linux/Documentation/bpf/kfuncs.rst
David Vernet 3f00c52393 bpf: Allow trusted pointers to be passed to KF_TRUSTED_ARGS kfuncs
Kfuncs currently support specifying the KF_TRUSTED_ARGS flag to signal
to the verifier that it should enforce that a BPF program passes it a
"safe", trusted pointer. Currently, "safe" means that the pointer is
either PTR_TO_CTX, or is refcounted. There may be cases, however, where
the kernel passes a BPF program a safe / trusted pointer to an object
that the BPF program wishes to use as a kptr, but because the object
does not yet have a ref_obj_id from the perspective of the verifier, the
program would be unable to pass it to a KF_ACQUIRE | KF_TRUSTED_ARGS
kfunc.

The solution is to expand the set of pointers that are considered
trusted according to KF_TRUSTED_ARGS, so that programs can invoke kfuncs
with these pointers without getting rejected by the verifier.

There is already a PTR_UNTRUSTED flag that is set in some scenarios,
such as when a BPF program reads a kptr directly from a map
without performing a bpf_kptr_xchg() call. These pointers of course can
and should be rejected by the verifier. Unfortunately, however,
PTR_UNTRUSTED does not cover all the cases for safety that need to
be addressed to adequately protect kfuncs. Specifically, pointers
obtained by a BPF program "walking" a struct are _not_ considered
PTR_UNTRUSTED according to BPF. For example, say that we were to add a
kfunc called bpf_task_acquire(), with KF_ACQUIRE | KF_TRUSTED_ARGS, to
acquire a struct task_struct *. If we only used PTR_UNTRUSTED to signal
that a task was unsafe to pass to a kfunc, the verifier would mistakenly
allow the following unsafe BPF program to be loaded:

SEC("tp_btf/task_newtask")
int BPF_PROG(unsafe_acquire_task,
             struct task_struct *task,
             u64 clone_flags)
{
        struct task_struct *acquired, *nested;

        nested = task->last_wakee;

        /* Would not be rejected by the verifier. */
        acquired = bpf_task_acquire(nested);
        if (!acquired)
                return 0;

        bpf_task_release(acquired);
        return 0;
}

To address this, this patch defines a new type flag called PTR_TRUSTED
which tracks whether a PTR_TO_BTF_ID pointer is safe to pass to a
KF_TRUSTED_ARGS kfunc or a BPF helper function. PTR_TRUSTED pointers are
passed directly from the kernel as a tracepoint or struct_ops callback
argument. Any nested pointer that is obtained from walking a PTR_TRUSTED
pointer is no longer PTR_TRUSTED. From the example above, the struct
task_struct *task argument is PTR_TRUSTED, but the 'nested' pointer
obtained from 'task->last_wakee' is not PTR_TRUSTED.

A subsequent patch will add kfuncs for storing a task kfunc as a kptr,
and then another patch will add selftests to validate.

Signed-off-by: David Vernet <void@manifault.com>
Link: https://lore.kernel.org/r/20221120051004.3605026-3-void@manifault.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2022-11-20 09:16:21 -08:00

216 lines
8.1 KiB
ReStructuredText

=============================
BPF Kernel Functions (kfuncs)
=============================
1. Introduction
===============
BPF Kernel Functions or more commonly known as kfuncs are functions in the Linux
kernel which are exposed for use by BPF programs. Unlike normal BPF helpers,
kfuncs do not have a stable interface and can change from one kernel release to
another. Hence, BPF programs need to be updated in response to changes in the
kernel.
2. Defining a kfunc
===================
There are two ways to expose a kernel function to BPF programs, either make an
existing function in the kernel visible, or add a new wrapper for BPF. In both
cases, care must be taken that BPF program can only call such function in a
valid context. To enforce this, visibility of a kfunc can be per program type.
If you are not creating a BPF wrapper for existing kernel function, skip ahead
to :ref:`BPF_kfunc_nodef`.
2.1 Creating a wrapper kfunc
----------------------------
When defining a wrapper kfunc, the wrapper function should have extern linkage.
This prevents the compiler from optimizing away dead code, as this wrapper kfunc
is not invoked anywhere in the kernel itself. It is not necessary to provide a
prototype in a header for the wrapper kfunc.
An example is given below::
/* Disables missing prototype warnings */
__diag_push();
__diag_ignore_all("-Wmissing-prototypes",
"Global kfuncs as their definitions will be in BTF");
struct task_struct *bpf_find_get_task_by_vpid(pid_t nr)
{
return find_get_task_by_vpid(nr);
}
__diag_pop();
A wrapper kfunc is often needed when we need to annotate parameters of the
kfunc. Otherwise one may directly make the kfunc visible to the BPF program by
registering it with the BPF subsystem. See :ref:`BPF_kfunc_nodef`.
2.2 Annotating kfunc parameters
-------------------------------
Similar to BPF helpers, there is sometime need for additional context required
by the verifier to make the usage of kernel functions safer and more useful.
Hence, we can annotate a parameter by suffixing the name of the argument of the
kfunc with a __tag, where tag may be one of the supported annotations.
2.2.1 __sz Annotation
---------------------
This annotation is used to indicate a memory and size pair in the argument list.
An example is given below::
void bpf_memzero(void *mem, int mem__sz)
{
...
}
Here, the verifier will treat first argument as a PTR_TO_MEM, and second
argument as its size. By default, without __sz annotation, the size of the type
of the pointer is used. Without __sz annotation, a kfunc cannot accept a void
pointer.
2.2.2 __k Annotation
--------------------
This annotation is only understood for scalar arguments, where it indicates that
the verifier must check the scalar argument to be a known constant, which does
not indicate a size parameter, and the value of the constant is relevant to the
safety of the program.
An example is given below::
void *bpf_obj_new(u32 local_type_id__k, ...)
{
...
}
Here, bpf_obj_new uses local_type_id argument to find out the size of that type
ID in program's BTF and return a sized pointer to it. Each type ID will have a
distinct size, hence it is crucial to treat each such call as distinct when
values don't match during verifier state pruning checks.
Hence, whenever a constant scalar argument is accepted by a kfunc which is not a
size parameter, and the value of the constant matters for program safety, __k
suffix should be used.
.. _BPF_kfunc_nodef:
2.3 Using an existing kernel function
-------------------------------------
When an existing function in the kernel is fit for consumption by BPF programs,
it can be directly registered with the BPF subsystem. However, care must still
be taken to review the context in which it will be invoked by the BPF program
and whether it is safe to do so.
2.4 Annotating kfuncs
---------------------
In addition to kfuncs' arguments, verifier may need more information about the
type of kfunc(s) being registered with the BPF subsystem. To do so, we define
flags on a set of kfuncs as follows::
BTF_SET8_START(bpf_task_set)
BTF_ID_FLAGS(func, bpf_get_task_pid, KF_ACQUIRE | KF_RET_NULL)
BTF_ID_FLAGS(func, bpf_put_pid, KF_RELEASE)
BTF_SET8_END(bpf_task_set)
This set encodes the BTF ID of each kfunc listed above, and encodes the flags
along with it. Ofcourse, it is also allowed to specify no flags.
2.4.1 KF_ACQUIRE flag
---------------------
The KF_ACQUIRE flag is used to indicate that the kfunc returns a pointer to a
refcounted object. The verifier will then ensure that the pointer to the object
is eventually released using a release kfunc, or transferred to a map using a
referenced kptr (by invoking bpf_kptr_xchg). If not, the verifier fails the
loading of the BPF program until no lingering references remain in all possible
explored states of the program.
2.4.2 KF_RET_NULL flag
----------------------
The KF_RET_NULL flag is used to indicate that the pointer returned by the kfunc
may be NULL. Hence, it forces the user to do a NULL check on the pointer
returned from the kfunc before making use of it (dereferencing or passing to
another helper). This flag is often used in pairing with KF_ACQUIRE flag, but
both are orthogonal to each other.
2.4.3 KF_RELEASE flag
---------------------
The KF_RELEASE flag is used to indicate that the kfunc releases the pointer
passed in to it. There can be only one referenced pointer that can be passed in.
All copies of the pointer being released are invalidated as a result of invoking
kfunc with this flag.
2.4.4 KF_KPTR_GET flag
----------------------
The KF_KPTR_GET flag is used to indicate that the kfunc takes the first argument
as a pointer to kptr, safely increments the refcount of the object it points to,
and returns a reference to the user. The rest of the arguments may be normal
arguments of a kfunc. The KF_KPTR_GET flag should be used in conjunction with
KF_ACQUIRE and KF_RET_NULL flags.
2.4.5 KF_TRUSTED_ARGS flag
--------------------------
The KF_TRUSTED_ARGS flag is used for kfuncs taking pointer arguments. It
indicates that the all pointer arguments are valid, and that all pointers to
BTF objects have been passed in their unmodified form (that is, at a zero
offset, and without having been obtained from walking another pointer).
There are two types of pointers to kernel objects which are considered "valid":
1. Pointers which are passed as tracepoint or struct_ops callback arguments.
2. Pointers which were returned from a KF_ACQUIRE or KF_KPTR_GET kfunc.
Pointers to non-BTF objects (e.g. scalar pointers) may also be passed to
KF_TRUSTED_ARGS kfuncs, and may have a non-zero offset.
The definition of "valid" pointers is subject to change at any time, and has
absolutely no ABI stability guarantees.
2.4.6 KF_SLEEPABLE flag
-----------------------
The KF_SLEEPABLE flag is used for kfuncs that may sleep. Such kfuncs can only
be called by sleepable BPF programs (BPF_F_SLEEPABLE).
2.4.7 KF_DESTRUCTIVE flag
--------------------------
The KF_DESTRUCTIVE flag is used to indicate functions calling which is
destructive to the system. For example such a call can result in system
rebooting or panicking. Due to this additional restrictions apply to these
calls. At the moment they only require CAP_SYS_BOOT capability, but more can be
added later.
2.5 Registering the kfuncs
--------------------------
Once the kfunc is prepared for use, the final step to making it visible is
registering it with the BPF subsystem. Registration is done per BPF program
type. An example is shown below::
BTF_SET8_START(bpf_task_set)
BTF_ID_FLAGS(func, bpf_get_task_pid, KF_ACQUIRE | KF_RET_NULL)
BTF_ID_FLAGS(func, bpf_put_pid, KF_RELEASE)
BTF_SET8_END(bpf_task_set)
static const struct btf_kfunc_id_set bpf_task_kfunc_set = {
.owner = THIS_MODULE,
.set = &bpf_task_set,
};
static int init_subsystem(void)
{
return register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING, &bpf_task_kfunc_set);
}
late_initcall(init_subsystem);