXT4_I(inode)->i_es_tree;
|
|
node = rb_first(&tree->root);
|
|
while (node) {
|
|
struct extent_status *es;
|
|
es = rb_entry(node, struct extent_status, rb_node);
|
|
printk(KERN_DEBUG " [%u/%u) %llu %x",
|
|
es->es_lblk, es->es_len,
|
|
ext4_es_pblock(es), ext4_es_status(es));
|
|
node = rb_next(node);
|
|
}
|
|
printk(KERN_DEBUG "\n");
|
|
}
|
|
#else
|
|
#define ext4_es_print_tree(inode)
|
|
#endif
|
|
|
|
static inline ext4_lblk_t ext4_es_end(struct extent_status *es)
|
|
{
|
|
BUG_ON(es->es_lblk + es->es_len < es->es_lblk);
|
|
return es->es_lblk + es->es_len - 1;
|
|
}
|
|
|
|
/*
|
|
* search through the tree for an delayed extent with a given offset. If
|
|
* it can't be found, try to find next extent.
|
|
*/
|
|
static struct extent_status *__es_tree_search(struct rb_root *root,
|
|
ext4_lblk_t lblk)
|
|
{
|
|
struct rb_node *node = root->rb_node;
|
|
struct extent_status *es = NULL;
|
|
|
|
while (node) {
|
|
es = rb_entry(node, struct extent_status, rb_node);
|
|
if (lblk < es->es_lblk)
|
|
node = node->rb_left;
|
|
else if (lblk > ext4_es_end(es))
|
|
node = node->rb_right;
|
|
else
|
|
return es;
|
|
}
|
|
|
|
if (es && lblk < es->es_lblk)
|
|
return es;
|
|
|
|
if (es && lblk > ext4_es_end(es)) {
|
|
node = rb_next(&es->rb_node);
|
|
return node ? rb_entry(node, struct extent_status, rb_node) :
|
|
NULL;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* ext4_es_find_extent_range - find extent with specified status within block
|
|
* range or next extent following block range in
|
|
* extents status tree
|
|
*
|
|
* @inode - file containing the range
|
|
* @matching_fn - pointer to function that matches extents with desired status
|
|
* @lblk - logical block defining start of range
|
|
* @end - logical block defining end of range
|
|
* @es - extent found, if any
|
|
*
|
|
* Find the first extent within the block range specified by @lblk and @end
|
|
* in the extents status tree that satisfies @matching_fn. If a match
|
|
* is found, it's returned in @es. If not, and a matching extent is found
|
|
* beyond the block range, it's returned in @es. If no match is found, an
|
|
* extent is returned in @es whose es_lblk, es_len, and es_pblk components
|
|
* are 0.
|
|
*/
|
|
static void __es_find_extent_range(struct inode *inode,
|
|
int (*matching_fn)(struct extent_status *es),
|
|
ext4_lblk_t lblk, ext4_lblk_t end,
|
|
struct extent_status *es)
|
|
{
|
|
struct ext4_es_tree *tree = NULL;
|
|
struct extent_status *es1 = NULL;
|
|
struct rb_node *node;
|
|
|
|
WARN_ON(es == NULL);
|
|
WARN_ON(end < lblk);
|
|
|
|
tree = &EXT4_I(inode)->i_es_tree;
|
|
|
|
/* see if the extent has been cached */
|
|
es->es_lblk = es->es_len = es->es_pblk = 0;
|
|
es1 = READ_ONCE(tree->cache_es);
|
|
if (es1 && in_range(lblk, es1->es_lblk, es1->es_len)) {
|
|
es_debug("%u cached by [%u/%u) %llu %x\n",
|
|
lblk, es1->es_lblk, es1->es_len,
|
|
ext4_es_pblock(es1), ext4_es_status(es1));
|
|
goto out;
|
|
}
|
|
|
|
es1 = __es_tree_search(&tree->root, lblk);
|
|
|
|
out:
|
|
if (es1 && !matching_fn(es1)) {
|
|
while ((node = rb_next(&es1->rb_node)) != NULL) {
|
|
es1 = rb_entry(node, struct extent_status, rb_node);
|
|
if (es1->es_lblk > end) {
|
|
es1 = NULL;
|
|
break;
|
|
}
|
|
if (matching_fn(es1))
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (es1 && matching_fn(es1)) {
|
|
WRITE_ONCE(tree->cache_es, es1);
|
|
es->es_lblk = es1->es_lblk;
|
|
es->es_len = es1->es_len;
|
|
es->es_pblk = es1->es_pblk;
|
|
}
|
|
|
|
}
|
|
|
|
/*
|
|
* Locking for __es_find_extent_range() for external use
|
|
*/
|
|
void ext4_es_find_extent_range(struct inode *inode,
|
|
int (*matching_fn)(struct extent_status *es),
|
|
ext4_lblk_t lblk, ext4_lblk_t end,
|
|
struct extent_status *es)
|
|
{
|
|
if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
|
|
return;
|
|
|
|
trace_ext4_es_find_extent_range_enter(inode, lblk);
|
|
|
|
read_lock(&EXT4_I(inode)->i_es_lock);
|
|
__es_find_extent_range(inode, matching_fn, lblk, end, es);
|
|
read_unlock(&EXT4_I(inode)->i_es_lock);
|
|
|
|
trace_ext4_es_find_extent_range_exit(inode, es);
|
|
}
|
|
|
|
/*
|
|
* __es_scan_range - search block range for block with specified status
|
|
* in extents status tree
|
|
*
|
|
* @inode - file containing the range
|
|
* @matching_fn - pointer to function that matches extents with desired status
|
|
* @lblk - logical block defining start of range
|
|
* @end - logical block defining end of range
|
|
*
|
|
* Returns true if at least one block in the specified block range satisfies
|
|
* the criterion specified by @matching_fn, and false if not. If at least
|
|
* one extent has the specified status, then there is at least one block
|
|
* in the cluster with that status. Should only be called by code that has
|
|
* taken i_es_lock.
|
|
*/
|
|
static bool __es_scan_range(struct inode *inode,
|
|
int (*matching_fn)(struct extent_status *es),
|
|
ext4_lblk_t start, ext4_lblk_t end)
|
|
{
|
|
struct extent_status es;
|
|
|
|
__es_find_extent_range(inode, matching_fn, start, end, &es);
|
|
if (es.es_len == 0)
|
|
return false; /* no matching extent in the tree */
|
|
else if (es.es_lblk <= start &&
|
|
start < es.es_lblk + es.es_len)
|
|
return true;
|
|
else if (start <= es.es_lblk && es.es_lblk <= end)
|
|
return true;
|
|
else
|
|
return false;
|
|
}
|
|
/*
|
|
* Locking for __es_scan_range() for external use
|
|
*/
|
|
bool ext4_es_scan_range(struct inode *inode,
|
|
int (*matching_fn)(struct extent_status *es),
|
|
ext4_lblk_t lblk, ext4_lblk_t end)
|
|
{
|
|
bool ret;
|
|
|
|
if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
|
|
return false;
|
|
|
|
read_lock(&EXT4_I(inode)->i_es_lock);
|
|
ret = __es_scan_range(inode, matching_fn, lblk, end);
|
|
read_unlock(&EXT4_I(inode)->i_es_lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* __es_scan_clu - search cluster for block with specified status in
|
|
* extents status tree
|
|
*
|
|
* @inode - file containing the cluster
|
|
* @matching_fn - pointer to function that matches extents with desired status
|
|
* @lblk - logical block in cluster to be searched
|
|
*
|
|
* Returns true if at least one extent in the cluster containing @lblk
|
|
* satisfies the criterion specified by @matching_fn, and false if not. If at
|
|
* least one extent has the specified status, then there is at least one block
|
|
* in the cluster with that status. Should only be called by code that has
|
|
* taken i_es_lock.
|
|
*/
|
|
static bool __es_scan_clu(struct inode *inode,
|
|
int (*matching_fn)(struct extent_status *es),
|
|
ext4_lblk_t lblk)
|
|
{
|
|
struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
|
|
ext4_lblk_t lblk_start, lblk_end;
|
|
|
|
lblk_start = EXT4_LBLK_CMASK(sbi, lblk);
|
|
lblk_end = lblk_start + sbi->s_cluster_ratio - 1;
|
|
|
|
return __es_scan_range(inode, matching_fn, lblk_start, lblk_end);
|
|
}
|
|
|
|
/*
|
|
* Locking for __es_scan_clu() for external use
|
|
*/
|
|
bool ext4_es_scan_clu(struct inode *inode,
|
|
int (*matching_fn)(struct extent_status *es),
|
|
ext4_lblk_t lblk)
|
|
{
|
|
bool ret;
|
|
|
|
if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
|
|
return false;
|
|
|
|
read_lock(&EXT4_I(inode)->i_es_lock);
|
|
ret = __es_scan_clu(inode, matching_fn, lblk);
|
|
read_unlock(&EXT4_I(inode)->i_es_lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void ext4_es_list_add(struct inode *inode)
|
|
{
|
|
struct ext4_inode_info *ei = EXT4_I(inode);
|
|
struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
|
|
|
|
if (!list_empty(&ei->i_es_list))
|
|
return;
|
|
|
|
spin_lock(&sbi->s_es_lock);
|
|
if (list_empty(&ei->i_es_list)) {
|
|
list_add_tail(&ei->i_es_list, &sbi->s_es_list);
|
|
sbi->s_es_nr_inode++;
|
|
}
|
|
spin_unlock(&sbi->s_es_lock);
|
|
}
|
|
|
|
static void ext4_es_list_del(struct inode *inode)
|
|
{
|
|
struct ext4_inode_info *ei = EXT4_I(inode);
|
|
struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
|
|
|
|
spin_lock(&sbi->s_es_lock);
|
|
if (!list_empty(&ei->i_es_list)) {
|
|
list_del_init(&ei->i_es_list);
|
|
sbi->s_es_nr_inode--;
|
|
WARN_ON_ONCE(sbi->s_es_nr_inode < 0);
|
|
}
|
|
spin_unlock(&sbi->s_es_lock);
|
|
}
|
|
|
|
static inline struct pending_reservation *__alloc_pending(bool nofail)
|
|
{
|
|
if (!nofail)
|
|
return kmem_cache_alloc(ext4_pending_cachep, GFP_ATOMIC);
|
|
|
|
return kmem_cache_zalloc(ext4_pending_cachep, GFP_KERNEL | __GFP_NOFAIL);
|
|
}
|
|
|
|
static inline void __free_pending(struct pending_reservation *pr)
|
|
{
|
|
kmem_cache_free(ext4_pending_cachep, pr);
|
|
}
|
|
|
|
/*
|
|
* Returns true if we cannot fail to allocate memory for this extent_status
|
|
* entry and cannot reclaim it until its status changes.
|
|
*/
|
|
static inline bool ext4_es_must_keep(struct extent_status *es)
|
|
{
|
|
/* fiemap, bigalloc, and seek_data/hole need to use it. */
|
|
if (ext4_es_is_delayed(es))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
static inline struct extent_status *__es_alloc_extent(bool nofail)
|
|
{
|
|
if (!nofail)
|
|
return kmem_cache_alloc(ext4_es_cachep, GFP_ATOMIC);
|
|
|
|
return kmem_cache_zalloc(ext4_es_cachep, GFP_KERNEL | __GFP_NOFAIL);
|
|
}
|
|
|
|
static void ext4_es_init_extent(struct inode *inode, struct extent_status *es,
|
|
ext4_lblk_t lblk, ext4_lblk_t len, ext4_fsblk_t pblk)
|
|
{
|
|
es->es_lblk = lblk;
|
|
es->es_len = len;
|
|
es->es_pblk = pblk;
|
|
|
|
/* We never try to reclaim a must kept extent, so we don't count it. */
|
|
if (!ext4_es_must_keep(es)) {
|
|
if (!EXT4_I(inode)->i_es_shk_nr++)
|
|
ext4_es_list_add(inode);
|
|
percpu_counter_inc(&EXT4_SB(inode->i_sb)->
|
|
s_es_stats.es_stats_shk_cnt);
|
|
}
|
|
|
|
EXT4_I(inode)->i_es_all_nr++;
|
|
percpu_counter_inc(&EXT4_SB(inode->i_sb)->s_es_stats.es_stats_all_cnt);
|
|
}
|
|
|
|
static inline void __es_free_extent(struct extent_status *es)
|
|
{
|
|
kmem_cache_free(ext4_es_cachep, es);
|
|
}
|
|
|
|
static void ext4_es_free_extent(struct inode *inode, struct extent_status *es)
|
|
{
|
|
EXT4_I(inode)->i_es_all_nr--;
|
|
percpu_counter_dec(&EXT4_SB(inode->i_sb)->s_es_stats.es_stats_all_cnt);
|
|
|
|
/* Decrease the shrink counter when we can reclaim the extent. */
|
|
if (!ext4_es_must_keep(es)) {
|
|
BUG_ON(EXT4_I(inode)->i_es_shk_nr == 0);
|
|
if (!--EXT4_I(inode)->i_es_shk_nr)
|
|
ext4_es_list_del(inode);
|
|
percpu_counter_dec(&EXT4_SB(inode->i_sb)->
|
|
s_es_stats.es_stats_shk_cnt);
|
|
}
|
|
|
|
__es_free_extent(es);
|
|
}
|
|
|
|
/*
|
|
* Check whether or not two extents can be merged
|
|
* Condition:
|
|
* - logical block number is contiguous
|
|
* - physical block number is contiguous
|
|
* - status is equal
|
|
*/
|
|
static int ext4_es_can_be_merged(struct extent_status *es1,
|
|
struct extent_status *es2)
|
|
{
|
|
if (ext4_es_type(es1) != ext4_es_type(es2))
|
|
return 0;
|
|
|
|
if (((__u64) es1->es_len) + es2->es_len > EXT_MAX_BLOCKS) {
|
|
pr_warn("ES assertion failed when merging extents. "
|
|
"The sum of lengths of es1 (%d) and es2 (%d) "
|
|
"is bigger than allowed file size (%d)\n",
|
|
es1->es_len, es2->es_len, EXT_MAX_BLOCKS);
|
|
WARN_ON(1);
|
|
return 0;
|
|
}
|
|
|
|
if (((__u64) es1->es_lblk) + es1->es_len != es2->es_lblk)
|
|
return 0;
|
|
|
|
if ((ext4_es_is_written(es1) || ext4_es_is_unwritten(es1)) &&
|
|
(ext4_es_pblock(es1) + es1->es_len == ext4_es_pblock(es2)))
|
|
return 1;
|
|
|
|
if (ext4_es_is_hole(es1))
|
|
return 1;
|
|
|
|
/* we need to check delayed extent is without unwritten status */
|
|
if (ext4_es_is_delayed(es1) && !ext4_es_is_unwritten(es1))
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct extent_status *
|
|
ext4_es_try_to_merge_left(struct inode *inode, struct extent_status *es)
|
|
{
|
|
struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
|
|
struct extent_status *es1;
|
|
struct rb_node *node;
|
|
|
|
node = rb_prev(&es->rb_node);
|
|
if (!node)
|
|
return es;
|
|
|
|
es1 = rb_entry(node, struct extent_status, rb_node);
|
|
if (ext4_es_can_be_merged(es1, es)) {
|
|
es1->es_len += es->es_len;
|
|
if (ext4_es_is_referenced(es))
|
|
ext4_es_set_referenced(es1);
|
|
rb_erase(&es->rb_node, &tree->root);
|
|
ext4_es_free_extent(inode, es);
|
|
es = es1;
|
|
}
|
|
|
|
return es;
|
|
}
|
|
|
|
static struct extent_status *
|
|
ext4_es_try_to_merge_right(struct inode *inode, struct extent_status *es)
|
|
{
|
|
struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
|
|
struct extent_status *es1;
|
|
struct rb_node *node;
|
|
|
|
node = rb_next(&es->rb_node);
|
|
if (!node)
|
|
return es;
|
|
|
|
es1 = rb_entry(node, struct extent_status, rb_node);
|
|
if (ext4_es_can_be_merged(es, es1)) {
|
|
es->es_len += es1->es_len;
|
|
if (ext4_es_is_referenced(es1))
|
|
ext4_es_set_referenced(es);
|
|
rb_erase(node, &tree->root);
|
|
ext4_es_free_extent(inode, es1);
|
|
}
|
|
|
|
return es;
|
|
}
|
|
|
|
#ifdef ES_AGGRESSIVE_TEST
|
|
#include "ext4_extents.h" /* Needed when ES_AGGRESSIVE_TEST is defined */
|
|
|
|
static void ext4_es_insert_extent_ext_check(struct inode *inode,
|
|
struct extent_status *es)
|
|
{
|
|
struct ext4_ext_path *path = NULL;
|
|
struct ext4_extent *ex;
|
|
ext4_lblk_t ee_block;
|
|
ext4_fsblk_t ee_start;
|
|
unsigned short ee_len;
|
|
int depth, ee_status, es_status;
|
|
|
|
path = ext4_find_extent(inode, es->es_lblk, NULL, EXT4_EX_NOCACHE);
|
|
if (IS_ERR(path))
|
|
return;
|
|
|
|
depth = ext_depth(inode);
|
|
ex = path[depth].p_ext;
|
|
|
|
if (ex) {
|
|
|
|
ee_block = le32_to_cpu(ex->ee_block);
|
|
ee_start = ext4_ext_pblock(ex);
|
|
ee_len = ext4_ext_get_actual_len(ex);
|
|
|
|
ee_status = ext4_ext_is_unwritten(ex) ? 1 : 0;
|
|
es_status = ext4_es_is_unwritten(es) ? 1 : 0;
|
|
|
|
/*
|
|
* Make sure ex and es are not overlap when we try to insert
|
|
* a delayed/hole extent.
|
|
*/
|
|
if (!ext4_es_is_written(es) && !ext4_es_is_unwritten(es)) {
|
|
if (in_range(es->es_lblk, ee_block, ee_len)) {
|
|
pr_warn("ES insert assertion failed for "
|
|
"inode: %lu we can find an extent "
|
|
"at block [%d/%d/%llu/%c], but we "
|
|
"want to add a delayed/hole extent "
|
|
"[%d/%d/%llu/%x]\n",
|
|
inode->i_ino, ee_block, ee_len,
|
|
ee_start, ee_status ? 'u' : 'w',
|
|
es->es_lblk, es->es_len,
|
|
ext4_es_pblock(es), ext4_es_status(es));
|
|
}
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* We don't check ee_block == es->es_lblk, etc. because es
|
|
* might be a part of whole extent, vice versa.
|
|
*/
|
|
if (es->es_lblk < ee_block ||
|
|
ext4_es_pblock(es) != ee_start + es->es_lblk - ee_block) {
|
|
pr_warn("ES insert assertion failed for inode: %lu "
|
|
"ex_status [%d/%d/%llu/%c] != "
|
|
"es_status [%d/%d/%llu/%c]\n", inode->i_ino,
|
|
ee_block, ee_len, ee_start,
|
|
ee_status ? 'u' : 'w', es->es_lblk, es->es_len,
|
|
ext4_es_pblock(es), es_status ? 'u' : 'w');
|
|
goto out;
|
|
}
|
|
|
|
if (ee_status ^ es_status) {
|
|
pr_warn("ES insert assertion failed for inode: %lu "
|
|
"ex_status [%d/%d/%llu/%c] != "
|
|
"es_status [%d/%d/%llu/%c]\n", inode->i_ino,
|
|
ee_block, ee_len, ee_start,
|
|
ee_status ? 'u' : 'w', es->es_lblk, es->es_len,
|
|
ext4_es_pblock(es), es_status ? 'u' : 'w');
|
|
}
|
|
} else {
|
|
/*
|
|
* We can't find an extent on disk. So we need to make sure
|
|
* that we don't want to add an written/unwritten extent.
|
|
*/
|
|
if (!ext4_es_is_delayed(es) && !ext4_es_is_hole(es)) {
|
|
pr_warn("ES insert assertion failed for inode: %lu "
|
|
"can't find an extent at block %d but we want "
|
|
"to add a written/unwritten extent "
|
|
"[%d/%d/%llu/%x]\n", inode->i_ino,
|
|
es->es_lblk, es->es_lblk, es->es_len,
|
|
ext4_es_pblock(es), ext4_es_status(es));
|
|
}
|
|
}
|
|
out:
|
|
ext4_free_ext_path(path);
|
|
}
|
|
|
|
static void ext4_es_insert_extent_ind_check(struct inode *inode,
|
|
struct extent_status *es)
|
|
{
|
|
struct ext4_map_blocks map;
|
|
int retval;
|
|
|
|
/*
|
|
* Here we call ext4_ind_map_blocks to lookup a block mapping because
|
|
* 'Indirect' structure is defined in indirect.c. So we couldn't
|
|
* access direct/indirect tree from outside. It is too dirty to define
|
|
* this function in indirect.c file.
|
|
*/
|
|
|
|
map.m_lblk = es->es_lblk;
|
|
map.m_len = es->es_len;
|
|
|
|
retval = ext4_ind_map_blocks(NULL, inode, &map, 0);
|
|
if (retval > 0) {
|
|
if (ext4_es_is_delayed(es) || ext4_es_is_hole(es)) {
|
|
/*
|
|
* We want to add a delayed/hole extent but this
|
|
* block has been allocated.
|
|
*/
|
|
pr_warn("ES insert assertion failed for inode: %lu "
|
|
"We can find blocks but we want to add a "
|
|
"delayed/hole extent [%d/%d/%llu/%x]\n",
|
|
inode->i_ino, es->es_lblk, es->es_len,
|
|
ext4_es_pblock(es), ext4_es_status(es));
|
|
return;
|
|
} else if (ext4_es_is_written(es)) {
|
|
if (retval != es->es_len) {
|
|
pr_warn("ES insert assertion failed for "
|
|
"inode: %lu retval %d != es_len %d\n",
|
|
inode->i_ino, retval, es->es_len);
|
|
return;
|
|
}
|
|
if (map.m_pblk != ext4_es_pblock(es)) {
|
|
pr_warn("ES insert assertion failed for "
|
|
"inode: %lu m_pblk %llu != "
|
|
"es_pblk %llu\n",
|
|
inode->i_ino, map.m_pblk,
|
|
ext4_es_pblock(es));
|
|
return;
|
|
}
|
|
} else {
|
|
/*
|
|
* We don't need to check unwritten extent because
|
|
* indirect-based file doesn't have it.
|
|
*/
|
|
BUG();
|
|
}
|
|
} else if (retval == 0) {
|
|
if (ext4_es_is_written(es)) {
|
|
pr_warn("ES insert assertion failed for inode: %lu "
|
|
"We can't find the block but we want to add "
|
|
"a written extent [%d/%d/%llu/%x]\n",
|
|
inode->i_ino, es->es_lblk, es->es_len,
|
|
ext4_es_pblock(es), ext4_es_status(es));
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
static inline void ext4_es_insert_extent_check(struct inode *inode,
|
|
struct extent_status *es)
|
|
{
|
|
/*
|
|
* We don't need to worry about the race condition because
|
|
* caller takes i_data_sem locking.
|
|
*/
|
|
BUG_ON(!rwsem_is_locked(&EXT4_I(inode)->i_data_sem));
|
|
if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
|
|
ext4_es_insert_extent_ext_check(inode, es);
|
|
else
|
|
ext4_es_insert_extent_ind_check(inode, es);
|
|
}
|
|
#else
|
|
static inline void ext4_es_insert_extent_check(struct inode *inode,
|
|
struct extent_status *es)
|
|
{
|
|
}
|
|
#endif
|
|
|
|
static int __es_insert_extent(struct inode *inode, struct extent_status *newes,
|
|
struct extent_status *prealloc)
|
|
{
|
|
struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
|
|
struct rb_node **p = &tree->root.rb_node;
|
|
struct rb_node *parent = NULL;
|
|
struct extent_status *es;
|
|
|
|
while (*p) {
|
|
parent = *p;
|
|
es = rb_entry(parent, struct extent_status, rb_node);
|
|
|
|
if (newes->es_lblk < es->es_lblk) {
|
|
if (ext4_es_can_be_merged(newes, es)) {
|
|
/*
|
|
* Here we can modify es_lblk directly
|
|
* because it isn't overlapped.
|
|
*/
|
|
es->es_lblk = newes->es_lblk;
|
|
es->es_len += newes->es_len;
|
|
if (ext4_es_is_written(es) ||
|
|
ext4_es_is_unwritten(es))
|
|
ext4_es_store_pblock(es,
|
|
newes->es_pblk);
|
|
es = ext4_es_try_to_merge_left(inode, es);
|
|
goto out;
|
|
}
|
|
p = &(*p)->rb_left;
|
|
} else if (newes->es_lblk > ext4_es_end(es)) {
|
|
if (ext4_es_can_be_merged(es, newes)) {
|
|
es->es_len += newes->es_len;
|
|
es = ext4_es_try_to_merge_right(inode, es);
|
|
goto out;
|
|
}
|
|
p = &(*p)->rb_right;
|
|
} else {
|
|
BUG();
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
if (prealloc)
|
|
es = prealloc;
|
|
else
|
|
es = __es_alloc_extent(false);
|
|
if (!es)
|
|
return -ENOMEM;
|
|
ext4_es_init_extent(inode, es, newes->es_lblk, newes->es_len,
|
|
newes->es_pblk);
|
|
|
|
rb_link_node(&es->rb_node, parent, p);
|
|
rb_insert_color(&es->rb_node, &tree->root);
|
|
|
|
out:
|
|
tree->cache_es = es;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* ext4_es_insert_extent() adds information to an inode's extent
|
|
* status tree.
|
|
*/
|
|
void ext4_es_insert_extent(struct inode *inode, ext4_lblk_t lblk,
|
|
ext4_lblk_t len, ext4_fsblk_t pblk,
|
|
unsigned int status)
|
|
{
|
|
struct extent_status newes;
|
|
ext4_lblk_t end = lblk + len - 1;
|
|
int err1 = 0, err2 = 0, err3 = 0;
|
|
struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
|
|
struct extent_status *es1 = NULL;
|
|
struct extent_status *es2 = NULL;
|
|
struct pending_reservation *pr = NULL;
|
|
bool revise_pending = false;
|
|
|
|
if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
|
|
return;
|
|
|
|
es_debug("add [%u/%u) %llu %x to extent status tree of inode %lu\n",
|
|
lblk, len, pblk, status, inode->i_ino);
|
|
|
|
if (!len)
|
|
return;
|
|
|
|
BUG_ON(end < lblk);
|
|
|
|
if ((status & EXTENT_STATUS_DELAYED) &&
|
|
(status & EXTENT_STATUS_WRITTEN)) {
|
|
ext4_warning(inode->i_sb, "Inserting extent [%u/%u] as "
|
|
" delayed and written which can potentially "
|
|
" cause data loss.", lblk, len);
|
|
WARN_ON(1);
|
|
}
|
|
|
|
newes.es_lblk = lblk;
|
|
newes.es_len = len;
|
|
ext4_es_store_pblock_status(&newes, pblk, status);
|
|
trace_ext4_es_insert_extent(inode, &newes);
|
|
|
|
ext4_es_insert_extent_check(inode, &newes);
|
|
|
|
revise_pending = sbi->s_cluster_ratio > 1 &&
|
|
test_opt(inode->i_sb, DELALLOC) &&
|
|
(status & (EXTENT_STATUS_WRITTEN |
|
|
EXTENT_STATUS_UNWRITTEN));
|
|
retry:
|
|
if (err1 && !es1)
|
|
es1 = __es_alloc_extent(true);
|
|
if ((err1 || err2) && !es2)
|
|
es2 = __es_alloc_extent(true);
|
|
if ((err1 || err2 || err3) && revise_pending && !pr)
|
|
pr = __alloc_pending(true);
|
|
write_lock(&EXT4_I(inode)->i_es_lock);
|
|
|
|
err1 = __es_remove_extent(inode, lblk, end, NULL, es1);
|
|
if (err1 != 0)
|
|
goto error;
|
|
/* Free preallocated extent if it didn't get used. */
|
|
if (es1) {
|
|
if (!es1->es_len)
|
|
__es_free_extent(es1);
|
|
es1 = NULL;
|
|
}
|
|
|
|
err2 = __es_insert_extent(inode, &newes, es2);
|
|
if (err2 == -ENOMEM && !ext4_es_must_keep(&newes))
|
|
err2 = 0;
|
|
if (err2 != 0)
|
|
goto error;
|
|
/* Free preallocated extent if it didn't get used. */
|
|
if (es2) {
|
|
if (!es2->es_len)
|
|
__es_free_extent(es2);
|
|
es2 = NULL;
|
|
}
|
|
|
|
if (revise_pending) {
|
|
err3 = __revise_pending(inode, lblk, len, &pr);
|
|
if (err3 != 0)
|
|
goto error;
|
|
if (pr) {
|
|
__free_pending(pr);
|
|
pr = NULL;
|
|
}
|
|
}
|
|
error:
|
|
write_unlock(&EXT4_I(inode)->i_es_lock);
|
|
if (err1 || err2 || err3)
|
|
goto retry;
|
|
|
|
ext4_es_print_tree(inode);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* ext4_es_cache_extent() inserts information into the extent status
|
|
* tree if and only if there isn't information about the range in
|
|
* question already.
|
|
*/
|
|
void ext4_es_cache_extent(struct inode *inode, ext4_lblk_t lblk,
|
|
ext4_lblk_t len, ext4_fsblk_t pblk,
|
|
unsigned int status)
|
|
{
|
|
struct extent_status *es;
|
|
struct extent_status newes;
|
|
ext4_lblk_t end = lblk + len - 1;
|
|
|
|
if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
|
|
return;
|
|
|
|
newes.es_lblk = lblk;
|
|
newes.es_len = len;
|
|
ext4_es_store_pblock_status(&newes, pblk, status);
|
|
trace_ext4_es_cache_extent(inode, &newes);
|
|
|
|
if (!len)
|
|
return;
|
|
|
|
BUG_ON(end < lblk);
|
|
|
|
write_lock(&EXT4_I(inode)->i_es_lock);
|
|
|
|
es = __es_tree_search(&EXT4_I(inode)->i_es_tree.root, lblk);
|
|
if (!es || es->es_lblk > end)
|
|
__es_insert_extent(inode, &newes, NULL);
|
|
write_unlock(&EXT4_I(inode)->i_es_lock);
|
|
}
|
|
|
|
/*
|
|
* ext4_es_lookup_extent() looks up an extent in extent status tree.
|
|
*
|
|
* ext4_es_lookup_extent is called by ext4_map_blocks/ext4_da_map_blocks.
|
|
*
|
|
* Return: 1 on found, 0 on not
|
|
*/
|
|
int ext4_es_lookup_extent(struct inode *inode, ext4_lblk_t lblk,
|
|
ext4_lblk_t *next_lblk,
|
|
struct extent_status *es)
|
|
{
|
|
struct ext4_es_tree *tree;
|
|
struct ext4_es_stats *stats;
|
|
struct extent_status *es1 = NULL;
|
|
struct rb_node *node;
|
|
int found = 0;
|
|
|
|
if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
|
|
return 0;
|
|
|
|
trace_ext4_es_lookup_extent_enter(inode, lblk);
|
|
es_debug("lookup extent in block %u\n", lblk);
|
|
|
|
tree = &EXT4_I(inode)->i_es_tree;
|
|
read_lock(&EXT4_I(inode)->i_es_lock);
|
|
|
|
/* find extent in cache firstly */
|
|
es->es_lblk = es->es_len = es->es_pblk = 0;
|
|
es1 = READ_ONCE(tree->cache_es);
|
|
if (es1 && in_range(lblk, es1->es_lblk, es1->es_len)) {
|
|
es_debug("%u cached by [%u/%u)\n",
|
|
lblk, es1->es_lblk, es1->es_len);
|
|
found = 1;
|
|
goto out;
|
|
}
|
|
|
|
node = tree->root.rb_node;
|
|
while (node) {
|
|
es1 = rb_entry(node, struct extent_status, rb_node);
|
|
if (lblk < es1->es_lblk)
|
|
node = node->rb_left;
|
|
else if (lblk > ext4_es_end(es1))
|
|
node = node->rb_right;
|
|
else {
|
|
found = 1;
|
|
break;
|
|
}
|
|
}
|
|
|
|
out:
|
|
stats = &EXT4_SB(inode->i_sb)->s_es_stats;
|
|
if (found) {
|
|
BUG_ON(!es1);
|
|
es->es_lblk = es1->es_lblk;
|
|
es->es_len = es1->es_len;
|
|
es->es_pblk = es1->es_pblk;
|
|
if (!ext4_es_is_referenced(es1))
|
|
ext4_es_set_referenced(es1);
|
|
percpu_counter_inc(&stats->es_stats_cache_hits);
|
|
if (next_lblk) {
|
|
node = rb_next(&es1->rb_node);
|
|
if (node) {
|
|
es1 = rb_entry(node, struct extent_status,
|
|
rb_node);
|
|
*next_lblk = es1->es_lblk;
|
|
} else
|
|
*next_lblk = 0;
|
|
}
|
|
} else {
|
|
percpu_counter_inc(&stats->es_stats_cache_misses);
|
|
}
|
|
|
|
read_unlock(&EXT4_I(inode)->i_es_lock);
|
|
|
|
trace_ext4_es_lookup_extent_exit(inode, es, found);
|
|
return found;
|
|
}
|
|
|
|
struct rsvd_count {
|
|
int ndelonly;
|
|
bool first_do_lblk_found;
|
|
ext4_lblk_t first_do_lblk;
|
|
ext4_lblk_t last_do_lblk;
|
|
struct extent_status *left_es;
|
|
bool partial;
|
|
ext4_lblk_t lclu;
|
|
};
|
|
|
|
/*
|
|
* init_rsvd - initialize reserved count data before removing block range
|
|
* in file from extent status tree
|
|
*
|
|
* @inode - file containing range
|
|
* @lblk - first block in range
|
|
* @es - pointer to first extent in range
|
|
* @rc - pointer to reserved count data
|
|
*
|
|
* Assumes es is not NULL
|
|
*/
|
|
static void init_rsvd(struct inode *inode, ext4_lblk_t lblk,
|
|
struct extent_status *es, struct rsvd_count *rc)
|
|
{
|
|
struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
|
|
struct rb_node *node;
|
|
|
|
rc->ndelonly = 0;
|
|
|
|
/*
|
|
* for bigalloc, note the first delonly block in the range has not
|
|
* been found, record the extent containing the block to the left of
|
|
* the region to be removed, if any, and note that there's no partial
|
|
* cluster to track
|
|
*/
|
|
if (sbi->s_cluster_ratio > 1) {
|
|
rc->first_do_lblk_found = false;
|
|
if (lblk > es->es_lblk) {
|
|
rc->left_es = es;
|
|
} else {
|
|
node = rb_prev(&es->rb_node);
|
|
rc->left_es = node ? rb_entry(node,
|
|
struct extent_status,
|
|
rb_node) : NULL;
|
|
}
|
|
rc->partial = false;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* count_rsvd - count the clusters containing delayed and not unwritten
|
|
* (delonly) blocks in a range within an extent and add to
|
|
* the running tally in rsvd_count
|
|
*
|
|
* @inode - file containing extent
|
|
* @lblk - first block in range
|
|
* @len - length of range in blocks
|
|
* @es - pointer to extent containing clusters to be counted
|
|
* @rc - pointer to reserved count data
|
|
*
|
|
* Tracks partial clusters found at the beginning and end of extents so
|
|
* they aren't overcounted when they span adjacent extents
|
|
*/
|
|
static void count_rsvd(struct inode *inode, ext4_lblk_t lblk, long len,
|
|
struct extent_status *es, struct rsvd_count *rc)
|
|
{
|
|
struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
|
|
ext4_lblk_t i, end, nclu;
|
|
|
|
if (!ext4_es_is_delonly(es))
|
|
return;
|
|
|
|
WARN_ON(len <= 0);
|
|
|
|
if (sbi->s_cluster_ratio == 1) {
|
|
rc->ndelonly += (int) len;
|
|
return;
|
|
}
|
|
|
|
/* bigalloc */
|
|
|
|
i = (lblk < es->es_lblk) ? es->es_lblk : lblk;
|
|
end = lblk + (ext4_lblk_t) len - 1;
|
|
end = (end > ext4_es_end(es)) ? ext4_es_end(es) : end;
|
|
|
|
/* record the first block of the first delonly extent seen */
|
|
if (!rc->first_do_lblk_found) {
|
|
rc->first_do_lblk = i;
|
|
rc->first_do_lblk_found = true;
|
|
}
|
|
|
|
/* update the last lblk in the region seen so far */
|
|
rc->last_do_lblk = end;
|
|
|
|
/*
|
|
* if we're tracking a partial cluster and the current extent
|
|
* doesn't start with it, count it and stop tracking
|
|
*/
|
|
if (rc->partial && (rc->lclu != EXT4_B2C(sbi, i))) {
|
|
rc->ndelonly++;
|
|
rc->partial = false;
|
|
}
|
|
|
|
/*
|
|
* if the first cluster doesn't start on a cluster boundary but
|
|
* ends on one, count it
|
|
*/
|
|
if (EXT4_LBLK_COFF(sbi, i) != 0) {
|
|
if (end >= EXT4_LBLK_CFILL(sbi, i)) {
|
|
rc->ndelonly++;
|
|
rc->partial = false;
|
|
i = EXT4_LBLK_CFILL(sbi, i) + 1;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* if the current cluster starts on a cluster boundary, count the
|
|
* number of whole delonly clusters in the extent
|
|
*/
|
|
if ((i + sbi->s_cluster_ratio - 1) <= end) {
|
|
nclu = (end - i + 1) >> sbi->s_cluster_bits;
|
|
rc->ndelonly += nclu;
|
|
i += nclu << sbi->s_cluster_bits;
|
|
}
|
|
|
|
/*
|
|
* start tracking a partial cluster if there's a partial at the end
|
|
* of the current extent and we're not already tracking one
|
|
*/
|
|
if (!rc->partial && i <= end) {
|
|
rc->partial = true;
|
|
rc->lclu = EXT4_B2C(sbi, i);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* __pr_tree_search - search for a pending cluster reservation
|
|
*
|
|
* @root - root of pending reservation tree
|
|
* @lclu - logical cluster to search for
|
|
*
|
|
* Returns the pending reservation for the cluster identified by @lclu
|
|
* if found. If not, returns a reservation for the next cluster if any,
|
|
* and if not, returns NULL.
|
|
*/
|
|
static struct pending_reservation *__pr_tree_search(struct rb_root *root,
|
|
ext4_lblk_t lclu)
|
|
{
|
|
struct rb_node *node = root->rb_node;
|
|
struct pending_reservation *pr = NULL;
|
|
|
|
while (node) {
|
|
pr = rb_entry(node, struct pending_reservation, rb_node);
|
|
if (lclu < pr->lclu)
|
|
node = node->rb_left;
|
|
else if (lclu > pr->lclu)
|
|
node = node->rb_right;
|
|
else
|
|
return pr;
|
|
}
|
|
if (pr && lclu < pr->lclu)
|
|
return pr;
|
|
if (pr && lclu > pr->lclu) {
|
|
node = rb_next(&pr->rb_node);
|
|
return node ? rb_entry(node, struct pending_reservation,
|
|
rb_node) : NULL;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* get_rsvd - calculates and returns the number of cluster reservations to be
|
|
* released when removing a block range from the extent status tree
|
|
* and releases any pending reservations within the range
|
|
*
|
|
* @inode - file containing block range
|
|
* @end - last block in range
|
|
* @right_es - pointer to extent containing next block beyond end or NULL
|
|
* @rc - pointer to reserved count data
|
|
*
|
|
* The number of reservations to be released is equal to the number of
|
|
* clusters containing delayed and not unwritten (delonly) blocks within
|
|
* the range, minus the number of clusters still containing delonly blocks
|
|
* at the ends of the range, and minus the number of pending reservations
|
|
* within the range.
|
|
*/
|
|
static unsigned int get_rsvd(struct inode *inode, ext4_lblk_t end,
|
|
struct extent_status *right_es,
|
|
struct rsvd_count *rc)
|
|
{
|
|
struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
|
|
struct pending_reservation *pr;
|
|
struct ext4_pending_tree *tree = &EXT4_I(inode)->i_pending_tree;
|
|
struct rb_node *node;
|
|
ext4_lblk_t first_lclu, last_lclu;
|
|
bool left_delonly, right_delonly, count_pending;
|
|
struct extent_status *es;
|
|
|
|
if (sbi->s_cluster_ratio > 1) {
|
|
/* count any remaining partial cluster */
|
|
if (rc->partial)
|
|
rc->ndelonly++;
|
|
|
|
if (rc->ndelonly == 0)
|
|
return 0;
|
|
|
|
first_lclu = EXT4_B2C(sbi, rc->first_do_lblk);
|
|
last_lclu = EXT4_B2C(sbi, rc->last_do_lblk);
|
|
|
|
/*
|
|
* decrease the delonly count by the number of clusters at the
|
|
* ends of the range that still contain delonly blocks -
|
|
* these clusters still need to be reserved
|
|
*/
|
|
left_delonly = right_delonly = false;
|
|
|
|
es = rc->left_es;
|
|
while (es && ext4_es_end(es) >=
|
|
EXT4_LBLK_CMASK(sbi, rc->first_do_lblk)) {
|
|
if (ext4_es_is_delonly(es)) {
|
|
rc->ndelonly--;
|
|
left_delonly = true;
|
|
break;
|
|
}
|
|
node = rb_prev(&es->rb_node);
|
|
if (!node)
|
|
break;
|
|
es = rb_entry(node, struct extent_status, rb_node);
|
|
}
|
|
if (right_es && (!left_delonly || first_lclu != last_lclu)) {
|
|
if (end < ext4_es_end(right_es)) {
|
|
es = right_es;
|
|
} else {
|
|
node = rb_next(&right_es->rb_node);
|
|
es = node ? rb_entry(node, struct extent_status,
|
|
rb_node) : NULL;
|
|
}
|
|
while (es && es->es_lblk <=
|
|
EXT4_LBLK_CFILL(sbi, rc->last_do_lblk)) {
|
|
if (ext4_es_is_delonly(es)) {
|
|
rc->ndelonly--;
|
|
right_delonly = true;
|
|
break;
|
|
}
|
|
node = rb_next(&es->rb_node);
|
|
if (!node)
|
|
break;
|
|
es = rb_entry(node, struct extent_status,
|
|
rb_node);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Determine the block range that should be searched for
|
|
* pending reservations, if any. Clusters on the ends of the
|
|
* original removed range containing delonly blocks are
|
|
* excluded. They've already been accounted for and it's not
|
|
* possible to determine if an associated pending reservation
|
|
* should be released with the information available in the
|
|
* extents status tree.
|
|
*/
|
|
if (first_lclu == last_lclu) {
|
|
if (left_delonly | right_delonly)
|
|
count_pending = false;
|
|
else
|
|
count_pending = true;
|
|
} else {
|
|
if (left_delonly)
|
|
first_lclu++;
|
|
if (right_delonly)
|
|
last_lclu--;
|
|
if (first_lclu <= last_lclu)
|
|
count_pending = true;
|
|
else
|
|
count_pending = false;
|
|
}
|
|
|
|
/*
|
|
* a pending reservation found between first_lclu and last_lclu
|
|
* represents an allocated cluster that contained at least one
|
|
* delonly block, so the delonly total must be reduced by one
|
|
* for each pending reservation found and released
|
|
*/
|
|
if (count_pending) {
|
|
pr = __pr_tree_search(&tree->root, first_lclu);
|
|
while (pr && pr->lclu <= last_lclu) {
|
|
rc->ndelonly--;
|
|
node = rb_next(&pr->rb_node);
|
|
rb_erase(&pr->rb_node, &tree->root);
|
|
__free_pending(pr);
|
|
if (!node)
|
|
break;
|
|
pr = rb_entry(node, struct pending_reservation,
|
|
rb_node);
|
|
}
|
|
}
|
|
}
|
|
return rc->ndelonly;
|
|
}
|
|
|
|
|
|
/*
|
|
* __es_remove_extent - removes block range from extent status tree
|
|
*
|
|
* @inode - file containing range
|
|
* @lblk - first block in range
|
|
* @end - last block in range
|
|
* @reserved - number of cluster reservations released
|
|
* @prealloc - pre-allocated es to avoid memory allocation failures
|
|
*
|
|
* If @reserved is not NULL and delayed allocation is enabled, counts
|
|
* block/cluster reservations freed by removing range and if bigalloc
|
|
* enabled cancels pending reservations as needed. Returns 0 on success,
|
|
* error code on failure.
|
|
*/
|
|
static int __es_remove_extent(struct inode *inode, ext4_lblk_t lblk,
|
|
ext4_lblk_t end, int *reserved,
|
|
struct extent_status *prealloc)
|
|
{
|
|
struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
|
|
struct rb_node *node;
|
|
struct extent_status *es;
|
|
struct extent_status orig_es;
|
|
ext4_lblk_t len1, len2;
|
|
ext4_fsblk_t block;
|
|
int err = 0;
|
|
bool count_reserved = true;
|
|
struct rsvd_count rc;
|
|
|
|
if (reserved == NULL || !test_opt(inode->i_sb, DELALLOC))
|
|
count_reserved = false;
|
|
|
|
es = __es_tree_search(&tree->root, lblk);
|
|
if (!es)
|
|
goto out;
|
|
if (es->es_lblk > end)
|
|
goto out;
|
|
|
|
/* Simply invalidate cache_es. */
|
|
tree->cache_es = NULL;
|
|
if (count_reserved)
|
|
init_rsvd(inode, lblk, es, &rc);
|
|
|
|
orig_es.es_lblk = es->es_lblk;
|
|
orig_es.es_len = es->es_len;
|
|
orig_es.es_pblk = es->es_pblk;
|
|
|
|
len1 = lblk > es->es_lblk ? lblk - es->es_lblk : 0;
|
|
len2 = ext4_es_end(es) > end ? ext4_es_end(es) - end : 0;
|
|
if (len1 > 0)
|
|
es->es_len = len1;
|
|
if (len2 > 0) {
|
|
if (len1 > 0) {
|
|
struct extent_status newes;
|
|
|
|
newes.es_lblk = end + 1;
|
|
newes.es_len = len2;
|
|
block = 0x7FDEADBEEFULL;
|
|
if (ext4_es_is_written(&orig_es) ||
|
|
ext4_es_is_unwritten(&orig_es))
|
|
block = ext4_es_pblock(&orig_es) +
|
|
orig_es.es_len - len2;
|
|
ext4_es_store_pblock_status(&newes, block,
|
|
ext4_es_status(&orig_es));
|
|
err = __es_insert_extent(inode, &newes, prealloc);
|
|
if (err) {
|
|
if (!ext4_es_must_keep(&newes))
|
|
return 0;
|
|
|
|
es->es_lblk = orig_es.es_lblk;
|
|
es->es_len = orig_es.es_len;
|
|
goto out;
|
|
}
|
|
} else {
|
|
es->es_lblk = end + 1;
|
|
es->es_len = len2;
|
|
if (ext4_es_is_written(es) ||
|
|
ext4_es_is_unwritten(es)) {
|
|
block = orig_es.es_pblk + orig_es.es_len - len2;
|
|
ext4_es_store_pblock(es, block);
|
|
}
|
|
}
|
|
if (count_reserved)
|
|
count_rsvd(inode, orig_es.es_lblk + len1,
|
|
orig_es.es_len - len1 - len2, &orig_es, &rc);
|
|
goto out_get_reserved;
|
|
}
|
|
|
|
if (len1 > 0) {
|
|
if (count_reserved)
|
|
count_rsvd(inode, lblk, orig_es.es_len - len1,
|
|
&orig_es, &rc);
|
|
node = rb_next(&es->rb_node);
|
|
if (node)
|
|
es = rb_entry(node, struct extent_status, rb_node);
|
|
else
|
|
es = NULL;
|
|
}
|
|
|
|
while (es && ext4_es_end(es) <= end) {
|
|
if (count_reserved)
|
|
count_rsvd(inode, es->es_lblk, es->es_len, es, &rc);
|
|
node = rb_next(&es->rb_node);
|
|
rb_erase(&es->rb_node, &tree->root);
|
|
ext4_es_free_extent(inode, es);
|
|
if (!node) {
|
|
es = NULL;
|
|
break;
|
|
}
|
|
es = rb_entry(node, struct extent_status, rb_node);
|
|
}
|
|
|
|
if (es && es->es_lblk < end + 1) {
|
|
ext4_lblk_t orig_len = es->es_len;
|
|
|
|
len1 = ext4_es_end(es) - end;
|
|
if (count_reserved)
|
|
count_rsvd(inode, es->es_lblk, orig_len - len1,
|
|
es, &rc);
|
|
es->es_lblk = end + 1;
|
|
es->es_len = len1;
|
|
if (ext4_es_is_written(es) || ext4_es_is_unwritten(es)) {
|
|
block = es->es_pblk + orig_len - len1;
|
|
ext4_es_store_pblock(es, block);
|
|
}
|
|
}
|
|
|
|
out_get_reserved:
|
|
if (count_reserved)
|
|
*reserved = get_rsvd(inode, end, es, &rc);
|
|
out:
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* ext4_es_remove_extent - removes block range from extent status tree
|
|
*
|
|
* @inode - file containing range
|
|
* @lblk - first block in range
|
|
* @len - number of blocks to remove
|
|
*
|
|
* Reduces block/cluster reservation count and for bigalloc cancels pending
|
|
* reservations as needed.
|
|
*/
|
|
void ext4_es_remove_extent(struct inode *inode, ext4_lblk_t lblk,
|
|
ext4_lblk_t len)
|
|
{
|
|
ext4_lblk_t end;
|
|
int err = 0;
|
|
int reserved = 0;
|
|
struct extent_status *es = NULL;
|
|
|
|
if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
|
|
return;
|
|
|
|
trace_ext4_es_remove_extent(inode, lblk, len);
|
|
es_debug("remove [%u/%u) from extent status tree of inode %lu\n",
|
|
lblk, len, inode->i_ino);
|
|
|
|
if (!len)
|
|
return;
|
|
|
|
end = lblk + len - 1;
|
|
BUG_ON(end < lblk);
|
|
|
|
retry:
|
|
if (err && !es)
|
|
es = __es_alloc_extent(true);
|
|
/*
|
|
* ext4_clear_inode() depends on us taking i_es_lock unconditionally
|
|
* so that we are sure __es_shrink() is done with the inode before it
|
|
* is reclaimed.
|
|
*/
|
|
write_lock(&EXT4_I(inode)->i_es_lock);
|
|
err = __es_remove_extent(inode, lblk, end, &reserved, es);
|
|
/* Free preallocated extent if it didn't get used. */
|
|
if (es) {
|
|
if (!es->es_len)
|
|
__es_free_extent(es);
|
|
es = NULL;
|
|
}
|
|
write_unlock(&EXT4_I(inode)->i_es_lock);
|
|
if (err)
|
|
goto retry;
|
|
|
|
ext4_es_print_tree(inode);
|
|
ext4_da_release_space(inode, reserved);
|
|
return;
|
|
}
|
|
|
|
static int __es_shrink(struct ext4_sb_info *sbi, int nr_to_scan,
|
|
struct ext4_inode_info *locked_ei)
|
|
{
|
|
struct ext4_inode_info *ei;
|
|
struct ext4_es_stats *es_stats;
|
|
ktime_t start_time;
|
|
u64 scan_time;
|
|
int nr_to_walk;
|
|
int nr_shrunk = 0;
|
|
int retried = 0, nr_skipped = 0;
|
|
|
|
es_stats = &sbi->s_es_stats;
|
|
start_time = ktime_get();
|
|
|
|
retry:
|
|
spin_lock(&sbi->s_es_lock);
|
|
nr_to_walk = sbi->s_es_nr_inode;
|
|
while (nr_to_walk-- > 0) {
|
|
if (list_empty(&sbi->s_es_list)) {
|
|
spin_unlock(&sbi->s_es_lock);
|
|
goto out;
|
|
}
|
|
ei = list_first_entry(&sbi->s_es_list, struct ext4_inode_info,
|
|
i_es_list);
|
|
/* Move the inode to the tail */
|
|
list_move_tail(&ei->i_es_list, &sbi->s_es_list);
|
|
|
|
/*
|
|
* Normally we try hard to avoid shrinking precached inodes,
|
|
* but we will as a last resort.
|
|
*/
|
|
if (!retried && ext4_test_inode_state(&ei->vfs_inode,
|
|
EXT4_STATE_EXT_PRECACHED)) {
|
|
nr_skipped++;
|
|
continue;
|
|
}
|
|
|
|
if (ei == locked_ei || !write_trylock(&ei->i_es_lock)) {
|
|
nr_skipped++;
|
|
continue;
|
|
}
|
|
/*
|
|
* Now we hold i_es_lock which protects us from inode reclaim
|
|
* freeing inode under us
|
|
*/
|
|
spin_unlock(&sbi->s_es_lock);
|
|
|
|
nr_shrunk += es_reclaim_extents(ei, &nr_to_scan);
|
|
write_unlock(&ei->i_es_lock);
|
|
|
|
if (nr_to_scan <= 0)
|
|
goto out;
|
|
spin_lock(&sbi->s_es_lock);
|
|
}
|
|
spin_unlock(&sbi->s_es_lock);
|
|
|
|
/*
|
|
* If we skipped any inodes, and we weren't able to make any
|
|
* forward progress, try again to scan precached inodes.
|
|
*/
|
|
if ((nr_shrunk == 0) && nr_skipped && !retried) {
|
|
retried++;
|
|
goto retry;
|
|
}
|
|
|
|
if (locked_ei && nr_shrunk == 0)
|
|
nr_shrunk = es_reclaim_extents(locked_ei, &nr_to_scan);
|
|
|
|
out:
|
|
scan_time = ktime_to_ns(ktime_sub(ktime_get(), start_time));
|
|
if (likely(es_stats->es_stats_scan_time))
|
|
es_stats->es_stats_scan_time = (scan_time +
|
|
es_stats->es_stats_scan_time*3) / 4;
|
|
else
|
|
es_stats->es_stats_scan_time = scan_time;
|
|
if (scan_time > es_stats->es_stats_max_scan_time)
|
|
es_stats->es_stats_max_scan_time = scan_time;
|
|
if (likely(es_stats->es_stats_shrunk))
|
|
es_stats->es_stats_shrunk = (nr_shrunk +
|
|
es_stats->es_stats_shrunk*3) / 4;
|
|
else
|
|
es_stats->es_stats_shrunk = nr_shrunk;
|
|
|
|
trace_ext4_es_shrink(sbi->s_sb, nr_shrunk, scan_time,
|
|
nr_skipped, retried);
|
|
return nr_shrunk;
|
|
}
|
|
|
|
static unsigned long ext4_es_count(struct shrinker *shrink,
|
|
struct shrink_control *sc)
|
|
{
|
|
unsigned long nr;
|
|
struct ext4_sb_info *sbi;
|
|
|
|
sbi = shrink->private_data;
|
|
nr = percpu_counter_read_positive(&sbi->s_es_stats.es_stats_shk_cnt);
|
|
trace_ext4_es_shrink_count(sbi->s_sb, sc->nr_to_scan, nr);
|
|
return nr;
|
|
}
|
|
|
|
static unsigned long ext4_es_scan(struct shrinker *shrink,
|
|
struct shrink_control *sc)
|
|
{
|
|
struct ext4_sb_info *sbi = shrink->private_data;
|
|
int nr_to_scan = sc->nr_to_scan;
|
|
int ret, nr_shrunk;
|
|
|
|
ret = percpu_counter_read_positive(&sbi->s_es_stats.es_stats_shk_cnt);
|
|
trace_ext4_es_shrink_scan_enter(sbi->s_sb, nr_to_scan, ret);
|
|
|
|
nr_shrunk = __es_shrink(sbi, nr_to_scan, NULL);
|
|
|
|
ret = percpu_counter_read_positive(&sbi->s_es_stats.es_stats_shk_cnt);
|
|
trace_ext4_es_shrink_scan_exit(sbi->s_sb, nr_shrunk, ret);
|
|
return nr_shrunk;
|
|
}
|
|
|
|
int ext4_seq_es_shrinker_info_show(struct seq_file *seq, void *v)
|
|
{
|
|
struct ext4_sb_info *sbi = EXT4_SB((struct super_block *) seq->private);
|
|
struct ext4_es_stats *es_stats = &sbi->s_es_stats;
|
|
struct ext4_inode_info *ei, *max = NULL;
|
|
unsigned int inode_cnt = 0;
|
|
|
|
if (v != SEQ_START_TOKEN)
|
|
return 0;
|
|
|
|
/* here we just find an inode that has the max nr. of objects */
|
|
spin_lock(&sbi->s_es_lock);
|
|
list_for_each_entry(ei, &sbi->s_es_list, i_es_list) {
|
|
inode_cnt++;
|
|
if (max && max->i_es_all_nr < ei->i_es_all_nr)
|
|
max = ei;
|
|
else if (!max)
|
|
max = ei;
|
|
}
|
|
spin_unlock(&sbi->s_es_lock);
|
|
|
|
seq_printf(seq, "stats:\n %lld objects\n %lld reclaimable objects\n",
|
|
percpu_counter_sum_positive(&es_stats->es_stats_all_cnt),
|
|
percpu_counter_sum_positive(&es_stats->es_stats_shk_cnt));
|
|
seq_printf(seq, " %lld/%lld cache hits/misses\n",
|
|
percpu_counter_sum_positive(&es_stats->es_stats_cache_hits),
|
|
percpu_counter_sum_positive(&es_stats->es_stats_cache_misses));
|
|
if (inode_cnt)
|
|
seq_printf(seq, " %d inodes on list\n", inode_cnt);
|
|
|
|
seq_printf(seq, "average:\n %llu us scan time\n",
|
|
div_u64(es_stats->es_stats_scan_time, 1000));
|
|
seq_printf(seq, " %lu shrunk objects\n", es_stats->es_stats_shrunk);
|
|
if (inode_cnt)
|
|
seq_printf(seq,
|
|
"maximum:\n %lu inode (%u objects, %u reclaimable)\n"
|
|
" %llu us max scan time\n",
|
|
max->vfs_inode.i_ino, max->i_es_all_nr, max->i_es_shk_nr,
|
|
div_u64(es_stats->es_stats_max_scan_time, 1000));
|
|
|
|
return 0;
|
|
}
|
|
|
|
int ext4_es_register_shrinker(struct ext4_sb_info *sbi)
|
|
{
|
|
int err;
|
|
|
|
/* Make sure we have enough bits for physical block number */
|
|
BUILD_BUG_ON(ES_SHIFT < 48);
|
|
INIT_LIST_HEAD(&sbi->s_es_list);
|
|
sbi->s_es_nr_inode = 0;
|
|
spin_lock_init(&sbi->s_es_lock);
|
|
sbi->s_es_stats.es_stats_shrunk = 0;
|
|
err = percpu_counter_init(&sbi->s_es_stats.es_stats_cache_hits, 0,
|
|
GFP_KERNEL);
|
|
if (err)
|
|
return err;
|
|
err = percpu_counter_init(&sbi->s_es_stats.es_stats_cache_misses, 0,
|
|
GFP_KERNEL);
|
|
if (err)
|
|
goto err1;
|
|
sbi->s_es_stats.es_stats_scan_time = 0;
|
|
sbi->s_es_stats.es_stats_max_scan_time = 0;
|
|
err = percpu_counter_init(&sbi->s_es_stats.es_stats_all_cnt, 0, GFP_KERNEL);
|
|
if (err)
|
|
goto err2;
|
|
err = percpu_counter_init(&sbi->s_es_stats.es_stats_shk_cnt, 0, GFP_KERNEL);
|
|
if (err)
|
|
goto err3;
|
|
|
|
sbi->s_es_shrinker = shrinker_alloc(0, "ext4-es:%s", sbi->s_sb->s_id);
|
|
if (!sbi->s_es_shrinker) {
|
|
err = -ENOMEM;
|
|
goto err4;
|
|
}
|
|
|
|
sbi->s_es_shrinker->scan_objects = ext4_es_scan;
|
|
sbi->s_es_shrinker->count_objects = ext4_es_count;
|
|
sbi->s_es_shrinker->private_data = sbi;
|
|
|
|
shrinker_register(sbi->s_es_shrinker);
|
|
|
|
return 0;
|
|
err4:
|
|
percpu_counter_destroy(&sbi->s_es_stats.es_stats_shk_cnt);
|
|
err3:
|
|
percpu_counter_destroy(&sbi->s_es_stats.es_stats_all_cnt);
|
|
err2:
|
|
percpu_counter_destroy(&sbi->s_es_stats.es_stats_cache_misses);
|
|
err1:
|
|
percpu_counter_destroy(&sbi->s_es_stats.es_stats_cache_hits);
|
|
return err;
|
|
}
|
|
|
|
void ext4_es_unregister_shrinker(struct ext4_sb_info *sbi)
|
|
{
|
|
percpu_counter_destroy(&sbi->s_es_stats.es_stats_cache_hits);
|
|
percpu_counter_destroy(&sbi->s_es_stats.es_stats_cache_misses);
|
|
percpu_counter_destroy(&sbi->s_es_stats.es_stats_all_cnt);
|
|
percpu_counter_destroy(&sbi->s_es_stats.es_stats_shk_cnt);
|
|
shrinker_free(sbi->s_es_shrinker);
|
|
}
|
|
|
|
/*
|
|
* Shrink extents in given inode from ei->i_es_shrink_lblk till end. Scan at
|
|
* most *nr_to_scan extents, update *nr_to_scan accordingly.
|
|
*
|
|
* Return 0 if we hit end of tree / interval, 1 if we exhausted nr_to_scan.
|
|
* Increment *nr_shrunk by the number of reclaimed extents. Also update
|
|
* ei->i_es_shrink_lblk to where we should continue scanning.
|
|
*/
|
|
static int es_do_reclaim_extents(struct ext4_inode_info *ei, ext4_lblk_t end,
|
|
int *nr_to_scan, int *nr_shrunk)
|
|
{
|
|
struct inode *inode = &ei->vfs_inode;
|
|
struct ext4_es_tree *tree = &ei->i_es_tree;
|
|
struct extent_status *es;
|
|
struct rb_node *node;
|
|
|
|
es = __es_tree_search(&tree->root, ei->i_es_shrink_lblk);
|
|
if (!es)
|
|
goto out_wrap;
|
|
|
|
while (*nr_to_scan > 0) {
|
|
if (es->es_lblk > end) {
|
|
ei->i_es_shrink_lblk = end + 1;
|
|
return 0;
|
|
}
|
|
|
|
(*nr_to_scan)--;
|
|
node = rb_next(&es->rb_node);
|
|
|
|
if (ext4_es_must_keep(es))
|
|
goto next;
|
|
if (ext4_es_is_referenced(es)) {
|
|
ext4_es_clear_referenced(es);
|
|
goto next;
|
|
}
|
|
|
|
rb_erase(&es->rb_node, &tree->root);
|
|
ext4_es_free_extent(inode, es);
|
|
(*nr_shrunk)++;
|
|
next:
|
|
if (!node)
|
|
goto out_wrap;
|
|
es = rb_entry(node, struct extent_status, rb_node);
|
|
}
|
|
ei->i_es_shrink_lblk = es->es_lblk;
|
|
return 1;
|
|
out_wrap:
|
|
ei->i_es_shrink_lblk = 0;
|
|
return 0;
|
|
}
|
|
|
|
static int es_reclaim_extents(struct ext4_inode_info *ei, int *nr_to_scan)
|
|
{
|
|
struct inode *inode = &ei->vfs_inode;
|
|
int nr_shrunk = 0;
|
|
ext4_lblk_t start = ei->i_es_shrink_lblk;
|
|
static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
|
|
DEFAULT_RATELIMIT_BURST);
|
|
|
|
if (ei->i_es_shk_nr == 0)
|
|
return 0;
|
|
|
|
if (ext4_test_inode_state(inode, EXT4_STATE_EXT_PRECACHED) &&
|
|
__ratelimit(&_rs))
|
|
ext4_warning(inode->i_sb, "forced shrink of precached extents");
|
|
|
|
if (!es_do_reclaim_extents(ei, EXT_MAX_BLOCKS, nr_to_scan, &nr_shrunk) &&
|
|
start != 0)
|
|
es_do_reclaim_extents(ei, start - 1, nr_to_scan, &nr_shrunk);
|
|
|
|
ei->i_es_tree.cache_es = NULL;
|
|
return nr_shrunk;
|
|
}
|
|
|
|
/*
|
|
* Called to support EXT4_IOC_CLEAR_ES_CACHE. We can only remove
|
|
* discretionary entries from the extent status cache. (Some entries
|
|
* must be present for proper operations.)
|
|
*/
|
|
void ext4_clear_inode_es(struct inode *inode)
|
|
{
|
|
struct ext4_inode_info *ei = EXT4_I(inode);
|
|
struct extent_status *es;
|
|
struct ext4_es_tree *tree;
|
|
struct rb_node *node;
|
|
|
|
write_lock(&ei->i_es_lock);
|
|
tree = &EXT4_I(inode)->i_es_tree;
|
|
tree->cache_es = NULL;
|
|
node = rb_first(&tree->root);
|
|
while (node) {
|
|
es = rb_entry(node, struct extent_status, rb_node);
|
|
node = rb_next(node);
|
|
if (!ext4_es_must_keep(es)) {
|
|
rb_erase(&es->rb_node, &tree->root);
|
|
ext4_es_free_extent(inode, es);
|
|
}
|
|
}
|
|
ext4_clear_inode_state(inode, EXT4_STATE_EXT_PRECACHED);
|
|
write_unlock(&ei->i_es_lock);
|
|
}
|
|
|
|
#ifdef ES_DEBUG__
|
|
static void ext4_print_pending_tree(struct inode *inode)
|
|
{
|
|
struct ext4_pending_tree *tree;
|
|
struct rb_node *node;
|
|
struct pending_reservation *pr;
|
|
|
|
printk(KERN_DEBUG "pending reservations for inode %lu:", inode->i_ino);
|
|
tree = &EXT4_I(inode)->i_pending_tree;
|
|
node = rb_first(&tree->root);
|
|
while (node) {
|
|
pr = rb_entry(node, struct pending_reservation, rb_node);
|
|
printk(KERN_DEBUG " %u", pr->lclu);
|
|
node = rb_next(node);
|
|
}
|
|
printk(KERN_DEBUG "\n");
|
|
}
|
|
#else
|
|
#define ext4_print_pending_tree(inode)
|
|
#endif
|
|
|
|
int __init ext4_init_pending(void)
|
|
{
|
|
ext4_pending_cachep = KMEM_CACHE(pending_reservation, SLAB_RECLAIM_ACCOUNT);
|
|
if (ext4_pending_cachep == NULL)
|
|
return -ENOMEM;
|
|
return 0;
|
|
}
|
|
|
|
void ext4_exit_pending(void)
|
|
{
|
|
kmem_cache_destroy(ext4_pending_cachep);
|
|
}
|
|
|
|
void ext4_init_pending_tree(struct ext4_pending_tree *tree)
|
|
{
|
|
tree->root = RB_ROOT;
|
|
}
|
|
|
|
/*
|
|
* __get_pending - retrieve a pointer to a pending reservation
|
|
*
|
|
* @inode - file containing the pending cluster reservation
|
|
* @lclu - logical cluster of interest
|
|
*
|
|
* Returns a pointer to a pending reservation if it's a member of
|
|
* the set, and NULL if not. Must be called holding i_es_lock.
|
|
*/
|
|
static struct pending_reservation *__get_pending(struct inode *inode,
|
|
ext4_lblk_t lclu)
|
|
{
|
|
struct ext4_pending_tree *tree;
|
|
struct rb_node *node;
|
|
struct pending_reservation *pr = NULL;
|
|
|
|
tree = &EXT4_I(inode)->i_pending_tree;
|
|
node = (&tree->root)->rb_node;
|
|
|
|
while (node) {
|
|
pr = rb_entry(node, struct pending_reservation, rb_node);
|
|
if (lclu < pr->lclu)
|
|
node = node->rb_left;
|
|
else if (lclu > pr->lclu)
|
|
node = node->rb_right;
|
|
else if (lclu == pr->lclu)
|
|
return pr;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* __insert_pending - adds a pending cluster reservation to the set of
|
|
* pending reservations
|
|
*
|
|
* @inode - file containing the cluster
|
|
* @lblk - logical block in the cluster to be added
|
|
* @prealloc - preallocated pending entry
|
|
*
|
|
* Returns 0 on successful insertion and -ENOMEM on failure. If the
|
|
* pending reservation is already in the set, returns successfully.
|
|
*/
|
|
static int __insert_pending(struct inode *inode, ext4_lblk_t lblk,
|
|
struct pending_reservation **prealloc)
|
|
{
|
|
struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
|
|
struct ext4_pending_tree *tree = &EXT4_I(inode)->i_pending_tree;
|
|
struct rb_node **p = &tree->root.rb_node;
|
|
struct rb_node *parent = NULL;
|
|
struct pending_reservation *pr;
|
|
ext4_lblk_t lclu;
|
|
int ret = 0;
|
|
|
|
lclu = EXT4_B2C(sbi, lblk);
|
|
/* search to find parent for insertion */
|
|
while (*p) {
|
|
parent = *p;
|
|
pr = rb_entry(parent, struct pending_reservation, rb_node);
|
|
|
|
if (lclu < pr->lclu) {
|
|
p = &(*p)->rb_left;
|
|
} else if (lclu > pr->lclu) {
|
|
p = &(*p)->rb_right;
|
|
} else {
|
|
/* pending reservation already inserted */
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
if (likely(*prealloc == NULL)) {
|
|
pr = __alloc_pending(false);
|
|
if (!pr) {
|
|
ret = -ENOMEM;
|
|
goto out;
|
|
}
|
|
} else {
|
|
pr = *prealloc;
|
|
*prealloc = NULL;
|
|
}
|
|
pr->lclu = lclu;
|
|
|
|
rb_link_node(&pr->rb_node, parent, p);
|
|
rb_insert_color(&pr->rb_node, &tree->root);
|
|
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* __remove_pending - removes a pending cluster reservation from the set
|
|
* of pending reservations
|
|
*
|
|
* @inode - file containing the cluster
|
|
* @lblk - logical block in the pending cluster reservation to be removed
|
|
*
|
|
* Returns successfully if pending reservation is not a member of the set.
|
|
*/
|
|
static void __remove_pending(struct inode *inode, ext4_lblk_t lblk)
|
|
{
|
|
struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
|
|
struct pending_reservation *pr;
|
|
struct ext4_pending_tree *tree;
|
|
|
|
pr = __get_pending(inode, EXT4_B2C(sbi, lblk));
|
|
if (pr != NULL) {
|
|
tree = &EXT4_I(inode)->i_pending_tree;
|
|
rb_erase(&pr->rb_node, &tree->root);
|
|
__free_pending(pr);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* ext4_remove_pending - removes a pending cluster reservation from the set
|
|
* of pending reservations
|
|
*
|
|
* @inode - file containing the cluster
|
|
* @lblk - logical block in the pending cluster reservation to be removed
|
|
*
|
|
* Locking for external use of __remove_pending.
|
|
*/
|
|
void ext4_remove_pending(struct inode *inode, ext4_lblk_t lblk)
|
|
{
|
|
struct ext4_inode_info *ei = EXT4_I(inode);
|
|
|
|
write_lock(&ei->i_es_lock);
|
|
__remove_pending(inode, lblk);
|
|
write_unlock(&ei->i_es_lock);
|
|
}
|
|
|
|
/*
|
|
* ext4_is_pending - determine whether a cluster has a pending reservation
|
|
* on it
|
|
*
|
|
* @inode - file containing the cluster
|
|
* @lblk - logical block in the cluster
|
|
*
|
|
* Returns true if there's a pending reservation for the cluster in the
|
|
* set of pending reservations, and false if not.
|
|
*/
|
|
bool ext4_is_pending(struct inode *inode, ext4_lblk_t lblk)
|
|
{
|
|
struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
|
|
struct ext4_inode_info *ei = EXT4_I(inode);
|
|
bool ret;
|
|
|
|
read_lock(&ei->i_es_lock);
|
|
ret = (bool)(__get_pending(inode, EXT4_B2C(sbi, lblk)) != NULL);
|
|
read_unlock(&ei->i_es_lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* ext4_es_insert_delayed_block - adds a delayed block to the extents status
|
|
* tree, adding a pending reservation where
|
|
* needed
|
|
*
|
|
* @inode - file containing the newly added block
|
|
* @lblk - logical block to be added
|
|
* @allocated - indicates whether a physical cluster has been allocated for
|
|
* the logical cluster that contains the block
|
|
*/
|
|
void ext4_es_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk,
|
|
bool allocated)
|
|
{
|
|
struct extent_status newes;
|
|
int err1 = 0, err2 = 0, err3 = 0;
|
|
struct extent_status *es1 = NULL;
|
|
struct extent_status *es2 = NULL;
|
|
struct pending_reservation *pr = NULL;
|
|
|
|
if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
|
|
return;
|
|
|
|
es_debug("add [%u/1) delayed to extent status tree of inode %lu\n",
|
|
lblk, inode->i_ino);
|
|
|
|
newes.es_lblk = lblk;
|
|
newes.es_len = 1;
|
|
ext4_es_store_pblock_status(&newes, ~0, EXTENT_STATUS_DELAYED);
|
|
trace_ext4_es_insert_delayed_block(inode, &newes, allocated);
|
|
|
|
ext4_es_insert_extent_check(inode, &newes);
|
|
|
|
retry:
|
|
if (err1 && !es1)
|
|
es1 = __es_alloc_extent(true);
|
|
if ((err1 || err2) && !es2)
|
|
es2 = __es_alloc_extent(true);
|
|
if ((err1 || err2 || err3) && allocated && !pr)
|
|
pr = __alloc_pending(true);
|
|
write_lock(&EXT4_I(inode)->i_es_lock);
|
|
|
|
err1 = __es_remove_extent(inode, lblk, lblk, NULL, es1);
|
|
if (err1 != 0)
|
|
goto error;
|
|
/* Free preallocated extent if it didn't get used. */
|
|
if (es1) {
|
|
if (!es1->es_len)
|
|
__es_free_extent(es1);
|
|
es1 = NULL;
|
|
}
|
|
|
|
err2 = __es_insert_extent(inode, &newes, es2);
|
|
if (err2 != 0)
|
|
goto error;
|
|
/* Free preallocated extent if it didn't get used. */
|
|
if (es2) {
|
|
if (!es2->es_len)
|
|
__es_free_extent(es2);
|
|
es2 = NULL;
|
|
}
|
|
|
|
if (allocated) {
|
|
err3 = __insert_pending(inode, lblk, &pr);
|
|
if (err3 != 0)
|
|
goto error;
|
|
if (pr) {
|
|
__free_pending(pr);
|
|
pr = NULL;
|
|
}
|
|
}
|
|
error:
|
|
write_unlock(&EXT4_I(inode)->i_es_lock);
|
|
if (err1 || err2 || err3)
|
|
goto retry;
|
|
|
|
ext4_es_print_tree(inode);
|
|
ext4_print_pending_tree(inode);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* __es_delayed_clu - count number of clusters containing blocks that
|
|
* are delayed only
|
|
*
|
|
* @inode - file containing block range
|
|
* @start - logical block defining start of range
|
|
* @end - logical block defining end of range
|
|
*
|
|
* Returns the number of clusters containing only delayed (not delayed
|
|
* and unwritten) blocks in the range specified by @start and @end. Any
|
|
* cluster or part of a cluster within the range and containing a delayed
|
|
* and not unwritten block within the range is counted as a whole cluster.
|
|
*/
|
|
static unsigned int __es_delayed_clu(struct inode *inode, ext4_lblk_t start,
|
|
ext4_lblk_t end)
|
|
{
|
|
struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
|
|
struct extent_status *es;
|
|
struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
|
|
struct rb_node *node;
|
|
ext4_lblk_t first_lclu, last_lclu;
|
|
unsigned long long last_counted_lclu;
|
|
unsigned int n = 0;
|
|
|
|
/* guaranteed to be unequal to any ext4_lblk_t value */
|
|
last_counted_lclu = ~0ULL;
|
|
|
|
es = __es_tree_search(&tree->root, start);
|
|
|
|
while (es && (es->es_lblk <= end)) {
|
|
if (ext4_es_is_delonly(es)) {
|
|
if (es->es_lblk <= start)
|
|
first_lclu = EXT4_B2C(sbi, start);
|
|
else
|
|
first_lclu = EXT4_B2C(sbi, es->es_lblk);
|
|
|
|
if (ext4_es_end(es) >= end)
|
|
last_lclu = EXT4_B2C(sbi, end);
|
|
else
|
|
last_lclu = EXT4_B2C(sbi, ext4_es_end(es));
|
|
|
|
if (first_lclu == last_counted_lclu)
|
|
n += last_lclu - first_lclu;
|
|
else
|
|
n += last_lclu - first_lclu + 1;
|
|
last_counted_lclu = last_lclu;
|
|
}
|
|
node = rb_next(&es->rb_node);
|
|
if (!node)
|
|
break;
|
|
es = rb_entry(node, struct extent_status, rb_node);
|
|
}
|
|
|
|
return n;
|
|
}
|
|
|
|
/*
|
|
* ext4_es_delayed_clu - count number of clusters containing blocks that
|
|
* are both delayed and unwritten
|
|
*
|
|
* @inode - file containing block range
|
|
* @lblk - logical block defining start of range
|
|
* @len - number of blocks in range
|
|
*
|
|
* Locking for external use of __es_delayed_clu().
|
|
*/
|
|
unsigned int ext4_es_delayed_clu(struct inode *inode, ext4_lblk_t lblk,
|
|
ext4_lblk_t len)
|
|
{
|
|
struct ext4_inode_info *ei = EXT4_I(inode);
|
|
ext4_lblk_t end;
|
|
unsigned int n;
|
|
|
|
if (len == 0)
|
|
return 0;
|
|
|
|
end = lblk + len - 1;
|
|
WARN_ON(end < lblk);
|
|
|
|
read_lock(&ei->i_es_lock);
|
|
|
|
n = __es_delayed_clu(inode, lblk, end);
|
|
|
|
read_unlock(&ei->i_es_lock);
|
|
|
|
return n;
|
|
}
|
|
|
|
/*
|
|
* __revise_pending - makes, cancels, or leaves unchanged pending cluster
|
|
* reservations for a specified block range depending
|
|
* upon the presence or absence of delayed blocks
|
|
* outside the range within clusters at the ends of the
|
|
* range
|
|
*
|
|
* @inode - file containing the range
|
|
* @lblk - logical block defining the start of range
|
|
* @len - length of range in blocks
|
|
* @prealloc - preallocated pending entry
|
|
*
|
|
* Used after a newly allocated extent is added to the extents status tree.
|
|
* Requires that the extents in the range have either written or unwritten
|
|
* status. Must be called while holding i_es_lock.
|
|
*/
|
|
static int __revise_pending(struct inode *inode, ext4_lblk_t lblk,
|
|
ext4_lblk_t len,
|
|
struct pending_reservation **prealloc)
|
|
{
|
|
struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
|
|
ext4_lblk_t end = lblk + len - 1;
|
|
ext4_lblk_t first, last;
|
|
bool f_del = false, l_del = false;
|
|
int ret = 0;
|
|
|
|
if (len == 0)
|
|
return 0;
|
|
|
|
/*
|
|
* Two cases - block range within single cluster and block range
|
|
* spanning two or more clusters. Note that a cluster belonging
|
|
* to a range starting and/or ending on a cluster boundary is treated
|
|
* as if it does not contain a delayed extent. The new range may
|
|
* have allocated space for previously delayed blocks out to the
|
|
* cluster boundary, requiring that any pre-existing pending
|
|
* reservation be canceled. Because this code only looks at blocks
|
|
* outside the range, it should revise pending reservations
|
|
* correctly even if the extent represented by the range can't be
|
|
* inserted in the extents status tree due to ENOSPC.
|
|
*/
|
|
|
|
if (EXT4_B2C(sbi, lblk) == EXT4_B2C(sbi, end)) {
|
|
first = EXT4_LBLK_CMASK(sbi, lblk);
|
|
if (first != lblk)
|
|
f_del = __es_scan_range(inode, &ext4_es_is_delonly,
|
|
first, lblk - 1);
|
|
if (f_del) {
|
|
ret = __insert_pending(inode, first, prealloc);
|
|
if (ret < 0)
|
|
goto out;
|
|
} else {
|
|
last = EXT4_LBLK_CMASK(sbi, end) +
|
|
sbi->s_cluster_ratio - 1;
|
|
if (last != end)
|
|
l_del = __es_scan_range(inode,
|
|
&ext4_es_is_delonly,
|
|
end + 1, last);
|
|
if (l_del) {
|
|
ret = __insert_pending(inode, last, prealloc);
|
|
if (ret < 0)
|
|
goto out;
|
|
} else
|
|
__remove_pending(inode, last);
|
|
}
|
|
} else {
|
|
first = EXT4_LBLK_CMASK(sbi, lblk);
|
|
if (first != lblk)
|
|
f_del = __es_scan_range(inode, &ext4_es_is_delonly,
|
|
first, lblk - 1);
|
|
if (f_del) {
|
|
ret = __insert_pending(inode, first, prealloc);
|
|
if (ret < 0)
|
|
goto out;
|
|
} else
|
|
__remove_pending(inode, first);
|
|
|
|
last = EXT4_LBLK_CMASK(sbi, end) + sbi->s_cluster_ratio - 1;
|
|
if (last != end)
|
|
l_del = __es_scan_range(inode, &ext4_es_is_delonly,
|
|
end + 1, last);
|
|
if (l_del) {
|
|
ret = __insert_pending(inode, last, prealloc);
|
|
if (ret < 0)
|
|
goto out;
|
|
} else
|
|
__remove_pending(inode, last);
|
|
}
|
|
out:
|
|
return ret;
|
|
}
|