linux/drivers/hwmon/adt7473.c
Jean Delvare be821b78af hwmon: (adt7473) Fix voltage conversion routines
Fix voltage conversion routines. Based on an earlier patch from
Paulius Zaleckas.

According to the datasheet voltage is scaled with resistors and
value 192 is nominal voltage. 0 is 0V.

Signed-off-by: Jean Delvare <khali@linux-fr.org>
Cc: Paulius Zaleckas <paulius.zaleckas@teltonika.lt>
Cc: Darrick J. Wong <djwong@us.ibm.com>
2008-10-26 17:04:40 +01:00

1131 lines
34 KiB
C

/*
* A hwmon driver for the Analog Devices ADT7473
* Copyright (C) 2007 IBM
*
* Author: Darrick J. Wong <djwong@us.ibm.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <linux/module.h>
#include <linux/jiffies.h>
#include <linux/i2c.h>
#include <linux/hwmon.h>
#include <linux/hwmon-sysfs.h>
#include <linux/err.h>
#include <linux/mutex.h>
#include <linux/delay.h>
#include <linux/log2.h>
/* Addresses to scan */
static const unsigned short normal_i2c[] = { 0x2C, 0x2D, 0x2E, I2C_CLIENT_END };
/* Insmod parameters */
I2C_CLIENT_INSMOD_1(adt7473);
/* ADT7473 registers */
#define ADT7473_REG_BASE_ADDR 0x20
#define ADT7473_REG_VOLT_BASE_ADDR 0x21
#define ADT7473_REG_VOLT_MIN_BASE_ADDR 0x46
#define ADT7473_REG_TEMP_BASE_ADDR 0x25
#define ADT7473_REG_TEMP_LIMITS_BASE_ADDR 0x4E
#define ADT7473_REG_TEMP_TMIN_BASE_ADDR 0x67
#define ADT7473_REG_TEMP_TMAX_BASE_ADDR 0x6A
#define ADT7473_REG_FAN_BASE_ADDR 0x28
#define ADT7473_REG_FAN_MIN_BASE_ADDR 0x54
#define ADT7473_REG_PWM_BASE_ADDR 0x30
#define ADT7473_REG_PWM_MIN_BASE_ADDR 0x64
#define ADT7473_REG_PWM_MAX_BASE_ADDR 0x38
#define ADT7473_REG_PWM_BHVR_BASE_ADDR 0x5C
#define ADT7473_PWM_BHVR_MASK 0xE0
#define ADT7473_PWM_BHVR_SHIFT 5
#define ADT7473_REG_CFG1 0x40
#define ADT7473_CFG1_START 0x01
#define ADT7473_CFG1_READY 0x04
#define ADT7473_REG_CFG2 0x73
#define ADT7473_REG_CFG3 0x78
#define ADT7473_REG_CFG4 0x7D
#define ADT7473_CFG4_MAX_DUTY_AT_OVT 0x08
#define ADT7473_REG_CFG5 0x7C
#define ADT7473_CFG5_TEMP_TWOS 0x01
#define ADT7473_CFG5_TEMP_OFFSET 0x02
#define ADT7473_REG_DEVICE 0x3D
#define ADT7473_VENDOR 0x41
#define ADT7473_REG_VENDOR 0x3E
#define ADT7473_DEVICE 0x73
#define ADT7473_REG_REVISION 0x3F
#define ADT7473_REV_68 0x68
#define ADT7473_REV_69 0x69
#define ADT7473_REG_ALARM1 0x41
#define ADT7473_VCCP_ALARM 0x02
#define ADT7473_VCC_ALARM 0x04
#define ADT7473_R1T_ALARM 0x10
#define ADT7473_LT_ALARM 0x20
#define ADT7473_R2T_ALARM 0x40
#define ADT7473_OOL 0x80
#define ADT7473_REG_ALARM2 0x42
#define ADT7473_OVT_ALARM 0x02
#define ADT7473_FAN1_ALARM 0x04
#define ADT7473_FAN2_ALARM 0x08
#define ADT7473_FAN3_ALARM 0x10
#define ADT7473_FAN4_ALARM 0x20
#define ADT7473_R1T_SHORT 0x40
#define ADT7473_R2T_SHORT 0x80
#define ALARM2(x) ((x) << 8)
#define ADT7473_VOLT_COUNT 2
#define ADT7473_REG_VOLT(x) (ADT7473_REG_VOLT_BASE_ADDR + (x))
#define ADT7473_REG_VOLT_MIN(x) (ADT7473_REG_VOLT_MIN_BASE_ADDR + ((x) * 2))
#define ADT7473_REG_VOLT_MAX(x) (ADT7473_REG_VOLT_MIN_BASE_ADDR + \
((x) * 2) + 1)
#define ADT7473_TEMP_COUNT 3
#define ADT7473_REG_TEMP(x) (ADT7473_REG_TEMP_BASE_ADDR + (x))
#define ADT7473_REG_TEMP_MIN(x) (ADT7473_REG_TEMP_LIMITS_BASE_ADDR + ((x) * 2))
#define ADT7473_REG_TEMP_MAX(x) (ADT7473_REG_TEMP_LIMITS_BASE_ADDR + \
((x) * 2) + 1)
#define ADT7473_REG_TEMP_TMIN(x) (ADT7473_REG_TEMP_TMIN_BASE_ADDR + (x))
#define ADT7473_REG_TEMP_TMAX(x) (ADT7473_REG_TEMP_TMAX_BASE_ADDR + (x))
#define ADT7473_FAN_COUNT 4
#define ADT7473_REG_FAN(x) (ADT7473_REG_FAN_BASE_ADDR + ((x) * 2))
#define ADT7473_REG_FAN_MIN(x) (ADT7473_REG_FAN_MIN_BASE_ADDR + ((x) * 2))
#define ADT7473_PWM_COUNT 3
#define ADT7473_REG_PWM(x) (ADT7473_REG_PWM_BASE_ADDR + (x))
#define ADT7473_REG_PWM_MAX(x) (ADT7473_REG_PWM_MAX_BASE_ADDR + (x))
#define ADT7473_REG_PWM_MIN(x) (ADT7473_REG_PWM_MIN_BASE_ADDR + (x))
#define ADT7473_REG_PWM_BHVR(x) (ADT7473_REG_PWM_BHVR_BASE_ADDR + (x))
/* How often do we reread sensors values? (In jiffies) */
#define SENSOR_REFRESH_INTERVAL (2 * HZ)
/* How often do we reread sensor limit values? (In jiffies) */
#define LIMIT_REFRESH_INTERVAL (60 * HZ)
/* datasheet says to divide this number by the fan reading to get fan rpm */
#define FAN_PERIOD_TO_RPM(x) ((90000 * 60) / (x))
#define FAN_RPM_TO_PERIOD FAN_PERIOD_TO_RPM
#define FAN_PERIOD_INVALID 65535
#define FAN_DATA_VALID(x) ((x) && (x) != FAN_PERIOD_INVALID)
struct adt7473_data {
struct device *hwmon_dev;
struct attribute_group attrs;
struct mutex lock;
char sensors_valid;
char limits_valid;
unsigned long sensors_last_updated; /* In jiffies */
unsigned long limits_last_updated; /* In jiffies */
u8 volt[ADT7473_VOLT_COUNT];
s8 volt_min[ADT7473_VOLT_COUNT];
s8 volt_max[ADT7473_VOLT_COUNT];
s8 temp[ADT7473_TEMP_COUNT];
s8 temp_min[ADT7473_TEMP_COUNT];
s8 temp_max[ADT7473_TEMP_COUNT];
s8 temp_tmin[ADT7473_TEMP_COUNT];
/* This is called the !THERM limit in the datasheet */
s8 temp_tmax[ADT7473_TEMP_COUNT];
u16 fan[ADT7473_FAN_COUNT];
u16 fan_min[ADT7473_FAN_COUNT];
u8 pwm[ADT7473_PWM_COUNT];
u8 pwm_max[ADT7473_PWM_COUNT];
u8 pwm_min[ADT7473_PWM_COUNT];
u8 pwm_behavior[ADT7473_PWM_COUNT];
u8 temp_twos_complement;
u8 temp_offset;
u16 alarm;
u8 max_duty_at_overheat;
};
static int adt7473_probe(struct i2c_client *client,
const struct i2c_device_id *id);
static int adt7473_detect(struct i2c_client *client, int kind,
struct i2c_board_info *info);
static int adt7473_remove(struct i2c_client *client);
static const struct i2c_device_id adt7473_id[] = {
{ "adt7473", adt7473 },
{ }
};
MODULE_DEVICE_TABLE(i2c, adt7473_id);
static struct i2c_driver adt7473_driver = {
.class = I2C_CLASS_HWMON,
.driver = {
.name = "adt7473",
},
.probe = adt7473_probe,
.remove = adt7473_remove,
.id_table = adt7473_id,
.detect = adt7473_detect,
.address_data = &addr_data,
};
/*
* 16-bit registers on the ADT7473 are low-byte first. The data sheet says
* that the low byte must be read before the high byte.
*/
static inline int adt7473_read_word_data(struct i2c_client *client, u8 reg)
{
u16 foo;
foo = i2c_smbus_read_byte_data(client, reg);
foo |= ((u16)i2c_smbus_read_byte_data(client, reg + 1) << 8);
return foo;
}
static inline int adt7473_write_word_data(struct i2c_client *client, u8 reg,
u16 value)
{
return i2c_smbus_write_byte_data(client, reg, value & 0xFF)
&& i2c_smbus_write_byte_data(client, reg + 1, value >> 8);
}
static void adt7473_init_client(struct i2c_client *client)
{
int reg = i2c_smbus_read_byte_data(client, ADT7473_REG_CFG1);
if (!(reg & ADT7473_CFG1_READY)) {
dev_err(&client->dev, "Chip not ready.\n");
} else {
/* start monitoring */
i2c_smbus_write_byte_data(client, ADT7473_REG_CFG1,
reg | ADT7473_CFG1_START);
}
}
static struct adt7473_data *adt7473_update_device(struct device *dev)
{
struct i2c_client *client = to_i2c_client(dev);
struct adt7473_data *data = i2c_get_clientdata(client);
unsigned long local_jiffies = jiffies;
u8 cfg;
int i;
mutex_lock(&data->lock);
if (time_before(local_jiffies, data->sensors_last_updated +
SENSOR_REFRESH_INTERVAL)
&& data->sensors_valid)
goto no_sensor_update;
for (i = 0; i < ADT7473_VOLT_COUNT; i++)
data->volt[i] = i2c_smbus_read_byte_data(client,
ADT7473_REG_VOLT(i));
/* Determine temperature encoding */
cfg = i2c_smbus_read_byte_data(client, ADT7473_REG_CFG5);
data->temp_twos_complement = (cfg & ADT7473_CFG5_TEMP_TWOS);
/*
* What does this do? it implies a variable temperature sensor
* offset, but the datasheet doesn't say anything about this bit
* and other parts of the datasheet imply that "offset64" mode
* means that you shift temp values by -64 if the above bit was set.
*/
data->temp_offset = (cfg & ADT7473_CFG5_TEMP_OFFSET);
for (i = 0; i < ADT7473_TEMP_COUNT; i++)
data->temp[i] = i2c_smbus_read_byte_data(client,
ADT7473_REG_TEMP(i));
for (i = 0; i < ADT7473_FAN_COUNT; i++)
data->fan[i] = adt7473_read_word_data(client,
ADT7473_REG_FAN(i));
for (i = 0; i < ADT7473_PWM_COUNT; i++)
data->pwm[i] = i2c_smbus_read_byte_data(client,
ADT7473_REG_PWM(i));
data->alarm = i2c_smbus_read_byte_data(client, ADT7473_REG_ALARM1);
if (data->alarm & ADT7473_OOL)
data->alarm |= ALARM2(i2c_smbus_read_byte_data(client,
ADT7473_REG_ALARM2));
data->sensors_last_updated = local_jiffies;
data->sensors_valid = 1;
no_sensor_update:
if (time_before(local_jiffies, data->limits_last_updated +
LIMIT_REFRESH_INTERVAL)
&& data->limits_valid)
goto out;
for (i = 0; i < ADT7473_VOLT_COUNT; i++) {
data->volt_min[i] = i2c_smbus_read_byte_data(client,
ADT7473_REG_VOLT_MIN(i));
data->volt_max[i] = i2c_smbus_read_byte_data(client,
ADT7473_REG_VOLT_MAX(i));
}
for (i = 0; i < ADT7473_TEMP_COUNT; i++) {
data->temp_min[i] = i2c_smbus_read_byte_data(client,
ADT7473_REG_TEMP_MIN(i));
data->temp_max[i] = i2c_smbus_read_byte_data(client,
ADT7473_REG_TEMP_MAX(i));
data->temp_tmin[i] = i2c_smbus_read_byte_data(client,
ADT7473_REG_TEMP_TMIN(i));
data->temp_tmax[i] = i2c_smbus_read_byte_data(client,
ADT7473_REG_TEMP_TMAX(i));
}
for (i = 0; i < ADT7473_FAN_COUNT; i++)
data->fan_min[i] = adt7473_read_word_data(client,
ADT7473_REG_FAN_MIN(i));
for (i = 0; i < ADT7473_PWM_COUNT; i++) {
data->pwm_max[i] = i2c_smbus_read_byte_data(client,
ADT7473_REG_PWM_MAX(i));
data->pwm_min[i] = i2c_smbus_read_byte_data(client,
ADT7473_REG_PWM_MIN(i));
data->pwm_behavior[i] = i2c_smbus_read_byte_data(client,
ADT7473_REG_PWM_BHVR(i));
}
i = i2c_smbus_read_byte_data(client, ADT7473_REG_CFG4);
data->max_duty_at_overheat = !!(i & ADT7473_CFG4_MAX_DUTY_AT_OVT);
data->limits_last_updated = local_jiffies;
data->limits_valid = 1;
out:
mutex_unlock(&data->lock);
return data;
}
/*
* Conversions
*/
/* IN are scaled acording to built-in resistors */
static const int adt7473_scaling[] = { /* .001 Volts */
2250, 3300
};
#define SCALE(val, from, to) (((val) * (to) + ((from) / 2)) / (from))
static int decode_volt(int volt_index, u8 raw)
{
return SCALE(raw, 192, adt7473_scaling[volt_index]);
}
static u8 encode_volt(int volt_index, int cooked)
{
int raw = SCALE(cooked, adt7473_scaling[volt_index], 192);
return SENSORS_LIMIT(raw, 0, 255);
}
static ssize_t show_volt_min(struct device *dev,
struct device_attribute *devattr,
char *buf)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct adt7473_data *data = adt7473_update_device(dev);
return sprintf(buf, "%d\n",
decode_volt(attr->index, data->volt_min[attr->index]));
}
static ssize_t set_volt_min(struct device *dev,
struct device_attribute *devattr,
const char *buf,
size_t count)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct i2c_client *client = to_i2c_client(dev);
struct adt7473_data *data = i2c_get_clientdata(client);
int volt = encode_volt(attr->index, simple_strtol(buf, NULL, 10));
mutex_lock(&data->lock);
data->volt_min[attr->index] = volt;
i2c_smbus_write_byte_data(client, ADT7473_REG_VOLT_MIN(attr->index),
volt);
mutex_unlock(&data->lock);
return count;
}
static ssize_t show_volt_max(struct device *dev,
struct device_attribute *devattr,
char *buf)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct adt7473_data *data = adt7473_update_device(dev);
return sprintf(buf, "%d\n",
decode_volt(attr->index, data->volt_max[attr->index]));
}
static ssize_t set_volt_max(struct device *dev,
struct device_attribute *devattr,
const char *buf,
size_t count)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct i2c_client *client = to_i2c_client(dev);
struct adt7473_data *data = i2c_get_clientdata(client);
int volt = encode_volt(attr->index, simple_strtol(buf, NULL, 10));
mutex_lock(&data->lock);
data->volt_max[attr->index] = volt;
i2c_smbus_write_byte_data(client, ADT7473_REG_VOLT_MAX(attr->index),
volt);
mutex_unlock(&data->lock);
return count;
}
static ssize_t show_volt(struct device *dev, struct device_attribute *devattr,
char *buf)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct adt7473_data *data = adt7473_update_device(dev);
return sprintf(buf, "%d\n",
decode_volt(attr->index, data->volt[attr->index]));
}
/*
* This chip can report temperature data either as a two's complement
* number in the range -128 to 127, or as an unsigned number that must
* be offset by 64.
*/
static int decode_temp(u8 twos_complement, u8 raw)
{
return twos_complement ? (s8)raw : raw - 64;
}
static u8 encode_temp(u8 twos_complement, int cooked)
{
return twos_complement ? cooked & 0xFF : cooked + 64;
}
static ssize_t show_temp_min(struct device *dev,
struct device_attribute *devattr,
char *buf)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct adt7473_data *data = adt7473_update_device(dev);
return sprintf(buf, "%d\n", 1000 * decode_temp(
data->temp_twos_complement,
data->temp_min[attr->index]));
}
static ssize_t set_temp_min(struct device *dev,
struct device_attribute *devattr,
const char *buf,
size_t count)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct i2c_client *client = to_i2c_client(dev);
struct adt7473_data *data = i2c_get_clientdata(client);
int temp = simple_strtol(buf, NULL, 10) / 1000;
temp = encode_temp(data->temp_twos_complement, temp);
mutex_lock(&data->lock);
data->temp_min[attr->index] = temp;
i2c_smbus_write_byte_data(client, ADT7473_REG_TEMP_MIN(attr->index),
temp);
mutex_unlock(&data->lock);
return count;
}
static ssize_t show_temp_max(struct device *dev,
struct device_attribute *devattr,
char *buf)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct adt7473_data *data = adt7473_update_device(dev);
return sprintf(buf, "%d\n", 1000 * decode_temp(
data->temp_twos_complement,
data->temp_max[attr->index]));
}
static ssize_t set_temp_max(struct device *dev,
struct device_attribute *devattr,
const char *buf,
size_t count)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct i2c_client *client = to_i2c_client(dev);
struct adt7473_data *data = i2c_get_clientdata(client);
int temp = simple_strtol(buf, NULL, 10) / 1000;
temp = encode_temp(data->temp_twos_complement, temp);
mutex_lock(&data->lock);
data->temp_max[attr->index] = temp;
i2c_smbus_write_byte_data(client, ADT7473_REG_TEMP_MAX(attr->index),
temp);
mutex_unlock(&data->lock);
return count;
}
static ssize_t show_temp(struct device *dev, struct device_attribute *devattr,
char *buf)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct adt7473_data *data = adt7473_update_device(dev);
return sprintf(buf, "%d\n", 1000 * decode_temp(
data->temp_twos_complement,
data->temp[attr->index]));
}
static ssize_t show_fan_min(struct device *dev,
struct device_attribute *devattr,
char *buf)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct adt7473_data *data = adt7473_update_device(dev);
if (FAN_DATA_VALID(data->fan_min[attr->index]))
return sprintf(buf, "%d\n",
FAN_PERIOD_TO_RPM(data->fan_min[attr->index]));
else
return sprintf(buf, "0\n");
}
static ssize_t set_fan_min(struct device *dev,
struct device_attribute *devattr,
const char *buf, size_t count)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct i2c_client *client = to_i2c_client(dev);
struct adt7473_data *data = i2c_get_clientdata(client);
int temp = simple_strtol(buf, NULL, 10);
if (!temp)
return -EINVAL;
temp = FAN_RPM_TO_PERIOD(temp);
mutex_lock(&data->lock);
data->fan_min[attr->index] = temp;
adt7473_write_word_data(client, ADT7473_REG_FAN_MIN(attr->index), temp);
mutex_unlock(&data->lock);
return count;
}
static ssize_t show_fan(struct device *dev, struct device_attribute *devattr,
char *buf)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct adt7473_data *data = adt7473_update_device(dev);
if (FAN_DATA_VALID(data->fan[attr->index]))
return sprintf(buf, "%d\n",
FAN_PERIOD_TO_RPM(data->fan[attr->index]));
else
return sprintf(buf, "0\n");
}
static ssize_t show_max_duty_at_crit(struct device *dev,
struct device_attribute *devattr,
char *buf)
{
struct adt7473_data *data = adt7473_update_device(dev);
return sprintf(buf, "%d\n", data->max_duty_at_overheat);
}
static ssize_t set_max_duty_at_crit(struct device *dev,
struct device_attribute *devattr,
const char *buf,
size_t count)
{
u8 reg;
struct i2c_client *client = to_i2c_client(dev);
struct adt7473_data *data = i2c_get_clientdata(client);
int temp = simple_strtol(buf, NULL, 10);
mutex_lock(&data->lock);
data->max_duty_at_overheat = !!temp;
reg = i2c_smbus_read_byte_data(client, ADT7473_REG_CFG4);
if (temp)
reg |= ADT7473_CFG4_MAX_DUTY_AT_OVT;
else
reg &= ~ADT7473_CFG4_MAX_DUTY_AT_OVT;
i2c_smbus_write_byte_data(client, ADT7473_REG_CFG4, reg);
mutex_unlock(&data->lock);
return count;
}
static ssize_t show_pwm(struct device *dev, struct device_attribute *devattr,
char *buf)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct adt7473_data *data = adt7473_update_device(dev);
return sprintf(buf, "%d\n", data->pwm[attr->index]);
}
static ssize_t set_pwm(struct device *dev, struct device_attribute *devattr,
const char *buf, size_t count)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct i2c_client *client = to_i2c_client(dev);
struct adt7473_data *data = i2c_get_clientdata(client);
int temp = simple_strtol(buf, NULL, 10);
mutex_lock(&data->lock);
data->pwm[attr->index] = temp;
i2c_smbus_write_byte_data(client, ADT7473_REG_PWM(attr->index), temp);
mutex_unlock(&data->lock);
return count;
}
static ssize_t show_pwm_max(struct device *dev,
struct device_attribute *devattr,
char *buf)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct adt7473_data *data = adt7473_update_device(dev);
return sprintf(buf, "%d\n", data->pwm_max[attr->index]);
}
static ssize_t set_pwm_max(struct device *dev,
struct device_attribute *devattr,
const char *buf,
size_t count)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct i2c_client *client = to_i2c_client(dev);
struct adt7473_data *data = i2c_get_clientdata(client);
int temp = simple_strtol(buf, NULL, 10);
mutex_lock(&data->lock);
data->pwm_max[attr->index] = temp;
i2c_smbus_write_byte_data(client, ADT7473_REG_PWM_MAX(attr->index),
temp);
mutex_unlock(&data->lock);
return count;
}
static ssize_t show_pwm_min(struct device *dev,
struct device_attribute *devattr,
char *buf)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct adt7473_data *data = adt7473_update_device(dev);
return sprintf(buf, "%d\n", data->pwm_min[attr->index]);
}
static ssize_t set_pwm_min(struct device *dev,
struct device_attribute *devattr,
const char *buf,
size_t count)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct i2c_client *client = to_i2c_client(dev);
struct adt7473_data *data = i2c_get_clientdata(client);
int temp = simple_strtol(buf, NULL, 10);
mutex_lock(&data->lock);
data->pwm_min[attr->index] = temp;
i2c_smbus_write_byte_data(client, ADT7473_REG_PWM_MIN(attr->index),
temp);
mutex_unlock(&data->lock);
return count;
}
static ssize_t show_temp_tmax(struct device *dev,
struct device_attribute *devattr,
char *buf)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct adt7473_data *data = adt7473_update_device(dev);
return sprintf(buf, "%d\n", 1000 * decode_temp(
data->temp_twos_complement,
data->temp_tmax[attr->index]));
}
static ssize_t set_temp_tmax(struct device *dev,
struct device_attribute *devattr,
const char *buf,
size_t count)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct i2c_client *client = to_i2c_client(dev);
struct adt7473_data *data = i2c_get_clientdata(client);
int temp = simple_strtol(buf, NULL, 10) / 1000;
temp = encode_temp(data->temp_twos_complement, temp);
mutex_lock(&data->lock);
data->temp_tmax[attr->index] = temp;
i2c_smbus_write_byte_data(client, ADT7473_REG_TEMP_TMAX(attr->index),
temp);
mutex_unlock(&data->lock);
return count;
}
static ssize_t show_temp_tmin(struct device *dev,
struct device_attribute *devattr,
char *buf)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct adt7473_data *data = adt7473_update_device(dev);
return sprintf(buf, "%d\n", 1000 * decode_temp(
data->temp_twos_complement,
data->temp_tmin[attr->index]));
}
static ssize_t set_temp_tmin(struct device *dev,
struct device_attribute *devattr,
const char *buf,
size_t count)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct i2c_client *client = to_i2c_client(dev);
struct adt7473_data *data = i2c_get_clientdata(client);
int temp = simple_strtol(buf, NULL, 10) / 1000;
temp = encode_temp(data->temp_twos_complement, temp);
mutex_lock(&data->lock);
data->temp_tmin[attr->index] = temp;
i2c_smbus_write_byte_data(client, ADT7473_REG_TEMP_TMIN(attr->index),
temp);
mutex_unlock(&data->lock);
return count;
}
static ssize_t show_pwm_enable(struct device *dev,
struct device_attribute *devattr,
char *buf)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct adt7473_data *data = adt7473_update_device(dev);
switch (data->pwm_behavior[attr->index] >> ADT7473_PWM_BHVR_SHIFT) {
case 3:
return sprintf(buf, "0\n");
case 7:
return sprintf(buf, "1\n");
default:
return sprintf(buf, "2\n");
}
}
static ssize_t set_pwm_enable(struct device *dev,
struct device_attribute *devattr,
const char *buf,
size_t count)
{
u8 reg;
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct i2c_client *client = to_i2c_client(dev);
struct adt7473_data *data = i2c_get_clientdata(client);
int temp = simple_strtol(buf, NULL, 10);
switch (temp) {
case 0:
temp = 3;
break;
case 1:
temp = 7;
break;
case 2:
/* Enter automatic mode with fans off */
temp = 4;
break;
default:
return -EINVAL;
}
mutex_lock(&data->lock);
reg = i2c_smbus_read_byte_data(client,
ADT7473_REG_PWM_BHVR(attr->index));
reg = (temp << ADT7473_PWM_BHVR_SHIFT) |
(reg & ~ADT7473_PWM_BHVR_MASK);
i2c_smbus_write_byte_data(client, ADT7473_REG_PWM_BHVR(attr->index),
reg);
data->pwm_behavior[attr->index] = reg;
mutex_unlock(&data->lock);
return count;
}
static ssize_t show_pwm_auto_temp(struct device *dev,
struct device_attribute *devattr,
char *buf)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct adt7473_data *data = adt7473_update_device(dev);
int bhvr = data->pwm_behavior[attr->index] >> ADT7473_PWM_BHVR_SHIFT;
switch (bhvr) {
case 3:
case 4:
case 7:
return sprintf(buf, "0\n");
case 0:
case 1:
case 5:
case 6:
return sprintf(buf, "%d\n", bhvr + 1);
case 2:
return sprintf(buf, "4\n");
}
/* shouldn't ever get here */
BUG();
}
static ssize_t set_pwm_auto_temp(struct device *dev,
struct device_attribute *devattr,
const char *buf,
size_t count)
{
u8 reg;
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct i2c_client *client = to_i2c_client(dev);
struct adt7473_data *data = i2c_get_clientdata(client);
int temp = simple_strtol(buf, NULL, 10);
switch (temp) {
case 1:
case 2:
case 6:
case 7:
temp--;
break;
case 0:
temp = 4;
break;
default:
return -EINVAL;
}
mutex_lock(&data->lock);
reg = i2c_smbus_read_byte_data(client,
ADT7473_REG_PWM_BHVR(attr->index));
reg = (temp << ADT7473_PWM_BHVR_SHIFT) |
(reg & ~ADT7473_PWM_BHVR_MASK);
i2c_smbus_write_byte_data(client, ADT7473_REG_PWM_BHVR(attr->index),
reg);
data->pwm_behavior[attr->index] = reg;
mutex_unlock(&data->lock);
return count;
}
static ssize_t show_alarm(struct device *dev,
struct device_attribute *devattr,
char *buf)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct adt7473_data *data = adt7473_update_device(dev);
if (data->alarm & attr->index)
return sprintf(buf, "1\n");
else
return sprintf(buf, "0\n");
}
static SENSOR_DEVICE_ATTR(in1_max, S_IWUSR | S_IRUGO, show_volt_max,
set_volt_max, 0);
static SENSOR_DEVICE_ATTR(in2_max, S_IWUSR | S_IRUGO, show_volt_max,
set_volt_max, 1);
static SENSOR_DEVICE_ATTR(in1_min, S_IWUSR | S_IRUGO, show_volt_min,
set_volt_min, 0);
static SENSOR_DEVICE_ATTR(in2_min, S_IWUSR | S_IRUGO, show_volt_min,
set_volt_min, 1);
static SENSOR_DEVICE_ATTR(in1_input, S_IRUGO, show_volt, NULL, 0);
static SENSOR_DEVICE_ATTR(in2_input, S_IRUGO, show_volt, NULL, 1);
static SENSOR_DEVICE_ATTR(in1_alarm, S_IRUGO, show_alarm, NULL,
ADT7473_VCCP_ALARM);
static SENSOR_DEVICE_ATTR(in2_alarm, S_IRUGO, show_alarm, NULL,
ADT7473_VCC_ALARM);
static SENSOR_DEVICE_ATTR(temp1_max, S_IWUSR | S_IRUGO, show_temp_max,
set_temp_max, 0);
static SENSOR_DEVICE_ATTR(temp2_max, S_IWUSR | S_IRUGO, show_temp_max,
set_temp_max, 1);
static SENSOR_DEVICE_ATTR(temp3_max, S_IWUSR | S_IRUGO, show_temp_max,
set_temp_max, 2);
static SENSOR_DEVICE_ATTR(temp1_min, S_IWUSR | S_IRUGO, show_temp_min,
set_temp_min, 0);
static SENSOR_DEVICE_ATTR(temp2_min, S_IWUSR | S_IRUGO, show_temp_min,
set_temp_min, 1);
static SENSOR_DEVICE_ATTR(temp3_min, S_IWUSR | S_IRUGO, show_temp_min,
set_temp_min, 2);
static SENSOR_DEVICE_ATTR(temp1_input, S_IRUGO, show_temp, NULL, 0);
static SENSOR_DEVICE_ATTR(temp2_input, S_IRUGO, show_temp, NULL, 1);
static SENSOR_DEVICE_ATTR(temp3_input, S_IRUGO, show_temp, NULL, 2);
static SENSOR_DEVICE_ATTR(temp1_alarm, S_IRUGO, show_alarm, NULL,
ADT7473_R1T_ALARM | ALARM2(ADT7473_R1T_SHORT));
static SENSOR_DEVICE_ATTR(temp2_alarm, S_IRUGO, show_alarm, NULL,
ADT7473_LT_ALARM);
static SENSOR_DEVICE_ATTR(temp3_alarm, S_IRUGO, show_alarm, NULL,
ADT7473_R2T_ALARM | ALARM2(ADT7473_R2T_SHORT));
static SENSOR_DEVICE_ATTR(fan1_min, S_IWUSR | S_IRUGO, show_fan_min,
set_fan_min, 0);
static SENSOR_DEVICE_ATTR(fan2_min, S_IWUSR | S_IRUGO, show_fan_min,
set_fan_min, 1);
static SENSOR_DEVICE_ATTR(fan3_min, S_IWUSR | S_IRUGO, show_fan_min,
set_fan_min, 2);
static SENSOR_DEVICE_ATTR(fan4_min, S_IWUSR | S_IRUGO, show_fan_min,
set_fan_min, 3);
static SENSOR_DEVICE_ATTR(fan1_input, S_IRUGO, show_fan, NULL, 0);
static SENSOR_DEVICE_ATTR(fan2_input, S_IRUGO, show_fan, NULL, 1);
static SENSOR_DEVICE_ATTR(fan3_input, S_IRUGO, show_fan, NULL, 2);
static SENSOR_DEVICE_ATTR(fan4_input, S_IRUGO, show_fan, NULL, 3);
static SENSOR_DEVICE_ATTR(fan1_alarm, S_IRUGO, show_alarm, NULL,
ALARM2(ADT7473_FAN1_ALARM));
static SENSOR_DEVICE_ATTR(fan2_alarm, S_IRUGO, show_alarm, NULL,
ALARM2(ADT7473_FAN2_ALARM));
static SENSOR_DEVICE_ATTR(fan3_alarm, S_IRUGO, show_alarm, NULL,
ALARM2(ADT7473_FAN3_ALARM));
static SENSOR_DEVICE_ATTR(fan4_alarm, S_IRUGO, show_alarm, NULL,
ALARM2(ADT7473_FAN4_ALARM));
static SENSOR_DEVICE_ATTR(pwm_use_point2_pwm_at_crit, S_IWUSR | S_IRUGO,
show_max_duty_at_crit, set_max_duty_at_crit, 0);
static SENSOR_DEVICE_ATTR(pwm1, S_IWUSR | S_IRUGO, show_pwm, set_pwm, 0);
static SENSOR_DEVICE_ATTR(pwm2, S_IWUSR | S_IRUGO, show_pwm, set_pwm, 1);
static SENSOR_DEVICE_ATTR(pwm3, S_IWUSR | S_IRUGO, show_pwm, set_pwm, 2);
static SENSOR_DEVICE_ATTR(pwm1_auto_point1_pwm, S_IWUSR | S_IRUGO,
show_pwm_min, set_pwm_min, 0);
static SENSOR_DEVICE_ATTR(pwm2_auto_point1_pwm, S_IWUSR | S_IRUGO,
show_pwm_min, set_pwm_min, 1);
static SENSOR_DEVICE_ATTR(pwm3_auto_point1_pwm, S_IWUSR | S_IRUGO,
show_pwm_min, set_pwm_min, 2);
static SENSOR_DEVICE_ATTR(pwm1_auto_point2_pwm, S_IWUSR | S_IRUGO,
show_pwm_max, set_pwm_max, 0);
static SENSOR_DEVICE_ATTR(pwm2_auto_point2_pwm, S_IWUSR | S_IRUGO,
show_pwm_max, set_pwm_max, 1);
static SENSOR_DEVICE_ATTR(pwm3_auto_point2_pwm, S_IWUSR | S_IRUGO,
show_pwm_max, set_pwm_max, 2);
static SENSOR_DEVICE_ATTR(temp1_auto_point1_temp, S_IWUSR | S_IRUGO,
show_temp_tmin, set_temp_tmin, 0);
static SENSOR_DEVICE_ATTR(temp2_auto_point1_temp, S_IWUSR | S_IRUGO,
show_temp_tmin, set_temp_tmin, 1);
static SENSOR_DEVICE_ATTR(temp3_auto_point1_temp, S_IWUSR | S_IRUGO,
show_temp_tmin, set_temp_tmin, 2);
static SENSOR_DEVICE_ATTR(temp1_auto_point2_temp, S_IWUSR | S_IRUGO,
show_temp_tmax, set_temp_tmax, 0);
static SENSOR_DEVICE_ATTR(temp2_auto_point2_temp, S_IWUSR | S_IRUGO,
show_temp_tmax, set_temp_tmax, 1);
static SENSOR_DEVICE_ATTR(temp3_auto_point2_temp, S_IWUSR | S_IRUGO,
show_temp_tmax, set_temp_tmax, 2);
static SENSOR_DEVICE_ATTR(pwm1_enable, S_IWUSR | S_IRUGO, show_pwm_enable,
set_pwm_enable, 0);
static SENSOR_DEVICE_ATTR(pwm2_enable, S_IWUSR | S_IRUGO, show_pwm_enable,
set_pwm_enable, 1);
static SENSOR_DEVICE_ATTR(pwm3_enable, S_IWUSR | S_IRUGO, show_pwm_enable,
set_pwm_enable, 2);
static SENSOR_DEVICE_ATTR(pwm1_auto_channels_temp, S_IWUSR | S_IRUGO,
show_pwm_auto_temp, set_pwm_auto_temp, 0);
static SENSOR_DEVICE_ATTR(pwm2_auto_channels_temp, S_IWUSR | S_IRUGO,
show_pwm_auto_temp, set_pwm_auto_temp, 1);
static SENSOR_DEVICE_ATTR(pwm3_auto_channels_temp, S_IWUSR | S_IRUGO,
show_pwm_auto_temp, set_pwm_auto_temp, 2);
static struct attribute *adt7473_attr[] =
{
&sensor_dev_attr_in1_max.dev_attr.attr,
&sensor_dev_attr_in2_max.dev_attr.attr,
&sensor_dev_attr_in1_min.dev_attr.attr,
&sensor_dev_attr_in2_min.dev_attr.attr,
&sensor_dev_attr_in1_input.dev_attr.attr,
&sensor_dev_attr_in2_input.dev_attr.attr,
&sensor_dev_attr_in1_alarm.dev_attr.attr,
&sensor_dev_attr_in2_alarm.dev_attr.attr,
&sensor_dev_attr_temp1_max.dev_attr.attr,
&sensor_dev_attr_temp2_max.dev_attr.attr,
&sensor_dev_attr_temp3_max.dev_attr.attr,
&sensor_dev_attr_temp1_min.dev_attr.attr,
&sensor_dev_attr_temp2_min.dev_attr.attr,
&sensor_dev_attr_temp3_min.dev_attr.attr,
&sensor_dev_attr_temp1_input.dev_attr.attr,
&sensor_dev_attr_temp2_input.dev_attr.attr,
&sensor_dev_attr_temp3_input.dev_attr.attr,
&sensor_dev_attr_temp1_alarm.dev_attr.attr,
&sensor_dev_attr_temp2_alarm.dev_attr.attr,
&sensor_dev_attr_temp3_alarm.dev_attr.attr,
&sensor_dev_attr_temp1_auto_point1_temp.dev_attr.attr,
&sensor_dev_attr_temp2_auto_point1_temp.dev_attr.attr,
&sensor_dev_attr_temp3_auto_point1_temp.dev_attr.attr,
&sensor_dev_attr_temp1_auto_point2_temp.dev_attr.attr,
&sensor_dev_attr_temp2_auto_point2_temp.dev_attr.attr,
&sensor_dev_attr_temp3_auto_point2_temp.dev_attr.attr,
&sensor_dev_attr_fan1_min.dev_attr.attr,
&sensor_dev_attr_fan2_min.dev_attr.attr,
&sensor_dev_attr_fan3_min.dev_attr.attr,
&sensor_dev_attr_fan4_min.dev_attr.attr,
&sensor_dev_attr_fan1_input.dev_attr.attr,
&sensor_dev_attr_fan2_input.dev_attr.attr,
&sensor_dev_attr_fan3_input.dev_attr.attr,
&sensor_dev_attr_fan4_input.dev_attr.attr,
&sensor_dev_attr_fan1_alarm.dev_attr.attr,
&sensor_dev_attr_fan2_alarm.dev_attr.attr,
&sensor_dev_attr_fan3_alarm.dev_attr.attr,
&sensor_dev_attr_fan4_alarm.dev_attr.attr,
&sensor_dev_attr_pwm_use_point2_pwm_at_crit.dev_attr.attr,
&sensor_dev_attr_pwm1.dev_attr.attr,
&sensor_dev_attr_pwm2.dev_attr.attr,
&sensor_dev_attr_pwm3.dev_attr.attr,
&sensor_dev_attr_pwm1_auto_point1_pwm.dev_attr.attr,
&sensor_dev_attr_pwm2_auto_point1_pwm.dev_attr.attr,
&sensor_dev_attr_pwm3_auto_point1_pwm.dev_attr.attr,
&sensor_dev_attr_pwm1_auto_point2_pwm.dev_attr.attr,
&sensor_dev_attr_pwm2_auto_point2_pwm.dev_attr.attr,
&sensor_dev_attr_pwm3_auto_point2_pwm.dev_attr.attr,
&sensor_dev_attr_pwm1_enable.dev_attr.attr,
&sensor_dev_attr_pwm2_enable.dev_attr.attr,
&sensor_dev_attr_pwm3_enable.dev_attr.attr,
&sensor_dev_attr_pwm1_auto_channels_temp.dev_attr.attr,
&sensor_dev_attr_pwm2_auto_channels_temp.dev_attr.attr,
&sensor_dev_attr_pwm3_auto_channels_temp.dev_attr.attr,
NULL
};
/* Return 0 if detection is successful, -ENODEV otherwise */
static int adt7473_detect(struct i2c_client *client, int kind,
struct i2c_board_info *info)
{
struct i2c_adapter *adapter = client->adapter;
if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
return -ENODEV;
if (kind <= 0) {
int vendor, device, revision;
vendor = i2c_smbus_read_byte_data(client, ADT7473_REG_VENDOR);
if (vendor != ADT7473_VENDOR)
return -ENODEV;
device = i2c_smbus_read_byte_data(client, ADT7473_REG_DEVICE);
if (device != ADT7473_DEVICE)
return -ENODEV;
revision = i2c_smbus_read_byte_data(client,
ADT7473_REG_REVISION);
if (revision != ADT7473_REV_68 && revision != ADT7473_REV_69)
return -ENODEV;
} else
dev_dbg(&adapter->dev, "detection forced\n");
strlcpy(info->type, "adt7473", I2C_NAME_SIZE);
return 0;
}
static int adt7473_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
struct adt7473_data *data;
int err;
data = kzalloc(sizeof(struct adt7473_data), GFP_KERNEL);
if (!data) {
err = -ENOMEM;
goto exit;
}
i2c_set_clientdata(client, data);
mutex_init(&data->lock);
dev_info(&client->dev, "%s chip found\n", client->name);
/* Initialize the ADT7473 chip */
adt7473_init_client(client);
/* Register sysfs hooks */
data->attrs.attrs = adt7473_attr;
err = sysfs_create_group(&client->dev.kobj, &data->attrs);
if (err)
goto exit_free;
data->hwmon_dev = hwmon_device_register(&client->dev);
if (IS_ERR(data->hwmon_dev)) {
err = PTR_ERR(data->hwmon_dev);
goto exit_remove;
}
return 0;
exit_remove:
sysfs_remove_group(&client->dev.kobj, &data->attrs);
exit_free:
kfree(data);
exit:
return err;
}
static int adt7473_remove(struct i2c_client *client)
{
struct adt7473_data *data = i2c_get_clientdata(client);
hwmon_device_unregister(data->hwmon_dev);
sysfs_remove_group(&client->dev.kobj, &data->attrs);
kfree(data);
return 0;
}
static int __init adt7473_init(void)
{
return i2c_add_driver(&adt7473_driver);
}
static void __exit adt7473_exit(void)
{
i2c_del_driver(&adt7473_driver);
}
MODULE_AUTHOR("Darrick J. Wong <djwong@us.ibm.com>");
MODULE_DESCRIPTION("ADT7473 driver");
MODULE_LICENSE("GPL");
module_init(adt7473_init);
module_exit(adt7473_exit);