mirror of
https://github.com/torvalds/linux.git
synced 2024-11-27 22:51:35 +00:00
95b8a5e011
No (active) developer owns this hardware, so let's remove Linux support. Signed-off-by: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
2057 lines
53 KiB
C
2057 lines
53 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Linux performance counter support for MIPS.
|
|
*
|
|
* Copyright (C) 2010 MIPS Technologies, Inc.
|
|
* Copyright (C) 2011 Cavium Networks, Inc.
|
|
* Author: Deng-Cheng Zhu
|
|
*
|
|
* This code is based on the implementation for ARM, which is in turn
|
|
* based on the sparc64 perf event code and the x86 code. Performance
|
|
* counter access is based on the MIPS Oprofile code. And the callchain
|
|
* support references the code of MIPS stacktrace.c.
|
|
*/
|
|
|
|
#include <linux/cpumask.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/perf_event.h>
|
|
#include <linux/uaccess.h>
|
|
|
|
#include <asm/irq.h>
|
|
#include <asm/irq_regs.h>
|
|
#include <asm/stacktrace.h>
|
|
#include <asm/time.h> /* For perf_irq */
|
|
|
|
#define MIPS_MAX_HWEVENTS 4
|
|
#define MIPS_TCS_PER_COUNTER 2
|
|
#define MIPS_CPUID_TO_COUNTER_MASK (MIPS_TCS_PER_COUNTER - 1)
|
|
|
|
struct cpu_hw_events {
|
|
/* Array of events on this cpu. */
|
|
struct perf_event *events[MIPS_MAX_HWEVENTS];
|
|
|
|
/*
|
|
* Set the bit (indexed by the counter number) when the counter
|
|
* is used for an event.
|
|
*/
|
|
unsigned long used_mask[BITS_TO_LONGS(MIPS_MAX_HWEVENTS)];
|
|
|
|
/*
|
|
* Software copy of the control register for each performance counter.
|
|
* MIPS CPUs vary in performance counters. They use this differently,
|
|
* and even may not use it.
|
|
*/
|
|
unsigned int saved_ctrl[MIPS_MAX_HWEVENTS];
|
|
};
|
|
DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
|
|
.saved_ctrl = {0},
|
|
};
|
|
|
|
/* The description of MIPS performance events. */
|
|
struct mips_perf_event {
|
|
unsigned int event_id;
|
|
/*
|
|
* MIPS performance counters are indexed starting from 0.
|
|
* CNTR_EVEN indicates the indexes of the counters to be used are
|
|
* even numbers.
|
|
*/
|
|
unsigned int cntr_mask;
|
|
#define CNTR_EVEN 0x55555555
|
|
#define CNTR_ODD 0xaaaaaaaa
|
|
#define CNTR_ALL 0xffffffff
|
|
enum {
|
|
T = 0,
|
|
V = 1,
|
|
P = 2,
|
|
} range;
|
|
};
|
|
|
|
static struct mips_perf_event raw_event;
|
|
static DEFINE_MUTEX(raw_event_mutex);
|
|
|
|
#define C(x) PERF_COUNT_HW_CACHE_##x
|
|
|
|
struct mips_pmu {
|
|
u64 max_period;
|
|
u64 valid_count;
|
|
u64 overflow;
|
|
const char *name;
|
|
int irq;
|
|
u64 (*read_counter)(unsigned int idx);
|
|
void (*write_counter)(unsigned int idx, u64 val);
|
|
const struct mips_perf_event *(*map_raw_event)(u64 config);
|
|
const struct mips_perf_event (*general_event_map)[PERF_COUNT_HW_MAX];
|
|
const struct mips_perf_event (*cache_event_map)
|
|
[PERF_COUNT_HW_CACHE_MAX]
|
|
[PERF_COUNT_HW_CACHE_OP_MAX]
|
|
[PERF_COUNT_HW_CACHE_RESULT_MAX];
|
|
unsigned int num_counters;
|
|
};
|
|
|
|
static int counter_bits;
|
|
static struct mips_pmu mipspmu;
|
|
|
|
#define M_PERFCTL_EVENT(event) (((event) << MIPS_PERFCTRL_EVENT_S) & \
|
|
MIPS_PERFCTRL_EVENT)
|
|
#define M_PERFCTL_VPEID(vpe) ((vpe) << MIPS_PERFCTRL_VPEID_S)
|
|
|
|
#ifdef CONFIG_CPU_BMIPS5000
|
|
#define M_PERFCTL_MT_EN(filter) 0
|
|
#else /* !CONFIG_CPU_BMIPS5000 */
|
|
#define M_PERFCTL_MT_EN(filter) (filter)
|
|
#endif /* CONFIG_CPU_BMIPS5000 */
|
|
|
|
#define M_TC_EN_ALL M_PERFCTL_MT_EN(MIPS_PERFCTRL_MT_EN_ALL)
|
|
#define M_TC_EN_VPE M_PERFCTL_MT_EN(MIPS_PERFCTRL_MT_EN_VPE)
|
|
#define M_TC_EN_TC M_PERFCTL_MT_EN(MIPS_PERFCTRL_MT_EN_TC)
|
|
|
|
#define M_PERFCTL_COUNT_EVENT_WHENEVER (MIPS_PERFCTRL_EXL | \
|
|
MIPS_PERFCTRL_K | \
|
|
MIPS_PERFCTRL_U | \
|
|
MIPS_PERFCTRL_S | \
|
|
MIPS_PERFCTRL_IE)
|
|
|
|
#ifdef CONFIG_MIPS_MT_SMP
|
|
#define M_PERFCTL_CONFIG_MASK 0x3fff801f
|
|
#else
|
|
#define M_PERFCTL_CONFIG_MASK 0x1f
|
|
#endif
|
|
|
|
#define CNTR_BIT_MASK(n) (((n) == 64) ? ~0ULL : ((1ULL<<(n))-1))
|
|
|
|
#ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
|
|
static DEFINE_RWLOCK(pmuint_rwlock);
|
|
|
|
#if defined(CONFIG_CPU_BMIPS5000)
|
|
#define vpe_id() (cpu_has_mipsmt_pertccounters ? \
|
|
0 : (smp_processor_id() & MIPS_CPUID_TO_COUNTER_MASK))
|
|
#else
|
|
#define vpe_id() (cpu_has_mipsmt_pertccounters ? \
|
|
0 : cpu_vpe_id(¤t_cpu_data))
|
|
#endif
|
|
|
|
/* Copied from op_model_mipsxx.c */
|
|
static unsigned int vpe_shift(void)
|
|
{
|
|
if (num_possible_cpus() > 1)
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static unsigned int counters_total_to_per_cpu(unsigned int counters)
|
|
{
|
|
return counters >> vpe_shift();
|
|
}
|
|
|
|
#else /* !CONFIG_MIPS_PERF_SHARED_TC_COUNTERS */
|
|
#define vpe_id() 0
|
|
|
|
#endif /* CONFIG_MIPS_PERF_SHARED_TC_COUNTERS */
|
|
|
|
static void resume_local_counters(void);
|
|
static void pause_local_counters(void);
|
|
static irqreturn_t mipsxx_pmu_handle_irq(int, void *);
|
|
static int mipsxx_pmu_handle_shared_irq(void);
|
|
|
|
/* 0: Not Loongson-3
|
|
* 1: Loongson-3A1000/3B1000/3B1500
|
|
* 2: Loongson-3A2000/3A3000
|
|
* 3: Loongson-3A4000+
|
|
*/
|
|
|
|
#define LOONGSON_PMU_TYPE0 0
|
|
#define LOONGSON_PMU_TYPE1 1
|
|
#define LOONGSON_PMU_TYPE2 2
|
|
#define LOONGSON_PMU_TYPE3 3
|
|
|
|
static inline int get_loongson3_pmu_type(void)
|
|
{
|
|
if (boot_cpu_type() != CPU_LOONGSON64)
|
|
return LOONGSON_PMU_TYPE0;
|
|
if ((boot_cpu_data.processor_id & PRID_COMP_MASK) == PRID_COMP_LEGACY)
|
|
return LOONGSON_PMU_TYPE1;
|
|
if ((boot_cpu_data.processor_id & PRID_IMP_MASK) == PRID_IMP_LOONGSON_64C)
|
|
return LOONGSON_PMU_TYPE2;
|
|
if ((boot_cpu_data.processor_id & PRID_IMP_MASK) == PRID_IMP_LOONGSON_64G)
|
|
return LOONGSON_PMU_TYPE3;
|
|
|
|
return LOONGSON_PMU_TYPE0;
|
|
}
|
|
|
|
static unsigned int mipsxx_pmu_swizzle_perf_idx(unsigned int idx)
|
|
{
|
|
if (vpe_id() == 1)
|
|
idx = (idx + 2) & 3;
|
|
return idx;
|
|
}
|
|
|
|
static u64 mipsxx_pmu_read_counter(unsigned int idx)
|
|
{
|
|
idx = mipsxx_pmu_swizzle_perf_idx(idx);
|
|
|
|
switch (idx) {
|
|
case 0:
|
|
/*
|
|
* The counters are unsigned, we must cast to truncate
|
|
* off the high bits.
|
|
*/
|
|
return (u32)read_c0_perfcntr0();
|
|
case 1:
|
|
return (u32)read_c0_perfcntr1();
|
|
case 2:
|
|
return (u32)read_c0_perfcntr2();
|
|
case 3:
|
|
return (u32)read_c0_perfcntr3();
|
|
default:
|
|
WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static u64 mipsxx_pmu_read_counter_64(unsigned int idx)
|
|
{
|
|
u64 mask = CNTR_BIT_MASK(counter_bits);
|
|
idx = mipsxx_pmu_swizzle_perf_idx(idx);
|
|
|
|
switch (idx) {
|
|
case 0:
|
|
return read_c0_perfcntr0_64() & mask;
|
|
case 1:
|
|
return read_c0_perfcntr1_64() & mask;
|
|
case 2:
|
|
return read_c0_perfcntr2_64() & mask;
|
|
case 3:
|
|
return read_c0_perfcntr3_64() & mask;
|
|
default:
|
|
WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static void mipsxx_pmu_write_counter(unsigned int idx, u64 val)
|
|
{
|
|
idx = mipsxx_pmu_swizzle_perf_idx(idx);
|
|
|
|
switch (idx) {
|
|
case 0:
|
|
write_c0_perfcntr0(val);
|
|
return;
|
|
case 1:
|
|
write_c0_perfcntr1(val);
|
|
return;
|
|
case 2:
|
|
write_c0_perfcntr2(val);
|
|
return;
|
|
case 3:
|
|
write_c0_perfcntr3(val);
|
|
return;
|
|
}
|
|
}
|
|
|
|
static void mipsxx_pmu_write_counter_64(unsigned int idx, u64 val)
|
|
{
|
|
val &= CNTR_BIT_MASK(counter_bits);
|
|
idx = mipsxx_pmu_swizzle_perf_idx(idx);
|
|
|
|
switch (idx) {
|
|
case 0:
|
|
write_c0_perfcntr0_64(val);
|
|
return;
|
|
case 1:
|
|
write_c0_perfcntr1_64(val);
|
|
return;
|
|
case 2:
|
|
write_c0_perfcntr2_64(val);
|
|
return;
|
|
case 3:
|
|
write_c0_perfcntr3_64(val);
|
|
return;
|
|
}
|
|
}
|
|
|
|
static unsigned int mipsxx_pmu_read_control(unsigned int idx)
|
|
{
|
|
idx = mipsxx_pmu_swizzle_perf_idx(idx);
|
|
|
|
switch (idx) {
|
|
case 0:
|
|
return read_c0_perfctrl0();
|
|
case 1:
|
|
return read_c0_perfctrl1();
|
|
case 2:
|
|
return read_c0_perfctrl2();
|
|
case 3:
|
|
return read_c0_perfctrl3();
|
|
default:
|
|
WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static void mipsxx_pmu_write_control(unsigned int idx, unsigned int val)
|
|
{
|
|
idx = mipsxx_pmu_swizzle_perf_idx(idx);
|
|
|
|
switch (idx) {
|
|
case 0:
|
|
write_c0_perfctrl0(val);
|
|
return;
|
|
case 1:
|
|
write_c0_perfctrl1(val);
|
|
return;
|
|
case 2:
|
|
write_c0_perfctrl2(val);
|
|
return;
|
|
case 3:
|
|
write_c0_perfctrl3(val);
|
|
return;
|
|
}
|
|
}
|
|
|
|
static int mipsxx_pmu_alloc_counter(struct cpu_hw_events *cpuc,
|
|
struct hw_perf_event *hwc)
|
|
{
|
|
int i;
|
|
unsigned long cntr_mask;
|
|
|
|
/*
|
|
* We only need to care the counter mask. The range has been
|
|
* checked definitely.
|
|
*/
|
|
if (get_loongson3_pmu_type() == LOONGSON_PMU_TYPE2)
|
|
cntr_mask = (hwc->event_base >> 10) & 0xffff;
|
|
else
|
|
cntr_mask = (hwc->event_base >> 8) & 0xffff;
|
|
|
|
for (i = mipspmu.num_counters - 1; i >= 0; i--) {
|
|
/*
|
|
* Note that some MIPS perf events can be counted by both
|
|
* even and odd counters, wheresas many other are only by
|
|
* even _or_ odd counters. This introduces an issue that
|
|
* when the former kind of event takes the counter the
|
|
* latter kind of event wants to use, then the "counter
|
|
* allocation" for the latter event will fail. In fact if
|
|
* they can be dynamically swapped, they both feel happy.
|
|
* But here we leave this issue alone for now.
|
|
*/
|
|
if (test_bit(i, &cntr_mask) &&
|
|
!test_and_set_bit(i, cpuc->used_mask))
|
|
return i;
|
|
}
|
|
|
|
return -EAGAIN;
|
|
}
|
|
|
|
static void mipsxx_pmu_enable_event(struct hw_perf_event *evt, int idx)
|
|
{
|
|
struct perf_event *event = container_of(evt, struct perf_event, hw);
|
|
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
|
|
unsigned int range = evt->event_base >> 24;
|
|
|
|
WARN_ON(idx < 0 || idx >= mipspmu.num_counters);
|
|
|
|
if (get_loongson3_pmu_type() == LOONGSON_PMU_TYPE2)
|
|
cpuc->saved_ctrl[idx] = M_PERFCTL_EVENT(evt->event_base & 0x3ff) |
|
|
(evt->config_base & M_PERFCTL_CONFIG_MASK) |
|
|
/* Make sure interrupt enabled. */
|
|
MIPS_PERFCTRL_IE;
|
|
else
|
|
cpuc->saved_ctrl[idx] = M_PERFCTL_EVENT(evt->event_base & 0xff) |
|
|
(evt->config_base & M_PERFCTL_CONFIG_MASK) |
|
|
/* Make sure interrupt enabled. */
|
|
MIPS_PERFCTRL_IE;
|
|
|
|
if (IS_ENABLED(CONFIG_CPU_BMIPS5000)) {
|
|
/* enable the counter for the calling thread */
|
|
cpuc->saved_ctrl[idx] |=
|
|
(1 << (12 + vpe_id())) | BRCM_PERFCTRL_TC;
|
|
} else if (IS_ENABLED(CONFIG_MIPS_MT_SMP) && range > V) {
|
|
/* The counter is processor wide. Set it up to count all TCs. */
|
|
pr_debug("Enabling perf counter for all TCs\n");
|
|
cpuc->saved_ctrl[idx] |= M_TC_EN_ALL;
|
|
} else {
|
|
unsigned int cpu, ctrl;
|
|
|
|
/*
|
|
* Set up the counter for a particular CPU when event->cpu is
|
|
* a valid CPU number. Otherwise set up the counter for the CPU
|
|
* scheduling this thread.
|
|
*/
|
|
cpu = (event->cpu >= 0) ? event->cpu : smp_processor_id();
|
|
|
|
ctrl = M_PERFCTL_VPEID(cpu_vpe_id(&cpu_data[cpu]));
|
|
ctrl |= M_TC_EN_VPE;
|
|
cpuc->saved_ctrl[idx] |= ctrl;
|
|
pr_debug("Enabling perf counter for CPU%d\n", cpu);
|
|
}
|
|
/*
|
|
* We do not actually let the counter run. Leave it until start().
|
|
*/
|
|
}
|
|
|
|
static void mipsxx_pmu_disable_event(int idx)
|
|
{
|
|
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
|
|
unsigned long flags;
|
|
|
|
WARN_ON(idx < 0 || idx >= mipspmu.num_counters);
|
|
|
|
local_irq_save(flags);
|
|
cpuc->saved_ctrl[idx] = mipsxx_pmu_read_control(idx) &
|
|
~M_PERFCTL_COUNT_EVENT_WHENEVER;
|
|
mipsxx_pmu_write_control(idx, cpuc->saved_ctrl[idx]);
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
static int mipspmu_event_set_period(struct perf_event *event,
|
|
struct hw_perf_event *hwc,
|
|
int idx)
|
|
{
|
|
u64 left = local64_read(&hwc->period_left);
|
|
u64 period = hwc->sample_period;
|
|
int ret = 0;
|
|
|
|
if (unlikely((left + period) & (1ULL << 63))) {
|
|
/* left underflowed by more than period. */
|
|
left = period;
|
|
local64_set(&hwc->period_left, left);
|
|
hwc->last_period = period;
|
|
ret = 1;
|
|
} else if (unlikely((left + period) <= period)) {
|
|
/* left underflowed by less than period. */
|
|
left += period;
|
|
local64_set(&hwc->period_left, left);
|
|
hwc->last_period = period;
|
|
ret = 1;
|
|
}
|
|
|
|
if (left > mipspmu.max_period) {
|
|
left = mipspmu.max_period;
|
|
local64_set(&hwc->period_left, left);
|
|
}
|
|
|
|
local64_set(&hwc->prev_count, mipspmu.overflow - left);
|
|
|
|
if (get_loongson3_pmu_type() == LOONGSON_PMU_TYPE2)
|
|
mipsxx_pmu_write_control(idx,
|
|
M_PERFCTL_EVENT(hwc->event_base & 0x3ff));
|
|
|
|
mipspmu.write_counter(idx, mipspmu.overflow - left);
|
|
|
|
perf_event_update_userpage(event);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void mipspmu_event_update(struct perf_event *event,
|
|
struct hw_perf_event *hwc,
|
|
int idx)
|
|
{
|
|
u64 prev_raw_count, new_raw_count;
|
|
u64 delta;
|
|
|
|
again:
|
|
prev_raw_count = local64_read(&hwc->prev_count);
|
|
new_raw_count = mipspmu.read_counter(idx);
|
|
|
|
if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
|
|
new_raw_count) != prev_raw_count)
|
|
goto again;
|
|
|
|
delta = new_raw_count - prev_raw_count;
|
|
|
|
local64_add(delta, &event->count);
|
|
local64_sub(delta, &hwc->period_left);
|
|
}
|
|
|
|
static void mipspmu_start(struct perf_event *event, int flags)
|
|
{
|
|
struct hw_perf_event *hwc = &event->hw;
|
|
|
|
if (flags & PERF_EF_RELOAD)
|
|
WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
|
|
|
|
hwc->state = 0;
|
|
|
|
/* Set the period for the event. */
|
|
mipspmu_event_set_period(event, hwc, hwc->idx);
|
|
|
|
/* Enable the event. */
|
|
mipsxx_pmu_enable_event(hwc, hwc->idx);
|
|
}
|
|
|
|
static void mipspmu_stop(struct perf_event *event, int flags)
|
|
{
|
|
struct hw_perf_event *hwc = &event->hw;
|
|
|
|
if (!(hwc->state & PERF_HES_STOPPED)) {
|
|
/* We are working on a local event. */
|
|
mipsxx_pmu_disable_event(hwc->idx);
|
|
barrier();
|
|
mipspmu_event_update(event, hwc, hwc->idx);
|
|
hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
|
|
}
|
|
}
|
|
|
|
static int mipspmu_add(struct perf_event *event, int flags)
|
|
{
|
|
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
|
|
struct hw_perf_event *hwc = &event->hw;
|
|
int idx;
|
|
int err = 0;
|
|
|
|
perf_pmu_disable(event->pmu);
|
|
|
|
/* To look for a free counter for this event. */
|
|
idx = mipsxx_pmu_alloc_counter(cpuc, hwc);
|
|
if (idx < 0) {
|
|
err = idx;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* If there is an event in the counter we are going to use then
|
|
* make sure it is disabled.
|
|
*/
|
|
event->hw.idx = idx;
|
|
mipsxx_pmu_disable_event(idx);
|
|
cpuc->events[idx] = event;
|
|
|
|
hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
|
|
if (flags & PERF_EF_START)
|
|
mipspmu_start(event, PERF_EF_RELOAD);
|
|
|
|
/* Propagate our changes to the userspace mapping. */
|
|
perf_event_update_userpage(event);
|
|
|
|
out:
|
|
perf_pmu_enable(event->pmu);
|
|
return err;
|
|
}
|
|
|
|
static void mipspmu_del(struct perf_event *event, int flags)
|
|
{
|
|
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
|
|
struct hw_perf_event *hwc = &event->hw;
|
|
int idx = hwc->idx;
|
|
|
|
WARN_ON(idx < 0 || idx >= mipspmu.num_counters);
|
|
|
|
mipspmu_stop(event, PERF_EF_UPDATE);
|
|
cpuc->events[idx] = NULL;
|
|
clear_bit(idx, cpuc->used_mask);
|
|
|
|
perf_event_update_userpage(event);
|
|
}
|
|
|
|
static void mipspmu_read(struct perf_event *event)
|
|
{
|
|
struct hw_perf_event *hwc = &event->hw;
|
|
|
|
/* Don't read disabled counters! */
|
|
if (hwc->idx < 0)
|
|
return;
|
|
|
|
mipspmu_event_update(event, hwc, hwc->idx);
|
|
}
|
|
|
|
static void mipspmu_enable(struct pmu *pmu)
|
|
{
|
|
#ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
|
|
write_unlock(&pmuint_rwlock);
|
|
#endif
|
|
resume_local_counters();
|
|
}
|
|
|
|
/*
|
|
* MIPS performance counters can be per-TC. The control registers can
|
|
* not be directly accessed across CPUs. Hence if we want to do global
|
|
* control, we need cross CPU calls. on_each_cpu() can help us, but we
|
|
* can not make sure this function is called with interrupts enabled. So
|
|
* here we pause local counters and then grab a rwlock and leave the
|
|
* counters on other CPUs alone. If any counter interrupt raises while
|
|
* we own the write lock, simply pause local counters on that CPU and
|
|
* spin in the handler. Also we know we won't be switched to another
|
|
* CPU after pausing local counters and before grabbing the lock.
|
|
*/
|
|
static void mipspmu_disable(struct pmu *pmu)
|
|
{
|
|
pause_local_counters();
|
|
#ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
|
|
write_lock(&pmuint_rwlock);
|
|
#endif
|
|
}
|
|
|
|
static atomic_t active_events = ATOMIC_INIT(0);
|
|
static DEFINE_MUTEX(pmu_reserve_mutex);
|
|
static int (*save_perf_irq)(void);
|
|
|
|
static int mipspmu_get_irq(void)
|
|
{
|
|
int err;
|
|
|
|
if (mipspmu.irq >= 0) {
|
|
/* Request my own irq handler. */
|
|
err = request_irq(mipspmu.irq, mipsxx_pmu_handle_irq,
|
|
IRQF_PERCPU | IRQF_NOBALANCING |
|
|
IRQF_NO_THREAD | IRQF_NO_SUSPEND |
|
|
IRQF_SHARED,
|
|
"mips_perf_pmu", &mipspmu);
|
|
if (err) {
|
|
pr_warn("Unable to request IRQ%d for MIPS performance counters!\n",
|
|
mipspmu.irq);
|
|
}
|
|
} else if (cp0_perfcount_irq < 0) {
|
|
/*
|
|
* We are sharing the irq number with the timer interrupt.
|
|
*/
|
|
save_perf_irq = perf_irq;
|
|
perf_irq = mipsxx_pmu_handle_shared_irq;
|
|
err = 0;
|
|
} else {
|
|
pr_warn("The platform hasn't properly defined its interrupt controller\n");
|
|
err = -ENOENT;
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
static void mipspmu_free_irq(void)
|
|
{
|
|
if (mipspmu.irq >= 0)
|
|
free_irq(mipspmu.irq, &mipspmu);
|
|
else if (cp0_perfcount_irq < 0)
|
|
perf_irq = save_perf_irq;
|
|
}
|
|
|
|
/*
|
|
* mipsxx/rm9000/loongson2 have different performance counters, they have
|
|
* specific low-level init routines.
|
|
*/
|
|
static void reset_counters(void *arg);
|
|
static int __hw_perf_event_init(struct perf_event *event);
|
|
|
|
static void hw_perf_event_destroy(struct perf_event *event)
|
|
{
|
|
if (atomic_dec_and_mutex_lock(&active_events,
|
|
&pmu_reserve_mutex)) {
|
|
/*
|
|
* We must not call the destroy function with interrupts
|
|
* disabled.
|
|
*/
|
|
on_each_cpu(reset_counters,
|
|
(void *)(long)mipspmu.num_counters, 1);
|
|
mipspmu_free_irq();
|
|
mutex_unlock(&pmu_reserve_mutex);
|
|
}
|
|
}
|
|
|
|
static int mipspmu_event_init(struct perf_event *event)
|
|
{
|
|
int err = 0;
|
|
|
|
/* does not support taken branch sampling */
|
|
if (has_branch_stack(event))
|
|
return -EOPNOTSUPP;
|
|
|
|
switch (event->attr.type) {
|
|
case PERF_TYPE_RAW:
|
|
case PERF_TYPE_HARDWARE:
|
|
case PERF_TYPE_HW_CACHE:
|
|
break;
|
|
|
|
default:
|
|
return -ENOENT;
|
|
}
|
|
|
|
if (event->cpu >= 0 && !cpu_online(event->cpu))
|
|
return -ENODEV;
|
|
|
|
if (!atomic_inc_not_zero(&active_events)) {
|
|
mutex_lock(&pmu_reserve_mutex);
|
|
if (atomic_read(&active_events) == 0)
|
|
err = mipspmu_get_irq();
|
|
|
|
if (!err)
|
|
atomic_inc(&active_events);
|
|
mutex_unlock(&pmu_reserve_mutex);
|
|
}
|
|
|
|
if (err)
|
|
return err;
|
|
|
|
return __hw_perf_event_init(event);
|
|
}
|
|
|
|
static struct pmu pmu = {
|
|
.pmu_enable = mipspmu_enable,
|
|
.pmu_disable = mipspmu_disable,
|
|
.event_init = mipspmu_event_init,
|
|
.add = mipspmu_add,
|
|
.del = mipspmu_del,
|
|
.start = mipspmu_start,
|
|
.stop = mipspmu_stop,
|
|
.read = mipspmu_read,
|
|
};
|
|
|
|
static unsigned int mipspmu_perf_event_encode(const struct mips_perf_event *pev)
|
|
{
|
|
/*
|
|
* Top 8 bits for range, next 16 bits for cntr_mask, lowest 8 bits for
|
|
* event_id.
|
|
*/
|
|
#ifdef CONFIG_MIPS_MT_SMP
|
|
if (num_possible_cpus() > 1)
|
|
return ((unsigned int)pev->range << 24) |
|
|
(pev->cntr_mask & 0xffff00) |
|
|
(pev->event_id & 0xff);
|
|
else
|
|
#endif /* CONFIG_MIPS_MT_SMP */
|
|
{
|
|
if (get_loongson3_pmu_type() == LOONGSON_PMU_TYPE2)
|
|
return (pev->cntr_mask & 0xfffc00) |
|
|
(pev->event_id & 0x3ff);
|
|
else
|
|
return (pev->cntr_mask & 0xffff00) |
|
|
(pev->event_id & 0xff);
|
|
}
|
|
}
|
|
|
|
static const struct mips_perf_event *mipspmu_map_general_event(int idx)
|
|
{
|
|
|
|
if ((*mipspmu.general_event_map)[idx].cntr_mask == 0)
|
|
return ERR_PTR(-EOPNOTSUPP);
|
|
return &(*mipspmu.general_event_map)[idx];
|
|
}
|
|
|
|
static const struct mips_perf_event *mipspmu_map_cache_event(u64 config)
|
|
{
|
|
unsigned int cache_type, cache_op, cache_result;
|
|
const struct mips_perf_event *pev;
|
|
|
|
cache_type = (config >> 0) & 0xff;
|
|
if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
cache_op = (config >> 8) & 0xff;
|
|
if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
cache_result = (config >> 16) & 0xff;
|
|
if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
pev = &((*mipspmu.cache_event_map)
|
|
[cache_type]
|
|
[cache_op]
|
|
[cache_result]);
|
|
|
|
if (pev->cntr_mask == 0)
|
|
return ERR_PTR(-EOPNOTSUPP);
|
|
|
|
return pev;
|
|
|
|
}
|
|
|
|
static int validate_group(struct perf_event *event)
|
|
{
|
|
struct perf_event *sibling, *leader = event->group_leader;
|
|
struct cpu_hw_events fake_cpuc;
|
|
|
|
memset(&fake_cpuc, 0, sizeof(fake_cpuc));
|
|
|
|
if (mipsxx_pmu_alloc_counter(&fake_cpuc, &leader->hw) < 0)
|
|
return -EINVAL;
|
|
|
|
for_each_sibling_event(sibling, leader) {
|
|
if (mipsxx_pmu_alloc_counter(&fake_cpuc, &sibling->hw) < 0)
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (mipsxx_pmu_alloc_counter(&fake_cpuc, &event->hw) < 0)
|
|
return -EINVAL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* This is needed by specific irq handlers in perf_event_*.c */
|
|
static void handle_associated_event(struct cpu_hw_events *cpuc,
|
|
int idx, struct perf_sample_data *data,
|
|
struct pt_regs *regs)
|
|
{
|
|
struct perf_event *event = cpuc->events[idx];
|
|
struct hw_perf_event *hwc = &event->hw;
|
|
|
|
mipspmu_event_update(event, hwc, idx);
|
|
data->period = event->hw.last_period;
|
|
if (!mipspmu_event_set_period(event, hwc, idx))
|
|
return;
|
|
|
|
if (perf_event_overflow(event, data, regs))
|
|
mipsxx_pmu_disable_event(idx);
|
|
}
|
|
|
|
|
|
static int __n_counters(void)
|
|
{
|
|
if (!cpu_has_perf)
|
|
return 0;
|
|
if (!(read_c0_perfctrl0() & MIPS_PERFCTRL_M))
|
|
return 1;
|
|
if (!(read_c0_perfctrl1() & MIPS_PERFCTRL_M))
|
|
return 2;
|
|
if (!(read_c0_perfctrl2() & MIPS_PERFCTRL_M))
|
|
return 3;
|
|
|
|
return 4;
|
|
}
|
|
|
|
static int n_counters(void)
|
|
{
|
|
int counters;
|
|
|
|
switch (current_cpu_type()) {
|
|
case CPU_R10000:
|
|
counters = 2;
|
|
break;
|
|
|
|
case CPU_R12000:
|
|
case CPU_R14000:
|
|
case CPU_R16000:
|
|
counters = 4;
|
|
break;
|
|
|
|
default:
|
|
counters = __n_counters();
|
|
}
|
|
|
|
return counters;
|
|
}
|
|
|
|
static void loongson3_reset_counters(void *arg)
|
|
{
|
|
int counters = (int)(long)arg;
|
|
|
|
switch (counters) {
|
|
case 4:
|
|
mipsxx_pmu_write_control(3, 0);
|
|
mipspmu.write_counter(3, 0);
|
|
mipsxx_pmu_write_control(3, 127<<5);
|
|
mipspmu.write_counter(3, 0);
|
|
mipsxx_pmu_write_control(3, 191<<5);
|
|
mipspmu.write_counter(3, 0);
|
|
mipsxx_pmu_write_control(3, 255<<5);
|
|
mipspmu.write_counter(3, 0);
|
|
mipsxx_pmu_write_control(3, 319<<5);
|
|
mipspmu.write_counter(3, 0);
|
|
mipsxx_pmu_write_control(3, 383<<5);
|
|
mipspmu.write_counter(3, 0);
|
|
mipsxx_pmu_write_control(3, 575<<5);
|
|
mipspmu.write_counter(3, 0);
|
|
fallthrough;
|
|
case 3:
|
|
mipsxx_pmu_write_control(2, 0);
|
|
mipspmu.write_counter(2, 0);
|
|
mipsxx_pmu_write_control(2, 127<<5);
|
|
mipspmu.write_counter(2, 0);
|
|
mipsxx_pmu_write_control(2, 191<<5);
|
|
mipspmu.write_counter(2, 0);
|
|
mipsxx_pmu_write_control(2, 255<<5);
|
|
mipspmu.write_counter(2, 0);
|
|
mipsxx_pmu_write_control(2, 319<<5);
|
|
mipspmu.write_counter(2, 0);
|
|
mipsxx_pmu_write_control(2, 383<<5);
|
|
mipspmu.write_counter(2, 0);
|
|
mipsxx_pmu_write_control(2, 575<<5);
|
|
mipspmu.write_counter(2, 0);
|
|
fallthrough;
|
|
case 2:
|
|
mipsxx_pmu_write_control(1, 0);
|
|
mipspmu.write_counter(1, 0);
|
|
mipsxx_pmu_write_control(1, 127<<5);
|
|
mipspmu.write_counter(1, 0);
|
|
mipsxx_pmu_write_control(1, 191<<5);
|
|
mipspmu.write_counter(1, 0);
|
|
mipsxx_pmu_write_control(1, 255<<5);
|
|
mipspmu.write_counter(1, 0);
|
|
mipsxx_pmu_write_control(1, 319<<5);
|
|
mipspmu.write_counter(1, 0);
|
|
mipsxx_pmu_write_control(1, 383<<5);
|
|
mipspmu.write_counter(1, 0);
|
|
mipsxx_pmu_write_control(1, 575<<5);
|
|
mipspmu.write_counter(1, 0);
|
|
fallthrough;
|
|
case 1:
|
|
mipsxx_pmu_write_control(0, 0);
|
|
mipspmu.write_counter(0, 0);
|
|
mipsxx_pmu_write_control(0, 127<<5);
|
|
mipspmu.write_counter(0, 0);
|
|
mipsxx_pmu_write_control(0, 191<<5);
|
|
mipspmu.write_counter(0, 0);
|
|
mipsxx_pmu_write_control(0, 255<<5);
|
|
mipspmu.write_counter(0, 0);
|
|
mipsxx_pmu_write_control(0, 319<<5);
|
|
mipspmu.write_counter(0, 0);
|
|
mipsxx_pmu_write_control(0, 383<<5);
|
|
mipspmu.write_counter(0, 0);
|
|
mipsxx_pmu_write_control(0, 575<<5);
|
|
mipspmu.write_counter(0, 0);
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void reset_counters(void *arg)
|
|
{
|
|
int counters = (int)(long)arg;
|
|
|
|
if (get_loongson3_pmu_type() == LOONGSON_PMU_TYPE2) {
|
|
loongson3_reset_counters(arg);
|
|
return;
|
|
}
|
|
|
|
switch (counters) {
|
|
case 4:
|
|
mipsxx_pmu_write_control(3, 0);
|
|
mipspmu.write_counter(3, 0);
|
|
fallthrough;
|
|
case 3:
|
|
mipsxx_pmu_write_control(2, 0);
|
|
mipspmu.write_counter(2, 0);
|
|
fallthrough;
|
|
case 2:
|
|
mipsxx_pmu_write_control(1, 0);
|
|
mipspmu.write_counter(1, 0);
|
|
fallthrough;
|
|
case 1:
|
|
mipsxx_pmu_write_control(0, 0);
|
|
mipspmu.write_counter(0, 0);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* 24K/34K/1004K/interAptiv/loongson1 cores share the same event map. */
|
|
static const struct mips_perf_event mipsxxcore_event_map
|
|
[PERF_COUNT_HW_MAX] = {
|
|
[PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, P },
|
|
[PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T },
|
|
[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x02, CNTR_EVEN, T },
|
|
[PERF_COUNT_HW_BRANCH_MISSES] = { 0x02, CNTR_ODD, T },
|
|
};
|
|
|
|
/* 74K/proAptiv core has different branch event code. */
|
|
static const struct mips_perf_event mipsxxcore_event_map2
|
|
[PERF_COUNT_HW_MAX] = {
|
|
[PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, P },
|
|
[PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T },
|
|
[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x27, CNTR_EVEN, T },
|
|
[PERF_COUNT_HW_BRANCH_MISSES] = { 0x27, CNTR_ODD, T },
|
|
};
|
|
|
|
static const struct mips_perf_event i6x00_event_map[PERF_COUNT_HW_MAX] = {
|
|
[PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD },
|
|
[PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD },
|
|
/* These only count dcache, not icache */
|
|
[PERF_COUNT_HW_CACHE_REFERENCES] = { 0x45, CNTR_EVEN | CNTR_ODD },
|
|
[PERF_COUNT_HW_CACHE_MISSES] = { 0x48, CNTR_EVEN | CNTR_ODD },
|
|
[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x15, CNTR_EVEN | CNTR_ODD },
|
|
[PERF_COUNT_HW_BRANCH_MISSES] = { 0x16, CNTR_EVEN | CNTR_ODD },
|
|
};
|
|
|
|
static const struct mips_perf_event loongson3_event_map1[PERF_COUNT_HW_MAX] = {
|
|
[PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN },
|
|
[PERF_COUNT_HW_INSTRUCTIONS] = { 0x00, CNTR_ODD },
|
|
[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x01, CNTR_EVEN },
|
|
[PERF_COUNT_HW_BRANCH_MISSES] = { 0x01, CNTR_ODD },
|
|
};
|
|
|
|
static const struct mips_perf_event loongson3_event_map2[PERF_COUNT_HW_MAX] = {
|
|
[PERF_COUNT_HW_CPU_CYCLES] = { 0x80, CNTR_ALL },
|
|
[PERF_COUNT_HW_INSTRUCTIONS] = { 0x81, CNTR_ALL },
|
|
[PERF_COUNT_HW_CACHE_MISSES] = { 0x18, CNTR_ALL },
|
|
[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x94, CNTR_ALL },
|
|
[PERF_COUNT_HW_BRANCH_MISSES] = { 0x9c, CNTR_ALL },
|
|
};
|
|
|
|
static const struct mips_perf_event loongson3_event_map3[PERF_COUNT_HW_MAX] = {
|
|
[PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_ALL },
|
|
[PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_ALL },
|
|
[PERF_COUNT_HW_CACHE_REFERENCES] = { 0x1c, CNTR_ALL },
|
|
[PERF_COUNT_HW_CACHE_MISSES] = { 0x1d, CNTR_ALL },
|
|
[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x02, CNTR_ALL },
|
|
[PERF_COUNT_HW_BRANCH_MISSES] = { 0x08, CNTR_ALL },
|
|
};
|
|
|
|
static const struct mips_perf_event octeon_event_map[PERF_COUNT_HW_MAX] = {
|
|
[PERF_COUNT_HW_CPU_CYCLES] = { 0x01, CNTR_ALL },
|
|
[PERF_COUNT_HW_INSTRUCTIONS] = { 0x03, CNTR_ALL },
|
|
[PERF_COUNT_HW_CACHE_REFERENCES] = { 0x2b, CNTR_ALL },
|
|
[PERF_COUNT_HW_CACHE_MISSES] = { 0x2e, CNTR_ALL },
|
|
[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x08, CNTR_ALL },
|
|
[PERF_COUNT_HW_BRANCH_MISSES] = { 0x09, CNTR_ALL },
|
|
[PERF_COUNT_HW_BUS_CYCLES] = { 0x25, CNTR_ALL },
|
|
};
|
|
|
|
static const struct mips_perf_event bmips5000_event_map
|
|
[PERF_COUNT_HW_MAX] = {
|
|
[PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, T },
|
|
[PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T },
|
|
[PERF_COUNT_HW_BRANCH_MISSES] = { 0x02, CNTR_ODD, T },
|
|
};
|
|
|
|
/* 24K/34K/1004K/interAptiv/loongson1 cores share the same cache event map. */
|
|
static const struct mips_perf_event mipsxxcore_cache_map
|
|
[PERF_COUNT_HW_CACHE_MAX]
|
|
[PERF_COUNT_HW_CACHE_OP_MAX]
|
|
[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
|
|
[C(L1D)] = {
|
|
/*
|
|
* Like some other architectures (e.g. ARM), the performance
|
|
* counters don't differentiate between read and write
|
|
* accesses/misses, so this isn't strictly correct, but it's the
|
|
* best we can do. Writes and reads get combined.
|
|
*/
|
|
[C(OP_READ)] = {
|
|
[C(RESULT_ACCESS)] = { 0x0a, CNTR_EVEN, T },
|
|
[C(RESULT_MISS)] = { 0x0b, CNTR_EVEN | CNTR_ODD, T },
|
|
},
|
|
[C(OP_WRITE)] = {
|
|
[C(RESULT_ACCESS)] = { 0x0a, CNTR_EVEN, T },
|
|
[C(RESULT_MISS)] = { 0x0b, CNTR_EVEN | CNTR_ODD, T },
|
|
},
|
|
},
|
|
[C(L1I)] = {
|
|
[C(OP_READ)] = {
|
|
[C(RESULT_ACCESS)] = { 0x09, CNTR_EVEN, T },
|
|
[C(RESULT_MISS)] = { 0x09, CNTR_ODD, T },
|
|
},
|
|
[C(OP_WRITE)] = {
|
|
[C(RESULT_ACCESS)] = { 0x09, CNTR_EVEN, T },
|
|
[C(RESULT_MISS)] = { 0x09, CNTR_ODD, T },
|
|
},
|
|
[C(OP_PREFETCH)] = {
|
|
[C(RESULT_ACCESS)] = { 0x14, CNTR_EVEN, T },
|
|
/*
|
|
* Note that MIPS has only "hit" events countable for
|
|
* the prefetch operation.
|
|
*/
|
|
},
|
|
},
|
|
[C(LL)] = {
|
|
[C(OP_READ)] = {
|
|
[C(RESULT_ACCESS)] = { 0x15, CNTR_ODD, P },
|
|
[C(RESULT_MISS)] = { 0x16, CNTR_EVEN, P },
|
|
},
|
|
[C(OP_WRITE)] = {
|
|
[C(RESULT_ACCESS)] = { 0x15, CNTR_ODD, P },
|
|
[C(RESULT_MISS)] = { 0x16, CNTR_EVEN, P },
|
|
},
|
|
},
|
|
[C(DTLB)] = {
|
|
[C(OP_READ)] = {
|
|
[C(RESULT_ACCESS)] = { 0x06, CNTR_EVEN, T },
|
|
[C(RESULT_MISS)] = { 0x06, CNTR_ODD, T },
|
|
},
|
|
[C(OP_WRITE)] = {
|
|
[C(RESULT_ACCESS)] = { 0x06, CNTR_EVEN, T },
|
|
[C(RESULT_MISS)] = { 0x06, CNTR_ODD, T },
|
|
},
|
|
},
|
|
[C(ITLB)] = {
|
|
[C(OP_READ)] = {
|
|
[C(RESULT_ACCESS)] = { 0x05, CNTR_EVEN, T },
|
|
[C(RESULT_MISS)] = { 0x05, CNTR_ODD, T },
|
|
},
|
|
[C(OP_WRITE)] = {
|
|
[C(RESULT_ACCESS)] = { 0x05, CNTR_EVEN, T },
|
|
[C(RESULT_MISS)] = { 0x05, CNTR_ODD, T },
|
|
},
|
|
},
|
|
[C(BPU)] = {
|
|
/* Using the same code for *HW_BRANCH* */
|
|
[C(OP_READ)] = {
|
|
[C(RESULT_ACCESS)] = { 0x02, CNTR_EVEN, T },
|
|
[C(RESULT_MISS)] = { 0x02, CNTR_ODD, T },
|
|
},
|
|
[C(OP_WRITE)] = {
|
|
[C(RESULT_ACCESS)] = { 0x02, CNTR_EVEN, T },
|
|
[C(RESULT_MISS)] = { 0x02, CNTR_ODD, T },
|
|
},
|
|
},
|
|
};
|
|
|
|
/* 74K/proAptiv core has completely different cache event map. */
|
|
static const struct mips_perf_event mipsxxcore_cache_map2
|
|
[PERF_COUNT_HW_CACHE_MAX]
|
|
[PERF_COUNT_HW_CACHE_OP_MAX]
|
|
[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
|
|
[C(L1D)] = {
|
|
/*
|
|
* Like some other architectures (e.g. ARM), the performance
|
|
* counters don't differentiate between read and write
|
|
* accesses/misses, so this isn't strictly correct, but it's the
|
|
* best we can do. Writes and reads get combined.
|
|
*/
|
|
[C(OP_READ)] = {
|
|
[C(RESULT_ACCESS)] = { 0x17, CNTR_ODD, T },
|
|
[C(RESULT_MISS)] = { 0x18, CNTR_ODD, T },
|
|
},
|
|
[C(OP_WRITE)] = {
|
|
[C(RESULT_ACCESS)] = { 0x17, CNTR_ODD, T },
|
|
[C(RESULT_MISS)] = { 0x18, CNTR_ODD, T },
|
|
},
|
|
},
|
|
[C(L1I)] = {
|
|
[C(OP_READ)] = {
|
|
[C(RESULT_ACCESS)] = { 0x06, CNTR_EVEN, T },
|
|
[C(RESULT_MISS)] = { 0x06, CNTR_ODD, T },
|
|
},
|
|
[C(OP_WRITE)] = {
|
|
[C(RESULT_ACCESS)] = { 0x06, CNTR_EVEN, T },
|
|
[C(RESULT_MISS)] = { 0x06, CNTR_ODD, T },
|
|
},
|
|
[C(OP_PREFETCH)] = {
|
|
[C(RESULT_ACCESS)] = { 0x34, CNTR_EVEN, T },
|
|
/*
|
|
* Note that MIPS has only "hit" events countable for
|
|
* the prefetch operation.
|
|
*/
|
|
},
|
|
},
|
|
[C(LL)] = {
|
|
[C(OP_READ)] = {
|
|
[C(RESULT_ACCESS)] = { 0x1c, CNTR_ODD, P },
|
|
[C(RESULT_MISS)] = { 0x1d, CNTR_EVEN, P },
|
|
},
|
|
[C(OP_WRITE)] = {
|
|
[C(RESULT_ACCESS)] = { 0x1c, CNTR_ODD, P },
|
|
[C(RESULT_MISS)] = { 0x1d, CNTR_EVEN, P },
|
|
},
|
|
},
|
|
/*
|
|
* 74K core does not have specific DTLB events. proAptiv core has
|
|
* "speculative" DTLB events which are numbered 0x63 (even/odd) and
|
|
* not included here. One can use raw events if really needed.
|
|
*/
|
|
[C(ITLB)] = {
|
|
[C(OP_READ)] = {
|
|
[C(RESULT_ACCESS)] = { 0x04, CNTR_EVEN, T },
|
|
[C(RESULT_MISS)] = { 0x04, CNTR_ODD, T },
|
|
},
|
|
[C(OP_WRITE)] = {
|
|
[C(RESULT_ACCESS)] = { 0x04, CNTR_EVEN, T },
|
|
[C(RESULT_MISS)] = { 0x04, CNTR_ODD, T },
|
|
},
|
|
},
|
|
[C(BPU)] = {
|
|
/* Using the same code for *HW_BRANCH* */
|
|
[C(OP_READ)] = {
|
|
[C(RESULT_ACCESS)] = { 0x27, CNTR_EVEN, T },
|
|
[C(RESULT_MISS)] = { 0x27, CNTR_ODD, T },
|
|
},
|
|
[C(OP_WRITE)] = {
|
|
[C(RESULT_ACCESS)] = { 0x27, CNTR_EVEN, T },
|
|
[C(RESULT_MISS)] = { 0x27, CNTR_ODD, T },
|
|
},
|
|
},
|
|
};
|
|
|
|
static const struct mips_perf_event i6x00_cache_map
|
|
[PERF_COUNT_HW_CACHE_MAX]
|
|
[PERF_COUNT_HW_CACHE_OP_MAX]
|
|
[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
|
|
[C(L1D)] = {
|
|
[C(OP_READ)] = {
|
|
[C(RESULT_ACCESS)] = { 0x46, CNTR_EVEN | CNTR_ODD },
|
|
[C(RESULT_MISS)] = { 0x49, CNTR_EVEN | CNTR_ODD },
|
|
},
|
|
[C(OP_WRITE)] = {
|
|
[C(RESULT_ACCESS)] = { 0x47, CNTR_EVEN | CNTR_ODD },
|
|
[C(RESULT_MISS)] = { 0x4a, CNTR_EVEN | CNTR_ODD },
|
|
},
|
|
},
|
|
[C(L1I)] = {
|
|
[C(OP_READ)] = {
|
|
[C(RESULT_ACCESS)] = { 0x84, CNTR_EVEN | CNTR_ODD },
|
|
[C(RESULT_MISS)] = { 0x85, CNTR_EVEN | CNTR_ODD },
|
|
},
|
|
},
|
|
[C(DTLB)] = {
|
|
/* Can't distinguish read & write */
|
|
[C(OP_READ)] = {
|
|
[C(RESULT_ACCESS)] = { 0x40, CNTR_EVEN | CNTR_ODD },
|
|
[C(RESULT_MISS)] = { 0x41, CNTR_EVEN | CNTR_ODD },
|
|
},
|
|
[C(OP_WRITE)] = {
|
|
[C(RESULT_ACCESS)] = { 0x40, CNTR_EVEN | CNTR_ODD },
|
|
[C(RESULT_MISS)] = { 0x41, CNTR_EVEN | CNTR_ODD },
|
|
},
|
|
},
|
|
[C(BPU)] = {
|
|
/* Conditional branches / mispredicted */
|
|
[C(OP_READ)] = {
|
|
[C(RESULT_ACCESS)] = { 0x15, CNTR_EVEN | CNTR_ODD },
|
|
[C(RESULT_MISS)] = { 0x16, CNTR_EVEN | CNTR_ODD },
|
|
},
|
|
},
|
|
};
|
|
|
|
static const struct mips_perf_event loongson3_cache_map1
|
|
[PERF_COUNT_HW_CACHE_MAX]
|
|
[PERF_COUNT_HW_CACHE_OP_MAX]
|
|
[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
|
|
[C(L1D)] = {
|
|
/*
|
|
* Like some other architectures (e.g. ARM), the performance
|
|
* counters don't differentiate between read and write
|
|
* accesses/misses, so this isn't strictly correct, but it's the
|
|
* best we can do. Writes and reads get combined.
|
|
*/
|
|
[C(OP_READ)] = {
|
|
[C(RESULT_MISS)] = { 0x04, CNTR_ODD },
|
|
},
|
|
[C(OP_WRITE)] = {
|
|
[C(RESULT_MISS)] = { 0x04, CNTR_ODD },
|
|
},
|
|
},
|
|
[C(L1I)] = {
|
|
[C(OP_READ)] = {
|
|
[C(RESULT_MISS)] = { 0x04, CNTR_EVEN },
|
|
},
|
|
[C(OP_WRITE)] = {
|
|
[C(RESULT_MISS)] = { 0x04, CNTR_EVEN },
|
|
},
|
|
},
|
|
[C(DTLB)] = {
|
|
[C(OP_READ)] = {
|
|
[C(RESULT_MISS)] = { 0x09, CNTR_ODD },
|
|
},
|
|
[C(OP_WRITE)] = {
|
|
[C(RESULT_MISS)] = { 0x09, CNTR_ODD },
|
|
},
|
|
},
|
|
[C(ITLB)] = {
|
|
[C(OP_READ)] = {
|
|
[C(RESULT_MISS)] = { 0x0c, CNTR_ODD },
|
|
},
|
|
[C(OP_WRITE)] = {
|
|
[C(RESULT_MISS)] = { 0x0c, CNTR_ODD },
|
|
},
|
|
},
|
|
[C(BPU)] = {
|
|
/* Using the same code for *HW_BRANCH* */
|
|
[C(OP_READ)] = {
|
|
[C(RESULT_ACCESS)] = { 0x01, CNTR_EVEN },
|
|
[C(RESULT_MISS)] = { 0x01, CNTR_ODD },
|
|
},
|
|
[C(OP_WRITE)] = {
|
|
[C(RESULT_ACCESS)] = { 0x01, CNTR_EVEN },
|
|
[C(RESULT_MISS)] = { 0x01, CNTR_ODD },
|
|
},
|
|
},
|
|
};
|
|
|
|
static const struct mips_perf_event loongson3_cache_map2
|
|
[PERF_COUNT_HW_CACHE_MAX]
|
|
[PERF_COUNT_HW_CACHE_OP_MAX]
|
|
[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
|
|
[C(L1D)] = {
|
|
/*
|
|
* Like some other architectures (e.g. ARM), the performance
|
|
* counters don't differentiate between read and write
|
|
* accesses/misses, so this isn't strictly correct, but it's the
|
|
* best we can do. Writes and reads get combined.
|
|
*/
|
|
[C(OP_READ)] = {
|
|
[C(RESULT_ACCESS)] = { 0x156, CNTR_ALL },
|
|
},
|
|
[C(OP_WRITE)] = {
|
|
[C(RESULT_ACCESS)] = { 0x155, CNTR_ALL },
|
|
[C(RESULT_MISS)] = { 0x153, CNTR_ALL },
|
|
},
|
|
},
|
|
[C(L1I)] = {
|
|
[C(OP_READ)] = {
|
|
[C(RESULT_MISS)] = { 0x18, CNTR_ALL },
|
|
},
|
|
[C(OP_WRITE)] = {
|
|
[C(RESULT_MISS)] = { 0x18, CNTR_ALL },
|
|
},
|
|
},
|
|
[C(LL)] = {
|
|
[C(OP_READ)] = {
|
|
[C(RESULT_ACCESS)] = { 0x1b6, CNTR_ALL },
|
|
},
|
|
[C(OP_WRITE)] = {
|
|
[C(RESULT_ACCESS)] = { 0x1b7, CNTR_ALL },
|
|
},
|
|
[C(OP_PREFETCH)] = {
|
|
[C(RESULT_ACCESS)] = { 0x1bf, CNTR_ALL },
|
|
},
|
|
},
|
|
[C(DTLB)] = {
|
|
[C(OP_READ)] = {
|
|
[C(RESULT_MISS)] = { 0x92, CNTR_ALL },
|
|
},
|
|
[C(OP_WRITE)] = {
|
|
[C(RESULT_MISS)] = { 0x92, CNTR_ALL },
|
|
},
|
|
},
|
|
[C(ITLB)] = {
|
|
[C(OP_READ)] = {
|
|
[C(RESULT_MISS)] = { 0x1a, CNTR_ALL },
|
|
},
|
|
[C(OP_WRITE)] = {
|
|
[C(RESULT_MISS)] = { 0x1a, CNTR_ALL },
|
|
},
|
|
},
|
|
[C(BPU)] = {
|
|
/* Using the same code for *HW_BRANCH* */
|
|
[C(OP_READ)] = {
|
|
[C(RESULT_ACCESS)] = { 0x94, CNTR_ALL },
|
|
[C(RESULT_MISS)] = { 0x9c, CNTR_ALL },
|
|
},
|
|
},
|
|
};
|
|
|
|
static const struct mips_perf_event loongson3_cache_map3
|
|
[PERF_COUNT_HW_CACHE_MAX]
|
|
[PERF_COUNT_HW_CACHE_OP_MAX]
|
|
[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
|
|
[C(L1D)] = {
|
|
/*
|
|
* Like some other architectures (e.g. ARM), the performance
|
|
* counters don't differentiate between read and write
|
|
* accesses/misses, so this isn't strictly correct, but it's the
|
|
* best we can do. Writes and reads get combined.
|
|
*/
|
|
[C(OP_READ)] = {
|
|
[C(RESULT_ACCESS)] = { 0x1e, CNTR_ALL },
|
|
[C(RESULT_MISS)] = { 0x1f, CNTR_ALL },
|
|
},
|
|
[C(OP_PREFETCH)] = {
|
|
[C(RESULT_ACCESS)] = { 0xaa, CNTR_ALL },
|
|
[C(RESULT_MISS)] = { 0xa9, CNTR_ALL },
|
|
},
|
|
},
|
|
[C(L1I)] = {
|
|
[C(OP_READ)] = {
|
|
[C(RESULT_ACCESS)] = { 0x1c, CNTR_ALL },
|
|
[C(RESULT_MISS)] = { 0x1d, CNTR_ALL },
|
|
},
|
|
},
|
|
[C(LL)] = {
|
|
[C(OP_READ)] = {
|
|
[C(RESULT_ACCESS)] = { 0x2e, CNTR_ALL },
|
|
[C(RESULT_MISS)] = { 0x2f, CNTR_ALL },
|
|
},
|
|
},
|
|
[C(DTLB)] = {
|
|
[C(OP_READ)] = {
|
|
[C(RESULT_ACCESS)] = { 0x14, CNTR_ALL },
|
|
[C(RESULT_MISS)] = { 0x1b, CNTR_ALL },
|
|
},
|
|
},
|
|
[C(ITLB)] = {
|
|
[C(OP_READ)] = {
|
|
[C(RESULT_MISS)] = { 0x1a, CNTR_ALL },
|
|
},
|
|
},
|
|
[C(BPU)] = {
|
|
/* Using the same code for *HW_BRANCH* */
|
|
[C(OP_READ)] = {
|
|
[C(RESULT_ACCESS)] = { 0x02, CNTR_ALL },
|
|
[C(RESULT_MISS)] = { 0x08, CNTR_ALL },
|
|
},
|
|
},
|
|
};
|
|
|
|
/* BMIPS5000 */
|
|
static const struct mips_perf_event bmips5000_cache_map
|
|
[PERF_COUNT_HW_CACHE_MAX]
|
|
[PERF_COUNT_HW_CACHE_OP_MAX]
|
|
[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
|
|
[C(L1D)] = {
|
|
/*
|
|
* Like some other architectures (e.g. ARM), the performance
|
|
* counters don't differentiate between read and write
|
|
* accesses/misses, so this isn't strictly correct, but it's the
|
|
* best we can do. Writes and reads get combined.
|
|
*/
|
|
[C(OP_READ)] = {
|
|
[C(RESULT_ACCESS)] = { 12, CNTR_EVEN, T },
|
|
[C(RESULT_MISS)] = { 12, CNTR_ODD, T },
|
|
},
|
|
[C(OP_WRITE)] = {
|
|
[C(RESULT_ACCESS)] = { 12, CNTR_EVEN, T },
|
|
[C(RESULT_MISS)] = { 12, CNTR_ODD, T },
|
|
},
|
|
},
|
|
[C(L1I)] = {
|
|
[C(OP_READ)] = {
|
|
[C(RESULT_ACCESS)] = { 10, CNTR_EVEN, T },
|
|
[C(RESULT_MISS)] = { 10, CNTR_ODD, T },
|
|
},
|
|
[C(OP_WRITE)] = {
|
|
[C(RESULT_ACCESS)] = { 10, CNTR_EVEN, T },
|
|
[C(RESULT_MISS)] = { 10, CNTR_ODD, T },
|
|
},
|
|
[C(OP_PREFETCH)] = {
|
|
[C(RESULT_ACCESS)] = { 23, CNTR_EVEN, T },
|
|
/*
|
|
* Note that MIPS has only "hit" events countable for
|
|
* the prefetch operation.
|
|
*/
|
|
},
|
|
},
|
|
[C(LL)] = {
|
|
[C(OP_READ)] = {
|
|
[C(RESULT_ACCESS)] = { 28, CNTR_EVEN, P },
|
|
[C(RESULT_MISS)] = { 28, CNTR_ODD, P },
|
|
},
|
|
[C(OP_WRITE)] = {
|
|
[C(RESULT_ACCESS)] = { 28, CNTR_EVEN, P },
|
|
[C(RESULT_MISS)] = { 28, CNTR_ODD, P },
|
|
},
|
|
},
|
|
[C(BPU)] = {
|
|
/* Using the same code for *HW_BRANCH* */
|
|
[C(OP_READ)] = {
|
|
[C(RESULT_MISS)] = { 0x02, CNTR_ODD, T },
|
|
},
|
|
[C(OP_WRITE)] = {
|
|
[C(RESULT_MISS)] = { 0x02, CNTR_ODD, T },
|
|
},
|
|
},
|
|
};
|
|
|
|
static const struct mips_perf_event octeon_cache_map
|
|
[PERF_COUNT_HW_CACHE_MAX]
|
|
[PERF_COUNT_HW_CACHE_OP_MAX]
|
|
[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
|
|
[C(L1D)] = {
|
|
[C(OP_READ)] = {
|
|
[C(RESULT_ACCESS)] = { 0x2b, CNTR_ALL },
|
|
[C(RESULT_MISS)] = { 0x2e, CNTR_ALL },
|
|
},
|
|
[C(OP_WRITE)] = {
|
|
[C(RESULT_ACCESS)] = { 0x30, CNTR_ALL },
|
|
},
|
|
},
|
|
[C(L1I)] = {
|
|
[C(OP_READ)] = {
|
|
[C(RESULT_ACCESS)] = { 0x18, CNTR_ALL },
|
|
},
|
|
[C(OP_PREFETCH)] = {
|
|
[C(RESULT_ACCESS)] = { 0x19, CNTR_ALL },
|
|
},
|
|
},
|
|
[C(DTLB)] = {
|
|
/*
|
|
* Only general DTLB misses are counted use the same event for
|
|
* read and write.
|
|
*/
|
|
[C(OP_READ)] = {
|
|
[C(RESULT_MISS)] = { 0x35, CNTR_ALL },
|
|
},
|
|
[C(OP_WRITE)] = {
|
|
[C(RESULT_MISS)] = { 0x35, CNTR_ALL },
|
|
},
|
|
},
|
|
[C(ITLB)] = {
|
|
[C(OP_READ)] = {
|
|
[C(RESULT_MISS)] = { 0x37, CNTR_ALL },
|
|
},
|
|
},
|
|
};
|
|
|
|
static int __hw_perf_event_init(struct perf_event *event)
|
|
{
|
|
struct perf_event_attr *attr = &event->attr;
|
|
struct hw_perf_event *hwc = &event->hw;
|
|
const struct mips_perf_event *pev;
|
|
int err;
|
|
|
|
/* Returning MIPS event descriptor for generic perf event. */
|
|
if (PERF_TYPE_HARDWARE == event->attr.type) {
|
|
if (event->attr.config >= PERF_COUNT_HW_MAX)
|
|
return -EINVAL;
|
|
pev = mipspmu_map_general_event(event->attr.config);
|
|
} else if (PERF_TYPE_HW_CACHE == event->attr.type) {
|
|
pev = mipspmu_map_cache_event(event->attr.config);
|
|
} else if (PERF_TYPE_RAW == event->attr.type) {
|
|
/* We are working on the global raw event. */
|
|
mutex_lock(&raw_event_mutex);
|
|
pev = mipspmu.map_raw_event(event->attr.config);
|
|
} else {
|
|
/* The event type is not (yet) supported. */
|
|
return -EOPNOTSUPP;
|
|
}
|
|
|
|
if (IS_ERR(pev)) {
|
|
if (PERF_TYPE_RAW == event->attr.type)
|
|
mutex_unlock(&raw_event_mutex);
|
|
return PTR_ERR(pev);
|
|
}
|
|
|
|
/*
|
|
* We allow max flexibility on how each individual counter shared
|
|
* by the single CPU operates (the mode exclusion and the range).
|
|
*/
|
|
hwc->config_base = MIPS_PERFCTRL_IE;
|
|
|
|
hwc->event_base = mipspmu_perf_event_encode(pev);
|
|
if (PERF_TYPE_RAW == event->attr.type)
|
|
mutex_unlock(&raw_event_mutex);
|
|
|
|
if (!attr->exclude_user)
|
|
hwc->config_base |= MIPS_PERFCTRL_U;
|
|
if (!attr->exclude_kernel) {
|
|
hwc->config_base |= MIPS_PERFCTRL_K;
|
|
/* MIPS kernel mode: KSU == 00b || EXL == 1 || ERL == 1 */
|
|
hwc->config_base |= MIPS_PERFCTRL_EXL;
|
|
}
|
|
if (!attr->exclude_hv)
|
|
hwc->config_base |= MIPS_PERFCTRL_S;
|
|
|
|
hwc->config_base &= M_PERFCTL_CONFIG_MASK;
|
|
/*
|
|
* The event can belong to another cpu. We do not assign a local
|
|
* counter for it for now.
|
|
*/
|
|
hwc->idx = -1;
|
|
hwc->config = 0;
|
|
|
|
if (!hwc->sample_period) {
|
|
hwc->sample_period = mipspmu.max_period;
|
|
hwc->last_period = hwc->sample_period;
|
|
local64_set(&hwc->period_left, hwc->sample_period);
|
|
}
|
|
|
|
err = 0;
|
|
if (event->group_leader != event)
|
|
err = validate_group(event);
|
|
|
|
event->destroy = hw_perf_event_destroy;
|
|
|
|
if (err)
|
|
event->destroy(event);
|
|
|
|
return err;
|
|
}
|
|
|
|
static void pause_local_counters(void)
|
|
{
|
|
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
|
|
int ctr = mipspmu.num_counters;
|
|
unsigned long flags;
|
|
|
|
local_irq_save(flags);
|
|
do {
|
|
ctr--;
|
|
cpuc->saved_ctrl[ctr] = mipsxx_pmu_read_control(ctr);
|
|
mipsxx_pmu_write_control(ctr, cpuc->saved_ctrl[ctr] &
|
|
~M_PERFCTL_COUNT_EVENT_WHENEVER);
|
|
} while (ctr > 0);
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
static void resume_local_counters(void)
|
|
{
|
|
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
|
|
int ctr = mipspmu.num_counters;
|
|
|
|
do {
|
|
ctr--;
|
|
mipsxx_pmu_write_control(ctr, cpuc->saved_ctrl[ctr]);
|
|
} while (ctr > 0);
|
|
}
|
|
|
|
static int mipsxx_pmu_handle_shared_irq(void)
|
|
{
|
|
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
|
|
struct perf_sample_data data;
|
|
unsigned int counters = mipspmu.num_counters;
|
|
u64 counter;
|
|
int n, handled = IRQ_NONE;
|
|
struct pt_regs *regs;
|
|
|
|
if (cpu_has_perf_cntr_intr_bit && !(read_c0_cause() & CAUSEF_PCI))
|
|
return handled;
|
|
/*
|
|
* First we pause the local counters, so that when we are locked
|
|
* here, the counters are all paused. When it gets locked due to
|
|
* perf_disable(), the timer interrupt handler will be delayed.
|
|
*
|
|
* See also mipsxx_pmu_start().
|
|
*/
|
|
pause_local_counters();
|
|
#ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
|
|
read_lock(&pmuint_rwlock);
|
|
#endif
|
|
|
|
regs = get_irq_regs();
|
|
|
|
perf_sample_data_init(&data, 0, 0);
|
|
|
|
for (n = counters - 1; n >= 0; n--) {
|
|
if (!test_bit(n, cpuc->used_mask))
|
|
continue;
|
|
|
|
counter = mipspmu.read_counter(n);
|
|
if (!(counter & mipspmu.overflow))
|
|
continue;
|
|
|
|
handle_associated_event(cpuc, n, &data, regs);
|
|
handled = IRQ_HANDLED;
|
|
}
|
|
|
|
#ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
|
|
read_unlock(&pmuint_rwlock);
|
|
#endif
|
|
resume_local_counters();
|
|
|
|
/*
|
|
* Do all the work for the pending perf events. We can do this
|
|
* in here because the performance counter interrupt is a regular
|
|
* interrupt, not NMI.
|
|
*/
|
|
if (handled == IRQ_HANDLED)
|
|
irq_work_run();
|
|
|
|
return handled;
|
|
}
|
|
|
|
static irqreturn_t mipsxx_pmu_handle_irq(int irq, void *dev)
|
|
{
|
|
return mipsxx_pmu_handle_shared_irq();
|
|
}
|
|
|
|
/* 24K */
|
|
#define IS_BOTH_COUNTERS_24K_EVENT(b) \
|
|
((b) == 0 || (b) == 1 || (b) == 11)
|
|
|
|
/* 34K */
|
|
#define IS_BOTH_COUNTERS_34K_EVENT(b) \
|
|
((b) == 0 || (b) == 1 || (b) == 11)
|
|
#ifdef CONFIG_MIPS_MT_SMP
|
|
#define IS_RANGE_P_34K_EVENT(r, b) \
|
|
((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 || \
|
|
(b) == 25 || (b) == 39 || (r) == 44 || (r) == 174 || \
|
|
(r) == 176 || ((b) >= 50 && (b) <= 55) || \
|
|
((b) >= 64 && (b) <= 67))
|
|
#define IS_RANGE_V_34K_EVENT(r) ((r) == 47)
|
|
#endif
|
|
|
|
/* 74K */
|
|
#define IS_BOTH_COUNTERS_74K_EVENT(b) \
|
|
((b) == 0 || (b) == 1)
|
|
|
|
/* proAptiv */
|
|
#define IS_BOTH_COUNTERS_PROAPTIV_EVENT(b) \
|
|
((b) == 0 || (b) == 1)
|
|
/* P5600 */
|
|
#define IS_BOTH_COUNTERS_P5600_EVENT(b) \
|
|
((b) == 0 || (b) == 1)
|
|
|
|
/* 1004K */
|
|
#define IS_BOTH_COUNTERS_1004K_EVENT(b) \
|
|
((b) == 0 || (b) == 1 || (b) == 11)
|
|
#ifdef CONFIG_MIPS_MT_SMP
|
|
#define IS_RANGE_P_1004K_EVENT(r, b) \
|
|
((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 || \
|
|
(b) == 25 || (b) == 36 || (b) == 39 || (r) == 44 || \
|
|
(r) == 174 || (r) == 176 || ((b) >= 50 && (b) <= 59) || \
|
|
(r) == 188 || (b) == 61 || (b) == 62 || \
|
|
((b) >= 64 && (b) <= 67))
|
|
#define IS_RANGE_V_1004K_EVENT(r) ((r) == 47)
|
|
#endif
|
|
|
|
/* interAptiv */
|
|
#define IS_BOTH_COUNTERS_INTERAPTIV_EVENT(b) \
|
|
((b) == 0 || (b) == 1 || (b) == 11)
|
|
#ifdef CONFIG_MIPS_MT_SMP
|
|
/* The P/V/T info is not provided for "(b) == 38" in SUM, assume P. */
|
|
#define IS_RANGE_P_INTERAPTIV_EVENT(r, b) \
|
|
((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 || \
|
|
(b) == 25 || (b) == 36 || (b) == 38 || (b) == 39 || \
|
|
(r) == 44 || (r) == 174 || (r) == 176 || ((b) >= 50 && \
|
|
(b) <= 59) || (r) == 188 || (b) == 61 || (b) == 62 || \
|
|
((b) >= 64 && (b) <= 67))
|
|
#define IS_RANGE_V_INTERAPTIV_EVENT(r) ((r) == 47 || (r) == 175)
|
|
#endif
|
|
|
|
/* BMIPS5000 */
|
|
#define IS_BOTH_COUNTERS_BMIPS5000_EVENT(b) \
|
|
((b) == 0 || (b) == 1)
|
|
|
|
|
|
/*
|
|
* For most cores the user can use 0-255 raw events, where 0-127 for the events
|
|
* of even counters, and 128-255 for odd counters. Note that bit 7 is used to
|
|
* indicate the even/odd bank selector. So, for example, when user wants to take
|
|
* the Event Num of 15 for odd counters (by referring to the user manual), then
|
|
* 128 needs to be added to 15 as the input for the event config, i.e., 143 (0x8F)
|
|
* to be used.
|
|
*
|
|
* Some newer cores have even more events, in which case the user can use raw
|
|
* events 0-511, where 0-255 are for the events of even counters, and 256-511
|
|
* are for odd counters, so bit 8 is used to indicate the even/odd bank selector.
|
|
*/
|
|
static const struct mips_perf_event *mipsxx_pmu_map_raw_event(u64 config)
|
|
{
|
|
/* currently most cores have 7-bit event numbers */
|
|
int pmu_type;
|
|
unsigned int raw_id = config & 0xff;
|
|
unsigned int base_id = raw_id & 0x7f;
|
|
|
|
switch (current_cpu_type()) {
|
|
case CPU_24K:
|
|
if (IS_BOTH_COUNTERS_24K_EVENT(base_id))
|
|
raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
|
|
else
|
|
raw_event.cntr_mask =
|
|
raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
|
|
#ifdef CONFIG_MIPS_MT_SMP
|
|
/*
|
|
* This is actually doing nothing. Non-multithreading
|
|
* CPUs will not check and calculate the range.
|
|
*/
|
|
raw_event.range = P;
|
|
#endif
|
|
break;
|
|
case CPU_34K:
|
|
if (IS_BOTH_COUNTERS_34K_EVENT(base_id))
|
|
raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
|
|
else
|
|
raw_event.cntr_mask =
|
|
raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
|
|
#ifdef CONFIG_MIPS_MT_SMP
|
|
if (IS_RANGE_P_34K_EVENT(raw_id, base_id))
|
|
raw_event.range = P;
|
|
else if (unlikely(IS_RANGE_V_34K_EVENT(raw_id)))
|
|
raw_event.range = V;
|
|
else
|
|
raw_event.range = T;
|
|
#endif
|
|
break;
|
|
case CPU_74K:
|
|
case CPU_1074K:
|
|
if (IS_BOTH_COUNTERS_74K_EVENT(base_id))
|
|
raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
|
|
else
|
|
raw_event.cntr_mask =
|
|
raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
|
|
#ifdef CONFIG_MIPS_MT_SMP
|
|
raw_event.range = P;
|
|
#endif
|
|
break;
|
|
case CPU_PROAPTIV:
|
|
if (IS_BOTH_COUNTERS_PROAPTIV_EVENT(base_id))
|
|
raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
|
|
else
|
|
raw_event.cntr_mask =
|
|
raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
|
|
#ifdef CONFIG_MIPS_MT_SMP
|
|
raw_event.range = P;
|
|
#endif
|
|
break;
|
|
case CPU_P5600:
|
|
case CPU_P6600:
|
|
/* 8-bit event numbers */
|
|
raw_id = config & 0x1ff;
|
|
base_id = raw_id & 0xff;
|
|
if (IS_BOTH_COUNTERS_P5600_EVENT(base_id))
|
|
raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
|
|
else
|
|
raw_event.cntr_mask =
|
|
raw_id > 255 ? CNTR_ODD : CNTR_EVEN;
|
|
#ifdef CONFIG_MIPS_MT_SMP
|
|
raw_event.range = P;
|
|
#endif
|
|
break;
|
|
case CPU_I6400:
|
|
case CPU_I6500:
|
|
/* 8-bit event numbers */
|
|
base_id = config & 0xff;
|
|
raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
|
|
break;
|
|
case CPU_1004K:
|
|
if (IS_BOTH_COUNTERS_1004K_EVENT(base_id))
|
|
raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
|
|
else
|
|
raw_event.cntr_mask =
|
|
raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
|
|
#ifdef CONFIG_MIPS_MT_SMP
|
|
if (IS_RANGE_P_1004K_EVENT(raw_id, base_id))
|
|
raw_event.range = P;
|
|
else if (unlikely(IS_RANGE_V_1004K_EVENT(raw_id)))
|
|
raw_event.range = V;
|
|
else
|
|
raw_event.range = T;
|
|
#endif
|
|
break;
|
|
case CPU_INTERAPTIV:
|
|
if (IS_BOTH_COUNTERS_INTERAPTIV_EVENT(base_id))
|
|
raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
|
|
else
|
|
raw_event.cntr_mask =
|
|
raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
|
|
#ifdef CONFIG_MIPS_MT_SMP
|
|
if (IS_RANGE_P_INTERAPTIV_EVENT(raw_id, base_id))
|
|
raw_event.range = P;
|
|
else if (unlikely(IS_RANGE_V_INTERAPTIV_EVENT(raw_id)))
|
|
raw_event.range = V;
|
|
else
|
|
raw_event.range = T;
|
|
#endif
|
|
break;
|
|
case CPU_BMIPS5000:
|
|
if (IS_BOTH_COUNTERS_BMIPS5000_EVENT(base_id))
|
|
raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
|
|
else
|
|
raw_event.cntr_mask =
|
|
raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
|
|
break;
|
|
case CPU_LOONGSON64:
|
|
pmu_type = get_loongson3_pmu_type();
|
|
|
|
switch (pmu_type) {
|
|
case LOONGSON_PMU_TYPE1:
|
|
raw_event.cntr_mask =
|
|
raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
|
|
break;
|
|
case LOONGSON_PMU_TYPE2:
|
|
base_id = config & 0x3ff;
|
|
raw_event.cntr_mask = CNTR_ALL;
|
|
|
|
if ((base_id >= 1 && base_id < 28) ||
|
|
(base_id >= 64 && base_id < 90) ||
|
|
(base_id >= 128 && base_id < 164) ||
|
|
(base_id >= 192 && base_id < 200) ||
|
|
(base_id >= 256 && base_id < 275) ||
|
|
(base_id >= 320 && base_id < 361) ||
|
|
(base_id >= 384 && base_id < 574))
|
|
break;
|
|
|
|
return ERR_PTR(-EOPNOTSUPP);
|
|
case LOONGSON_PMU_TYPE3:
|
|
base_id = raw_id;
|
|
raw_event.cntr_mask = CNTR_ALL;
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
|
|
raw_event.event_id = base_id;
|
|
|
|
return &raw_event;
|
|
}
|
|
|
|
static const struct mips_perf_event *octeon_pmu_map_raw_event(u64 config)
|
|
{
|
|
unsigned int base_id = config & 0x7f;
|
|
unsigned int event_max;
|
|
|
|
|
|
raw_event.cntr_mask = CNTR_ALL;
|
|
raw_event.event_id = base_id;
|
|
|
|
if (current_cpu_type() == CPU_CAVIUM_OCTEON3)
|
|
event_max = 0x5f;
|
|
else if (current_cpu_type() == CPU_CAVIUM_OCTEON2)
|
|
event_max = 0x42;
|
|
else
|
|
event_max = 0x3a;
|
|
|
|
if (base_id > event_max) {
|
|
return ERR_PTR(-EOPNOTSUPP);
|
|
}
|
|
|
|
switch (base_id) {
|
|
case 0x00:
|
|
case 0x0f:
|
|
case 0x1e:
|
|
case 0x1f:
|
|
case 0x2f:
|
|
case 0x34:
|
|
case 0x3e ... 0x3f:
|
|
return ERR_PTR(-EOPNOTSUPP);
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return &raw_event;
|
|
}
|
|
|
|
static int __init
|
|
init_hw_perf_events(void)
|
|
{
|
|
int counters, irq, pmu_type;
|
|
|
|
pr_info("Performance counters: ");
|
|
|
|
counters = n_counters();
|
|
if (counters == 0) {
|
|
pr_cont("No available PMU.\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
#ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
|
|
if (!cpu_has_mipsmt_pertccounters)
|
|
counters = counters_total_to_per_cpu(counters);
|
|
#endif
|
|
|
|
if (get_c0_perfcount_int)
|
|
irq = get_c0_perfcount_int();
|
|
else if (cp0_perfcount_irq >= 0)
|
|
irq = MIPS_CPU_IRQ_BASE + cp0_perfcount_irq;
|
|
else
|
|
irq = -1;
|
|
|
|
mipspmu.map_raw_event = mipsxx_pmu_map_raw_event;
|
|
|
|
switch (current_cpu_type()) {
|
|
case CPU_24K:
|
|
mipspmu.name = "mips/24K";
|
|
mipspmu.general_event_map = &mipsxxcore_event_map;
|
|
mipspmu.cache_event_map = &mipsxxcore_cache_map;
|
|
break;
|
|
case CPU_34K:
|
|
mipspmu.name = "mips/34K";
|
|
mipspmu.general_event_map = &mipsxxcore_event_map;
|
|
mipspmu.cache_event_map = &mipsxxcore_cache_map;
|
|
break;
|
|
case CPU_74K:
|
|
mipspmu.name = "mips/74K";
|
|
mipspmu.general_event_map = &mipsxxcore_event_map2;
|
|
mipspmu.cache_event_map = &mipsxxcore_cache_map2;
|
|
break;
|
|
case CPU_PROAPTIV:
|
|
mipspmu.name = "mips/proAptiv";
|
|
mipspmu.general_event_map = &mipsxxcore_event_map2;
|
|
mipspmu.cache_event_map = &mipsxxcore_cache_map2;
|
|
break;
|
|
case CPU_P5600:
|
|
mipspmu.name = "mips/P5600";
|
|
mipspmu.general_event_map = &mipsxxcore_event_map2;
|
|
mipspmu.cache_event_map = &mipsxxcore_cache_map2;
|
|
break;
|
|
case CPU_P6600:
|
|
mipspmu.name = "mips/P6600";
|
|
mipspmu.general_event_map = &mipsxxcore_event_map2;
|
|
mipspmu.cache_event_map = &mipsxxcore_cache_map2;
|
|
break;
|
|
case CPU_I6400:
|
|
mipspmu.name = "mips/I6400";
|
|
mipspmu.general_event_map = &i6x00_event_map;
|
|
mipspmu.cache_event_map = &i6x00_cache_map;
|
|
break;
|
|
case CPU_I6500:
|
|
mipspmu.name = "mips/I6500";
|
|
mipspmu.general_event_map = &i6x00_event_map;
|
|
mipspmu.cache_event_map = &i6x00_cache_map;
|
|
break;
|
|
case CPU_1004K:
|
|
mipspmu.name = "mips/1004K";
|
|
mipspmu.general_event_map = &mipsxxcore_event_map;
|
|
mipspmu.cache_event_map = &mipsxxcore_cache_map;
|
|
break;
|
|
case CPU_1074K:
|
|
mipspmu.name = "mips/1074K";
|
|
mipspmu.general_event_map = &mipsxxcore_event_map;
|
|
mipspmu.cache_event_map = &mipsxxcore_cache_map;
|
|
break;
|
|
case CPU_INTERAPTIV:
|
|
mipspmu.name = "mips/interAptiv";
|
|
mipspmu.general_event_map = &mipsxxcore_event_map;
|
|
mipspmu.cache_event_map = &mipsxxcore_cache_map;
|
|
break;
|
|
case CPU_LOONGSON32:
|
|
mipspmu.name = "mips/loongson1";
|
|
mipspmu.general_event_map = &mipsxxcore_event_map;
|
|
mipspmu.cache_event_map = &mipsxxcore_cache_map;
|
|
break;
|
|
case CPU_LOONGSON64:
|
|
mipspmu.name = "mips/loongson3";
|
|
pmu_type = get_loongson3_pmu_type();
|
|
|
|
switch (pmu_type) {
|
|
case LOONGSON_PMU_TYPE1:
|
|
counters = 2;
|
|
mipspmu.general_event_map = &loongson3_event_map1;
|
|
mipspmu.cache_event_map = &loongson3_cache_map1;
|
|
break;
|
|
case LOONGSON_PMU_TYPE2:
|
|
counters = 4;
|
|
mipspmu.general_event_map = &loongson3_event_map2;
|
|
mipspmu.cache_event_map = &loongson3_cache_map2;
|
|
break;
|
|
case LOONGSON_PMU_TYPE3:
|
|
counters = 4;
|
|
mipspmu.general_event_map = &loongson3_event_map3;
|
|
mipspmu.cache_event_map = &loongson3_cache_map3;
|
|
break;
|
|
}
|
|
break;
|
|
case CPU_CAVIUM_OCTEON:
|
|
case CPU_CAVIUM_OCTEON_PLUS:
|
|
case CPU_CAVIUM_OCTEON2:
|
|
case CPU_CAVIUM_OCTEON3:
|
|
mipspmu.name = "octeon";
|
|
mipspmu.general_event_map = &octeon_event_map;
|
|
mipspmu.cache_event_map = &octeon_cache_map;
|
|
mipspmu.map_raw_event = octeon_pmu_map_raw_event;
|
|
break;
|
|
case CPU_BMIPS5000:
|
|
mipspmu.name = "BMIPS5000";
|
|
mipspmu.general_event_map = &bmips5000_event_map;
|
|
mipspmu.cache_event_map = &bmips5000_cache_map;
|
|
break;
|
|
default:
|
|
pr_cont("Either hardware does not support performance "
|
|
"counters, or not yet implemented.\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
mipspmu.num_counters = counters;
|
|
mipspmu.irq = irq;
|
|
|
|
if (read_c0_perfctrl0() & MIPS_PERFCTRL_W) {
|
|
if (get_loongson3_pmu_type() == LOONGSON_PMU_TYPE2) {
|
|
counter_bits = 48;
|
|
mipspmu.max_period = (1ULL << 47) - 1;
|
|
mipspmu.valid_count = (1ULL << 47) - 1;
|
|
mipspmu.overflow = 1ULL << 47;
|
|
} else {
|
|
counter_bits = 64;
|
|
mipspmu.max_period = (1ULL << 63) - 1;
|
|
mipspmu.valid_count = (1ULL << 63) - 1;
|
|
mipspmu.overflow = 1ULL << 63;
|
|
}
|
|
mipspmu.read_counter = mipsxx_pmu_read_counter_64;
|
|
mipspmu.write_counter = mipsxx_pmu_write_counter_64;
|
|
} else {
|
|
counter_bits = 32;
|
|
mipspmu.max_period = (1ULL << 31) - 1;
|
|
mipspmu.valid_count = (1ULL << 31) - 1;
|
|
mipspmu.overflow = 1ULL << 31;
|
|
mipspmu.read_counter = mipsxx_pmu_read_counter;
|
|
mipspmu.write_counter = mipsxx_pmu_write_counter;
|
|
}
|
|
|
|
on_each_cpu(reset_counters, (void *)(long)counters, 1);
|
|
|
|
pr_cont("%s PMU enabled, %d %d-bit counters available to each "
|
|
"CPU, irq %d%s\n", mipspmu.name, counters, counter_bits, irq,
|
|
irq < 0 ? " (share with timer interrupt)" : "");
|
|
|
|
perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
|
|
|
|
return 0;
|
|
}
|
|
early_initcall(init_hw_perf_events);
|