linux/drivers/mtd/nand/spi/core.c
Chia-Lin Kao (AceLan) cff49d58f5
spi: Unify error codes by replacing -ENOTSUPP with -EOPNOTSUPP
This commit updates the SPI subsystem, particularly affecting "SPI MEM"
drivers and core parts, by replacing the -ENOTSUPP error code with
-EOPNOTSUPP.

The key motivations for this change are as follows:
1. The spi-nor driver currently uses EOPNOTSUPP, whereas calls to spi-mem
might return ENOTSUPP. This update aims to unify the error reporting
within the SPI subsystem for clarity and consistency.

2. The use of ENOTSUPP has been flagged by checkpatch as inappropriate,
mainly being reserved for NFS-related errors. To align with kernel coding
standards and recommendations, this change is being made.

3. By using EOPNOTSUPP, we provide more specific context to the error,
indicating that a particular operation is not supported. This helps
differentiate from the more generic ENOTSUPP error, allowing drivers to
better handle and respond to different error scenarios.

Risks and Considerations:
While this change is primarily intended as a code cleanup and error code
unification, there is a minor risk of breaking user-space applications
that rely on specific return codes for unsupported operations. However,
this risk is considered low, as such use-cases are unlikely to be common
or critical. Nevertheless, developers and users should be aware of this
change, especially if they have scripts or tools that specifically handle
SPI error codes.

This commit does not introduce any functional changes to the SPI subsystem
or the affected drivers.

Signed-off-by: "Chia-Lin Kao (AceLan)" <acelan.kao@canonical.com>
Acked-by: Tudor Ambarus <tudor.ambarus@linaro.org>
Reviewed-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Acked-by: Miquel Raynal <miquel.raynal@bootlin.com>
Acked-by: Michael Walle <michael@walle.cc>
Link: https://lore.kernel.org/r/20231129064311.272422-1-acelan.kao@canonical.com
Signed-off-by: Mark Brown <broonie@kernel.org>
2023-11-30 12:12:39 +00:00

1408 lines
33 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2016-2017 Micron Technology, Inc.
*
* Authors:
* Peter Pan <peterpandong@micron.com>
* Boris Brezillon <boris.brezillon@bootlin.com>
*/
#define pr_fmt(fmt) "spi-nand: " fmt
#include <linux/device.h>
#include <linux/jiffies.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/mtd/spinand.h>
#include <linux/of.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <linux/spi/spi.h>
#include <linux/spi/spi-mem.h>
static int spinand_read_reg_op(struct spinand_device *spinand, u8 reg, u8 *val)
{
struct spi_mem_op op = SPINAND_GET_FEATURE_OP(reg,
spinand->scratchbuf);
int ret;
ret = spi_mem_exec_op(spinand->spimem, &op);
if (ret)
return ret;
*val = *spinand->scratchbuf;
return 0;
}
static int spinand_write_reg_op(struct spinand_device *spinand, u8 reg, u8 val)
{
struct spi_mem_op op = SPINAND_SET_FEATURE_OP(reg,
spinand->scratchbuf);
*spinand->scratchbuf = val;
return spi_mem_exec_op(spinand->spimem, &op);
}
static int spinand_read_status(struct spinand_device *spinand, u8 *status)
{
return spinand_read_reg_op(spinand, REG_STATUS, status);
}
static int spinand_get_cfg(struct spinand_device *spinand, u8 *cfg)
{
struct nand_device *nand = spinand_to_nand(spinand);
if (WARN_ON(spinand->cur_target < 0 ||
spinand->cur_target >= nand->memorg.ntargets))
return -EINVAL;
*cfg = spinand->cfg_cache[spinand->cur_target];
return 0;
}
static int spinand_set_cfg(struct spinand_device *spinand, u8 cfg)
{
struct nand_device *nand = spinand_to_nand(spinand);
int ret;
if (WARN_ON(spinand->cur_target < 0 ||
spinand->cur_target >= nand->memorg.ntargets))
return -EINVAL;
if (spinand->cfg_cache[spinand->cur_target] == cfg)
return 0;
ret = spinand_write_reg_op(spinand, REG_CFG, cfg);
if (ret)
return ret;
spinand->cfg_cache[spinand->cur_target] = cfg;
return 0;
}
/**
* spinand_upd_cfg() - Update the configuration register
* @spinand: the spinand device
* @mask: the mask encoding the bits to update in the config reg
* @val: the new value to apply
*
* Update the configuration register.
*
* Return: 0 on success, a negative error code otherwise.
*/
int spinand_upd_cfg(struct spinand_device *spinand, u8 mask, u8 val)
{
int ret;
u8 cfg;
ret = spinand_get_cfg(spinand, &cfg);
if (ret)
return ret;
cfg &= ~mask;
cfg |= val;
return spinand_set_cfg(spinand, cfg);
}
/**
* spinand_select_target() - Select a specific NAND target/die
* @spinand: the spinand device
* @target: the target/die to select
*
* Select a new target/die. If chip only has one die, this function is a NOOP.
*
* Return: 0 on success, a negative error code otherwise.
*/
int spinand_select_target(struct spinand_device *spinand, unsigned int target)
{
struct nand_device *nand = spinand_to_nand(spinand);
int ret;
if (WARN_ON(target >= nand->memorg.ntargets))
return -EINVAL;
if (spinand->cur_target == target)
return 0;
if (nand->memorg.ntargets == 1) {
spinand->cur_target = target;
return 0;
}
ret = spinand->select_target(spinand, target);
if (ret)
return ret;
spinand->cur_target = target;
return 0;
}
static int spinand_read_cfg(struct spinand_device *spinand)
{
struct nand_device *nand = spinand_to_nand(spinand);
unsigned int target;
int ret;
for (target = 0; target < nand->memorg.ntargets; target++) {
ret = spinand_select_target(spinand, target);
if (ret)
return ret;
/*
* We use spinand_read_reg_op() instead of spinand_get_cfg()
* here to bypass the config cache.
*/
ret = spinand_read_reg_op(spinand, REG_CFG,
&spinand->cfg_cache[target]);
if (ret)
return ret;
}
return 0;
}
static int spinand_init_cfg_cache(struct spinand_device *spinand)
{
struct nand_device *nand = spinand_to_nand(spinand);
struct device *dev = &spinand->spimem->spi->dev;
spinand->cfg_cache = devm_kcalloc(dev,
nand->memorg.ntargets,
sizeof(*spinand->cfg_cache),
GFP_KERNEL);
if (!spinand->cfg_cache)
return -ENOMEM;
return 0;
}
static int spinand_init_quad_enable(struct spinand_device *spinand)
{
bool enable = false;
if (!(spinand->flags & SPINAND_HAS_QE_BIT))
return 0;
if (spinand->op_templates.read_cache->data.buswidth == 4 ||
spinand->op_templates.write_cache->data.buswidth == 4 ||
spinand->op_templates.update_cache->data.buswidth == 4)
enable = true;
return spinand_upd_cfg(spinand, CFG_QUAD_ENABLE,
enable ? CFG_QUAD_ENABLE : 0);
}
static int spinand_ecc_enable(struct spinand_device *spinand,
bool enable)
{
return spinand_upd_cfg(spinand, CFG_ECC_ENABLE,
enable ? CFG_ECC_ENABLE : 0);
}
static int spinand_check_ecc_status(struct spinand_device *spinand, u8 status)
{
struct nand_device *nand = spinand_to_nand(spinand);
if (spinand->eccinfo.get_status)
return spinand->eccinfo.get_status(spinand, status);
switch (status & STATUS_ECC_MASK) {
case STATUS_ECC_NO_BITFLIPS:
return 0;
case STATUS_ECC_HAS_BITFLIPS:
/*
* We have no way to know exactly how many bitflips have been
* fixed, so let's return the maximum possible value so that
* wear-leveling layers move the data immediately.
*/
return nanddev_get_ecc_conf(nand)->strength;
case STATUS_ECC_UNCOR_ERROR:
return -EBADMSG;
default:
break;
}
return -EINVAL;
}
static int spinand_noecc_ooblayout_ecc(struct mtd_info *mtd, int section,
struct mtd_oob_region *region)
{
return -ERANGE;
}
static int spinand_noecc_ooblayout_free(struct mtd_info *mtd, int section,
struct mtd_oob_region *region)
{
if (section)
return -ERANGE;
/* Reserve 2 bytes for the BBM. */
region->offset = 2;
region->length = 62;
return 0;
}
static const struct mtd_ooblayout_ops spinand_noecc_ooblayout = {
.ecc = spinand_noecc_ooblayout_ecc,
.free = spinand_noecc_ooblayout_free,
};
static int spinand_ondie_ecc_init_ctx(struct nand_device *nand)
{
struct spinand_device *spinand = nand_to_spinand(nand);
struct mtd_info *mtd = nanddev_to_mtd(nand);
struct spinand_ondie_ecc_conf *engine_conf;
nand->ecc.ctx.conf.engine_type = NAND_ECC_ENGINE_TYPE_ON_DIE;
nand->ecc.ctx.conf.step_size = nand->ecc.requirements.step_size;
nand->ecc.ctx.conf.strength = nand->ecc.requirements.strength;
engine_conf = kzalloc(sizeof(*engine_conf), GFP_KERNEL);
if (!engine_conf)
return -ENOMEM;
nand->ecc.ctx.priv = engine_conf;
if (spinand->eccinfo.ooblayout)
mtd_set_ooblayout(mtd, spinand->eccinfo.ooblayout);
else
mtd_set_ooblayout(mtd, &spinand_noecc_ooblayout);
return 0;
}
static void spinand_ondie_ecc_cleanup_ctx(struct nand_device *nand)
{
kfree(nand->ecc.ctx.priv);
}
static int spinand_ondie_ecc_prepare_io_req(struct nand_device *nand,
struct nand_page_io_req *req)
{
struct spinand_device *spinand = nand_to_spinand(nand);
bool enable = (req->mode != MTD_OPS_RAW);
memset(spinand->oobbuf, 0xff, nanddev_per_page_oobsize(nand));
/* Only enable or disable the engine */
return spinand_ecc_enable(spinand, enable);
}
static int spinand_ondie_ecc_finish_io_req(struct nand_device *nand,
struct nand_page_io_req *req)
{
struct spinand_ondie_ecc_conf *engine_conf = nand->ecc.ctx.priv;
struct spinand_device *spinand = nand_to_spinand(nand);
struct mtd_info *mtd = spinand_to_mtd(spinand);
int ret;
if (req->mode == MTD_OPS_RAW)
return 0;
/* Nothing to do when finishing a page write */
if (req->type == NAND_PAGE_WRITE)
return 0;
/* Finish a page read: check the status, report errors/bitflips */
ret = spinand_check_ecc_status(spinand, engine_conf->status);
if (ret == -EBADMSG)
mtd->ecc_stats.failed++;
else if (ret > 0)
mtd->ecc_stats.corrected += ret;
return ret;
}
static struct nand_ecc_engine_ops spinand_ondie_ecc_engine_ops = {
.init_ctx = spinand_ondie_ecc_init_ctx,
.cleanup_ctx = spinand_ondie_ecc_cleanup_ctx,
.prepare_io_req = spinand_ondie_ecc_prepare_io_req,
.finish_io_req = spinand_ondie_ecc_finish_io_req,
};
static struct nand_ecc_engine spinand_ondie_ecc_engine = {
.ops = &spinand_ondie_ecc_engine_ops,
};
static void spinand_ondie_ecc_save_status(struct nand_device *nand, u8 status)
{
struct spinand_ondie_ecc_conf *engine_conf = nand->ecc.ctx.priv;
if (nand->ecc.ctx.conf.engine_type == NAND_ECC_ENGINE_TYPE_ON_DIE &&
engine_conf)
engine_conf->status = status;
}
static int spinand_write_enable_op(struct spinand_device *spinand)
{
struct spi_mem_op op = SPINAND_WR_EN_DIS_OP(true);
return spi_mem_exec_op(spinand->spimem, &op);
}
static int spinand_load_page_op(struct spinand_device *spinand,
const struct nand_page_io_req *req)
{
struct nand_device *nand = spinand_to_nand(spinand);
unsigned int row = nanddev_pos_to_row(nand, &req->pos);
struct spi_mem_op op = SPINAND_PAGE_READ_OP(row);
return spi_mem_exec_op(spinand->spimem, &op);
}
static int spinand_read_from_cache_op(struct spinand_device *spinand,
const struct nand_page_io_req *req)
{
struct nand_device *nand = spinand_to_nand(spinand);
struct mtd_info *mtd = spinand_to_mtd(spinand);
struct spi_mem_dirmap_desc *rdesc;
unsigned int nbytes = 0;
void *buf = NULL;
u16 column = 0;
ssize_t ret;
if (req->datalen) {
buf = spinand->databuf;
nbytes = nanddev_page_size(nand);
column = 0;
}
if (req->ooblen) {
nbytes += nanddev_per_page_oobsize(nand);
if (!buf) {
buf = spinand->oobbuf;
column = nanddev_page_size(nand);
}
}
if (req->mode == MTD_OPS_RAW)
rdesc = spinand->dirmaps[req->pos.plane].rdesc;
else
rdesc = spinand->dirmaps[req->pos.plane].rdesc_ecc;
while (nbytes) {
ret = spi_mem_dirmap_read(rdesc, column, nbytes, buf);
if (ret < 0)
return ret;
if (!ret || ret > nbytes)
return -EIO;
nbytes -= ret;
column += ret;
buf += ret;
}
if (req->datalen)
memcpy(req->databuf.in, spinand->databuf + req->dataoffs,
req->datalen);
if (req->ooblen) {
if (req->mode == MTD_OPS_AUTO_OOB)
mtd_ooblayout_get_databytes(mtd, req->oobbuf.in,
spinand->oobbuf,
req->ooboffs,
req->ooblen);
else
memcpy(req->oobbuf.in, spinand->oobbuf + req->ooboffs,
req->ooblen);
}
return 0;
}
static int spinand_write_to_cache_op(struct spinand_device *spinand,
const struct nand_page_io_req *req)
{
struct nand_device *nand = spinand_to_nand(spinand);
struct mtd_info *mtd = spinand_to_mtd(spinand);
struct spi_mem_dirmap_desc *wdesc;
unsigned int nbytes, column = 0;
void *buf = spinand->databuf;
ssize_t ret;
/*
* Looks like PROGRAM LOAD (AKA write cache) does not necessarily reset
* the cache content to 0xFF (depends on vendor implementation), so we
* must fill the page cache entirely even if we only want to program
* the data portion of the page, otherwise we might corrupt the BBM or
* user data previously programmed in OOB area.
*
* Only reset the data buffer manually, the OOB buffer is prepared by
* ECC engines ->prepare_io_req() callback.
*/
nbytes = nanddev_page_size(nand) + nanddev_per_page_oobsize(nand);
memset(spinand->databuf, 0xff, nanddev_page_size(nand));
if (req->datalen)
memcpy(spinand->databuf + req->dataoffs, req->databuf.out,
req->datalen);
if (req->ooblen) {
if (req->mode == MTD_OPS_AUTO_OOB)
mtd_ooblayout_set_databytes(mtd, req->oobbuf.out,
spinand->oobbuf,
req->ooboffs,
req->ooblen);
else
memcpy(spinand->oobbuf + req->ooboffs, req->oobbuf.out,
req->ooblen);
}
if (req->mode == MTD_OPS_RAW)
wdesc = spinand->dirmaps[req->pos.plane].wdesc;
else
wdesc = spinand->dirmaps[req->pos.plane].wdesc_ecc;
while (nbytes) {
ret = spi_mem_dirmap_write(wdesc, column, nbytes, buf);
if (ret < 0)
return ret;
if (!ret || ret > nbytes)
return -EIO;
nbytes -= ret;
column += ret;
buf += ret;
}
return 0;
}
static int spinand_program_op(struct spinand_device *spinand,
const struct nand_page_io_req *req)
{
struct nand_device *nand = spinand_to_nand(spinand);
unsigned int row = nanddev_pos_to_row(nand, &req->pos);
struct spi_mem_op op = SPINAND_PROG_EXEC_OP(row);
return spi_mem_exec_op(spinand->spimem, &op);
}
static int spinand_erase_op(struct spinand_device *spinand,
const struct nand_pos *pos)
{
struct nand_device *nand = spinand_to_nand(spinand);
unsigned int row = nanddev_pos_to_row(nand, pos);
struct spi_mem_op op = SPINAND_BLK_ERASE_OP(row);
return spi_mem_exec_op(spinand->spimem, &op);
}
static int spinand_wait(struct spinand_device *spinand,
unsigned long initial_delay_us,
unsigned long poll_delay_us,
u8 *s)
{
struct spi_mem_op op = SPINAND_GET_FEATURE_OP(REG_STATUS,
spinand->scratchbuf);
u8 status;
int ret;
ret = spi_mem_poll_status(spinand->spimem, &op, STATUS_BUSY, 0,
initial_delay_us,
poll_delay_us,
SPINAND_WAITRDY_TIMEOUT_MS);
if (ret)
return ret;
status = *spinand->scratchbuf;
if (!(status & STATUS_BUSY))
goto out;
/*
* Extra read, just in case the STATUS_READY bit has changed
* since our last check
*/
ret = spinand_read_status(spinand, &status);
if (ret)
return ret;
out:
if (s)
*s = status;
return status & STATUS_BUSY ? -ETIMEDOUT : 0;
}
static int spinand_read_id_op(struct spinand_device *spinand, u8 naddr,
u8 ndummy, u8 *buf)
{
struct spi_mem_op op = SPINAND_READID_OP(
naddr, ndummy, spinand->scratchbuf, SPINAND_MAX_ID_LEN);
int ret;
ret = spi_mem_exec_op(spinand->spimem, &op);
if (!ret)
memcpy(buf, spinand->scratchbuf, SPINAND_MAX_ID_LEN);
return ret;
}
static int spinand_reset_op(struct spinand_device *spinand)
{
struct spi_mem_op op = SPINAND_RESET_OP;
int ret;
ret = spi_mem_exec_op(spinand->spimem, &op);
if (ret)
return ret;
return spinand_wait(spinand,
SPINAND_RESET_INITIAL_DELAY_US,
SPINAND_RESET_POLL_DELAY_US,
NULL);
}
static int spinand_lock_block(struct spinand_device *spinand, u8 lock)
{
return spinand_write_reg_op(spinand, REG_BLOCK_LOCK, lock);
}
static int spinand_read_page(struct spinand_device *spinand,
const struct nand_page_io_req *req)
{
struct nand_device *nand = spinand_to_nand(spinand);
u8 status;
int ret;
ret = nand_ecc_prepare_io_req(nand, (struct nand_page_io_req *)req);
if (ret)
return ret;
ret = spinand_load_page_op(spinand, req);
if (ret)
return ret;
ret = spinand_wait(spinand,
SPINAND_READ_INITIAL_DELAY_US,
SPINAND_READ_POLL_DELAY_US,
&status);
if (ret < 0)
return ret;
spinand_ondie_ecc_save_status(nand, status);
ret = spinand_read_from_cache_op(spinand, req);
if (ret)
return ret;
return nand_ecc_finish_io_req(nand, (struct nand_page_io_req *)req);
}
static int spinand_write_page(struct spinand_device *spinand,
const struct nand_page_io_req *req)
{
struct nand_device *nand = spinand_to_nand(spinand);
u8 status;
int ret;
ret = nand_ecc_prepare_io_req(nand, (struct nand_page_io_req *)req);
if (ret)
return ret;
ret = spinand_write_enable_op(spinand);
if (ret)
return ret;
ret = spinand_write_to_cache_op(spinand, req);
if (ret)
return ret;
ret = spinand_program_op(spinand, req);
if (ret)
return ret;
ret = spinand_wait(spinand,
SPINAND_WRITE_INITIAL_DELAY_US,
SPINAND_WRITE_POLL_DELAY_US,
&status);
if (!ret && (status & STATUS_PROG_FAILED))
return -EIO;
return nand_ecc_finish_io_req(nand, (struct nand_page_io_req *)req);
}
static int spinand_mtd_read(struct mtd_info *mtd, loff_t from,
struct mtd_oob_ops *ops)
{
struct spinand_device *spinand = mtd_to_spinand(mtd);
struct nand_device *nand = mtd_to_nanddev(mtd);
struct mtd_ecc_stats old_stats;
unsigned int max_bitflips = 0;
struct nand_io_iter iter;
bool disable_ecc = false;
bool ecc_failed = false;
int ret = 0;
if (ops->mode == MTD_OPS_RAW || !spinand->eccinfo.ooblayout)
disable_ecc = true;
mutex_lock(&spinand->lock);
old_stats = mtd->ecc_stats;
nanddev_io_for_each_page(nand, NAND_PAGE_READ, from, ops, &iter) {
if (disable_ecc)
iter.req.mode = MTD_OPS_RAW;
ret = spinand_select_target(spinand, iter.req.pos.target);
if (ret)
break;
ret = spinand_read_page(spinand, &iter.req);
if (ret < 0 && ret != -EBADMSG)
break;
if (ret == -EBADMSG)
ecc_failed = true;
else
max_bitflips = max_t(unsigned int, max_bitflips, ret);
ret = 0;
ops->retlen += iter.req.datalen;
ops->oobretlen += iter.req.ooblen;
}
if (ops->stats) {
ops->stats->uncorrectable_errors +=
mtd->ecc_stats.failed - old_stats.failed;
ops->stats->corrected_bitflips +=
mtd->ecc_stats.corrected - old_stats.corrected;
}
mutex_unlock(&spinand->lock);
if (ecc_failed && !ret)
ret = -EBADMSG;
return ret ? ret : max_bitflips;
}
static int spinand_mtd_write(struct mtd_info *mtd, loff_t to,
struct mtd_oob_ops *ops)
{
struct spinand_device *spinand = mtd_to_spinand(mtd);
struct nand_device *nand = mtd_to_nanddev(mtd);
struct nand_io_iter iter;
bool disable_ecc = false;
int ret = 0;
if (ops->mode == MTD_OPS_RAW || !mtd->ooblayout)
disable_ecc = true;
mutex_lock(&spinand->lock);
nanddev_io_for_each_page(nand, NAND_PAGE_WRITE, to, ops, &iter) {
if (disable_ecc)
iter.req.mode = MTD_OPS_RAW;
ret = spinand_select_target(spinand, iter.req.pos.target);
if (ret)
break;
ret = spinand_write_page(spinand, &iter.req);
if (ret)
break;
ops->retlen += iter.req.datalen;
ops->oobretlen += iter.req.ooblen;
}
mutex_unlock(&spinand->lock);
return ret;
}
static bool spinand_isbad(struct nand_device *nand, const struct nand_pos *pos)
{
struct spinand_device *spinand = nand_to_spinand(nand);
u8 marker[2] = { };
struct nand_page_io_req req = {
.pos = *pos,
.ooblen = sizeof(marker),
.ooboffs = 0,
.oobbuf.in = marker,
.mode = MTD_OPS_RAW,
};
spinand_select_target(spinand, pos->target);
spinand_read_page(spinand, &req);
if (marker[0] != 0xff || marker[1] != 0xff)
return true;
return false;
}
static int spinand_mtd_block_isbad(struct mtd_info *mtd, loff_t offs)
{
struct nand_device *nand = mtd_to_nanddev(mtd);
struct spinand_device *spinand = nand_to_spinand(nand);
struct nand_pos pos;
int ret;
nanddev_offs_to_pos(nand, offs, &pos);
mutex_lock(&spinand->lock);
ret = nanddev_isbad(nand, &pos);
mutex_unlock(&spinand->lock);
return ret;
}
static int spinand_markbad(struct nand_device *nand, const struct nand_pos *pos)
{
struct spinand_device *spinand = nand_to_spinand(nand);
u8 marker[2] = { };
struct nand_page_io_req req = {
.pos = *pos,
.ooboffs = 0,
.ooblen = sizeof(marker),
.oobbuf.out = marker,
.mode = MTD_OPS_RAW,
};
int ret;
ret = spinand_select_target(spinand, pos->target);
if (ret)
return ret;
ret = spinand_write_enable_op(spinand);
if (ret)
return ret;
return spinand_write_page(spinand, &req);
}
static int spinand_mtd_block_markbad(struct mtd_info *mtd, loff_t offs)
{
struct nand_device *nand = mtd_to_nanddev(mtd);
struct spinand_device *spinand = nand_to_spinand(nand);
struct nand_pos pos;
int ret;
nanddev_offs_to_pos(nand, offs, &pos);
mutex_lock(&spinand->lock);
ret = nanddev_markbad(nand, &pos);
mutex_unlock(&spinand->lock);
return ret;
}
static int spinand_erase(struct nand_device *nand, const struct nand_pos *pos)
{
struct spinand_device *spinand = nand_to_spinand(nand);
u8 status;
int ret;
ret = spinand_select_target(spinand, pos->target);
if (ret)
return ret;
ret = spinand_write_enable_op(spinand);
if (ret)
return ret;
ret = spinand_erase_op(spinand, pos);
if (ret)
return ret;
ret = spinand_wait(spinand,
SPINAND_ERASE_INITIAL_DELAY_US,
SPINAND_ERASE_POLL_DELAY_US,
&status);
if (!ret && (status & STATUS_ERASE_FAILED))
ret = -EIO;
return ret;
}
static int spinand_mtd_erase(struct mtd_info *mtd,
struct erase_info *einfo)
{
struct spinand_device *spinand = mtd_to_spinand(mtd);
int ret;
mutex_lock(&spinand->lock);
ret = nanddev_mtd_erase(mtd, einfo);
mutex_unlock(&spinand->lock);
return ret;
}
static int spinand_mtd_block_isreserved(struct mtd_info *mtd, loff_t offs)
{
struct spinand_device *spinand = mtd_to_spinand(mtd);
struct nand_device *nand = mtd_to_nanddev(mtd);
struct nand_pos pos;
int ret;
nanddev_offs_to_pos(nand, offs, &pos);
mutex_lock(&spinand->lock);
ret = nanddev_isreserved(nand, &pos);
mutex_unlock(&spinand->lock);
return ret;
}
static int spinand_create_dirmap(struct spinand_device *spinand,
unsigned int plane)
{
struct nand_device *nand = spinand_to_nand(spinand);
struct spi_mem_dirmap_info info = {
.length = nanddev_page_size(nand) +
nanddev_per_page_oobsize(nand),
};
struct spi_mem_dirmap_desc *desc;
/* The plane number is passed in MSB just above the column address */
info.offset = plane << fls(nand->memorg.pagesize);
info.op_tmpl = *spinand->op_templates.update_cache;
desc = devm_spi_mem_dirmap_create(&spinand->spimem->spi->dev,
spinand->spimem, &info);
if (IS_ERR(desc))
return PTR_ERR(desc);
spinand->dirmaps[plane].wdesc = desc;
info.op_tmpl = *spinand->op_templates.read_cache;
desc = devm_spi_mem_dirmap_create(&spinand->spimem->spi->dev,
spinand->spimem, &info);
if (IS_ERR(desc))
return PTR_ERR(desc);
spinand->dirmaps[plane].rdesc = desc;
if (nand->ecc.engine->integration != NAND_ECC_ENGINE_INTEGRATION_PIPELINED) {
spinand->dirmaps[plane].wdesc_ecc = spinand->dirmaps[plane].wdesc;
spinand->dirmaps[plane].rdesc_ecc = spinand->dirmaps[plane].rdesc;
return 0;
}
info.op_tmpl = *spinand->op_templates.update_cache;
info.op_tmpl.data.ecc = true;
desc = devm_spi_mem_dirmap_create(&spinand->spimem->spi->dev,
spinand->spimem, &info);
if (IS_ERR(desc))
return PTR_ERR(desc);
spinand->dirmaps[plane].wdesc_ecc = desc;
info.op_tmpl = *spinand->op_templates.read_cache;
info.op_tmpl.data.ecc = true;
desc = devm_spi_mem_dirmap_create(&spinand->spimem->spi->dev,
spinand->spimem, &info);
if (IS_ERR(desc))
return PTR_ERR(desc);
spinand->dirmaps[plane].rdesc_ecc = desc;
return 0;
}
static int spinand_create_dirmaps(struct spinand_device *spinand)
{
struct nand_device *nand = spinand_to_nand(spinand);
int i, ret;
spinand->dirmaps = devm_kzalloc(&spinand->spimem->spi->dev,
sizeof(*spinand->dirmaps) *
nand->memorg.planes_per_lun,
GFP_KERNEL);
if (!spinand->dirmaps)
return -ENOMEM;
for (i = 0; i < nand->memorg.planes_per_lun; i++) {
ret = spinand_create_dirmap(spinand, i);
if (ret)
return ret;
}
return 0;
}
static const struct nand_ops spinand_ops = {
.erase = spinand_erase,
.markbad = spinand_markbad,
.isbad = spinand_isbad,
};
static const struct spinand_manufacturer *spinand_manufacturers[] = {
&alliancememory_spinand_manufacturer,
&ato_spinand_manufacturer,
&esmt_c8_spinand_manufacturer,
&foresee_spinand_manufacturer,
&gigadevice_spinand_manufacturer,
&macronix_spinand_manufacturer,
&micron_spinand_manufacturer,
&paragon_spinand_manufacturer,
&toshiba_spinand_manufacturer,
&winbond_spinand_manufacturer,
&xtx_spinand_manufacturer,
};
static int spinand_manufacturer_match(struct spinand_device *spinand,
enum spinand_readid_method rdid_method)
{
u8 *id = spinand->id.data;
unsigned int i;
int ret;
for (i = 0; i < ARRAY_SIZE(spinand_manufacturers); i++) {
const struct spinand_manufacturer *manufacturer =
spinand_manufacturers[i];
if (id[0] != manufacturer->id)
continue;
ret = spinand_match_and_init(spinand,
manufacturer->chips,
manufacturer->nchips,
rdid_method);
if (ret < 0)
continue;
spinand->manufacturer = manufacturer;
return 0;
}
return -EOPNOTSUPP;
}
static int spinand_id_detect(struct spinand_device *spinand)
{
u8 *id = spinand->id.data;
int ret;
ret = spinand_read_id_op(spinand, 0, 0, id);
if (ret)
return ret;
ret = spinand_manufacturer_match(spinand, SPINAND_READID_METHOD_OPCODE);
if (!ret)
return 0;
ret = spinand_read_id_op(spinand, 1, 0, id);
if (ret)
return ret;
ret = spinand_manufacturer_match(spinand,
SPINAND_READID_METHOD_OPCODE_ADDR);
if (!ret)
return 0;
ret = spinand_read_id_op(spinand, 0, 1, id);
if (ret)
return ret;
ret = spinand_manufacturer_match(spinand,
SPINAND_READID_METHOD_OPCODE_DUMMY);
return ret;
}
static int spinand_manufacturer_init(struct spinand_device *spinand)
{
if (spinand->manufacturer->ops->init)
return spinand->manufacturer->ops->init(spinand);
return 0;
}
static void spinand_manufacturer_cleanup(struct spinand_device *spinand)
{
/* Release manufacturer private data */
if (spinand->manufacturer->ops->cleanup)
return spinand->manufacturer->ops->cleanup(spinand);
}
static const struct spi_mem_op *
spinand_select_op_variant(struct spinand_device *spinand,
const struct spinand_op_variants *variants)
{
struct nand_device *nand = spinand_to_nand(spinand);
unsigned int i;
for (i = 0; i < variants->nops; i++) {
struct spi_mem_op op = variants->ops[i];
unsigned int nbytes;
int ret;
nbytes = nanddev_per_page_oobsize(nand) +
nanddev_page_size(nand);
while (nbytes) {
op.data.nbytes = nbytes;
ret = spi_mem_adjust_op_size(spinand->spimem, &op);
if (ret)
break;
if (!spi_mem_supports_op(spinand->spimem, &op))
break;
nbytes -= op.data.nbytes;
}
if (!nbytes)
return &variants->ops[i];
}
return NULL;
}
/**
* spinand_match_and_init() - Try to find a match between a device ID and an
* entry in a spinand_info table
* @spinand: SPI NAND object
* @table: SPI NAND device description table
* @table_size: size of the device description table
* @rdid_method: read id method to match
*
* Match between a device ID retrieved through the READ_ID command and an
* entry in the SPI NAND description table. If a match is found, the spinand
* object will be initialized with information provided by the matching
* spinand_info entry.
*
* Return: 0 on success, a negative error code otherwise.
*/
int spinand_match_and_init(struct spinand_device *spinand,
const struct spinand_info *table,
unsigned int table_size,
enum spinand_readid_method rdid_method)
{
u8 *id = spinand->id.data;
struct nand_device *nand = spinand_to_nand(spinand);
unsigned int i;
for (i = 0; i < table_size; i++) {
const struct spinand_info *info = &table[i];
const struct spi_mem_op *op;
if (rdid_method != info->devid.method)
continue;
if (memcmp(id + 1, info->devid.id, info->devid.len))
continue;
nand->memorg = table[i].memorg;
nanddev_set_ecc_requirements(nand, &table[i].eccreq);
spinand->eccinfo = table[i].eccinfo;
spinand->flags = table[i].flags;
spinand->id.len = 1 + table[i].devid.len;
spinand->select_target = table[i].select_target;
op = spinand_select_op_variant(spinand,
info->op_variants.read_cache);
if (!op)
return -ENOTSUPP;
spinand->op_templates.read_cache = op;
op = spinand_select_op_variant(spinand,
info->op_variants.write_cache);
if (!op)
return -ENOTSUPP;
spinand->op_templates.write_cache = op;
op = spinand_select_op_variant(spinand,
info->op_variants.update_cache);
spinand->op_templates.update_cache = op;
return 0;
}
return -ENOTSUPP;
}
static int spinand_detect(struct spinand_device *spinand)
{
struct device *dev = &spinand->spimem->spi->dev;
struct nand_device *nand = spinand_to_nand(spinand);
int ret;
ret = spinand_reset_op(spinand);
if (ret)
return ret;
ret = spinand_id_detect(spinand);
if (ret) {
dev_err(dev, "unknown raw ID %*phN\n", SPINAND_MAX_ID_LEN,
spinand->id.data);
return ret;
}
if (nand->memorg.ntargets > 1 && !spinand->select_target) {
dev_err(dev,
"SPI NANDs with more than one die must implement ->select_target()\n");
return -EINVAL;
}
dev_info(&spinand->spimem->spi->dev,
"%s SPI NAND was found.\n", spinand->manufacturer->name);
dev_info(&spinand->spimem->spi->dev,
"%llu MiB, block size: %zu KiB, page size: %zu, OOB size: %u\n",
nanddev_size(nand) >> 20, nanddev_eraseblock_size(nand) >> 10,
nanddev_page_size(nand), nanddev_per_page_oobsize(nand));
return 0;
}
static int spinand_init_flash(struct spinand_device *spinand)
{
struct device *dev = &spinand->spimem->spi->dev;
struct nand_device *nand = spinand_to_nand(spinand);
int ret, i;
ret = spinand_read_cfg(spinand);
if (ret)
return ret;
ret = spinand_init_quad_enable(spinand);
if (ret)
return ret;
ret = spinand_upd_cfg(spinand, CFG_OTP_ENABLE, 0);
if (ret)
return ret;
ret = spinand_manufacturer_init(spinand);
if (ret) {
dev_err(dev,
"Failed to initialize the SPI NAND chip (err = %d)\n",
ret);
return ret;
}
/* After power up, all blocks are locked, so unlock them here. */
for (i = 0; i < nand->memorg.ntargets; i++) {
ret = spinand_select_target(spinand, i);
if (ret)
break;
ret = spinand_lock_block(spinand, BL_ALL_UNLOCKED);
if (ret)
break;
}
if (ret)
spinand_manufacturer_cleanup(spinand);
return ret;
}
static void spinand_mtd_resume(struct mtd_info *mtd)
{
struct spinand_device *spinand = mtd_to_spinand(mtd);
int ret;
ret = spinand_reset_op(spinand);
if (ret)
return;
ret = spinand_init_flash(spinand);
if (ret)
return;
spinand_ecc_enable(spinand, false);
}
static int spinand_init(struct spinand_device *spinand)
{
struct device *dev = &spinand->spimem->spi->dev;
struct mtd_info *mtd = spinand_to_mtd(spinand);
struct nand_device *nand = mtd_to_nanddev(mtd);
int ret;
/*
* We need a scratch buffer because the spi_mem interface requires that
* buf passed in spi_mem_op->data.buf be DMA-able.
*/
spinand->scratchbuf = kzalloc(SPINAND_MAX_ID_LEN, GFP_KERNEL);
if (!spinand->scratchbuf)
return -ENOMEM;
ret = spinand_detect(spinand);
if (ret)
goto err_free_bufs;
/*
* Use kzalloc() instead of devm_kzalloc() here, because some drivers
* may use this buffer for DMA access.
* Memory allocated by devm_ does not guarantee DMA-safe alignment.
*/
spinand->databuf = kzalloc(nanddev_page_size(nand) +
nanddev_per_page_oobsize(nand),
GFP_KERNEL);
if (!spinand->databuf) {
ret = -ENOMEM;
goto err_free_bufs;
}
spinand->oobbuf = spinand->databuf + nanddev_page_size(nand);
ret = spinand_init_cfg_cache(spinand);
if (ret)
goto err_free_bufs;
ret = spinand_init_flash(spinand);
if (ret)
goto err_free_bufs;
ret = nanddev_init(nand, &spinand_ops, THIS_MODULE);
if (ret)
goto err_manuf_cleanup;
/* SPI-NAND default ECC engine is on-die */
nand->ecc.defaults.engine_type = NAND_ECC_ENGINE_TYPE_ON_DIE;
nand->ecc.ondie_engine = &spinand_ondie_ecc_engine;
spinand_ecc_enable(spinand, false);
ret = nanddev_ecc_engine_init(nand);
if (ret)
goto err_cleanup_nanddev;
mtd->_read_oob = spinand_mtd_read;
mtd->_write_oob = spinand_mtd_write;
mtd->_block_isbad = spinand_mtd_block_isbad;
mtd->_block_markbad = spinand_mtd_block_markbad;
mtd->_block_isreserved = spinand_mtd_block_isreserved;
mtd->_erase = spinand_mtd_erase;
mtd->_max_bad_blocks = nanddev_mtd_max_bad_blocks;
mtd->_resume = spinand_mtd_resume;
if (nand->ecc.engine) {
ret = mtd_ooblayout_count_freebytes(mtd);
if (ret < 0)
goto err_cleanup_ecc_engine;
}
mtd->oobavail = ret;
/* Propagate ECC information to mtd_info */
mtd->ecc_strength = nanddev_get_ecc_conf(nand)->strength;
mtd->ecc_step_size = nanddev_get_ecc_conf(nand)->step_size;
ret = spinand_create_dirmaps(spinand);
if (ret) {
dev_err(dev,
"Failed to create direct mappings for read/write operations (err = %d)\n",
ret);
goto err_cleanup_ecc_engine;
}
return 0;
err_cleanup_ecc_engine:
nanddev_ecc_engine_cleanup(nand);
err_cleanup_nanddev:
nanddev_cleanup(nand);
err_manuf_cleanup:
spinand_manufacturer_cleanup(spinand);
err_free_bufs:
kfree(spinand->databuf);
kfree(spinand->scratchbuf);
return ret;
}
static void spinand_cleanup(struct spinand_device *spinand)
{
struct nand_device *nand = spinand_to_nand(spinand);
nanddev_cleanup(nand);
spinand_manufacturer_cleanup(spinand);
kfree(spinand->databuf);
kfree(spinand->scratchbuf);
}
static int spinand_probe(struct spi_mem *mem)
{
struct spinand_device *spinand;
struct mtd_info *mtd;
int ret;
spinand = devm_kzalloc(&mem->spi->dev, sizeof(*spinand),
GFP_KERNEL);
if (!spinand)
return -ENOMEM;
spinand->spimem = mem;
spi_mem_set_drvdata(mem, spinand);
spinand_set_of_node(spinand, mem->spi->dev.of_node);
mutex_init(&spinand->lock);
mtd = spinand_to_mtd(spinand);
mtd->dev.parent = &mem->spi->dev;
ret = spinand_init(spinand);
if (ret)
return ret;
ret = mtd_device_register(mtd, NULL, 0);
if (ret)
goto err_spinand_cleanup;
return 0;
err_spinand_cleanup:
spinand_cleanup(spinand);
return ret;
}
static int spinand_remove(struct spi_mem *mem)
{
struct spinand_device *spinand;
struct mtd_info *mtd;
int ret;
spinand = spi_mem_get_drvdata(mem);
mtd = spinand_to_mtd(spinand);
ret = mtd_device_unregister(mtd);
if (ret)
return ret;
spinand_cleanup(spinand);
return 0;
}
static const struct spi_device_id spinand_ids[] = {
{ .name = "spi-nand" },
{ /* sentinel */ },
};
MODULE_DEVICE_TABLE(spi, spinand_ids);
#ifdef CONFIG_OF
static const struct of_device_id spinand_of_ids[] = {
{ .compatible = "spi-nand" },
{ /* sentinel */ },
};
MODULE_DEVICE_TABLE(of, spinand_of_ids);
#endif
static struct spi_mem_driver spinand_drv = {
.spidrv = {
.id_table = spinand_ids,
.driver = {
.name = "spi-nand",
.of_match_table = of_match_ptr(spinand_of_ids),
},
},
.probe = spinand_probe,
.remove = spinand_remove,
};
module_spi_mem_driver(spinand_drv);
MODULE_DESCRIPTION("SPI NAND framework");
MODULE_AUTHOR("Peter Pan<peterpandong@micron.com>");
MODULE_LICENSE("GPL v2");