linux/arch/x86/power/cpu.c
Linus Torvalds 3ef3ace4e2 - Split MTRR and PAT init code to accomodate at least Xen PV and TDX
guests which do not get MTRRs exposed but only PAT. (TDX guests do not
 support the cache disabling dance when setting up MTRRs so they fall
 under the same category.) This is a cleanup work to remove all the ugly
 workarounds for such guests and init things separately (Juergen Gross)
 
 - Add two new Intel CPUs to the list of CPUs with "normal" Energy
 Performance Bias, leading to power savings
 
 - Do not do bus master arbitration in C3 (ARB_DISABLE) on modern Centaur
 CPUs
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmOYhIMACgkQEsHwGGHe
 VUpxug//ZKw3hYFroKhsULJi/e0j2nGARiSlJrJcFHl2vgh9yGvDsnYUyM/rgjgt
 cM3uCLbEG7nA6uhB3nupzaXZ8lBM1nU9kiEl/kjQ5oYf9nmJ48fLttvWGfxYN4s3
 kj5fYVhlOZpntQXIWrwxnPqghUysumMnZmBJeKYiYNNfkj62l3xU2Ni4Gnjnp02I
 9MmUhl7pj1aEyOQfM8rovy+wtYCg5WTOmXVlyVN+b9MwfYeK+stojvCZHxtJs9BD
 fezpJjjG+78xKUC7vVZXCh1p1N5Qvj014XJkVl9Hg0n7qizKFZRtqi8I769G2ptd
 exP8c2nDXKCqYzE8vK6ukWgDANQPs3d6Z7EqUKuXOCBF81PnMPSUMyNtQFGNM6Wp
 S5YSvFfCgUjp50IunOpvkDABgpM+PB8qeWUq72UFQJSOymzRJg/KXtE2X+qaMwtC
 0i6VLXfMddGcmqNKDppfGtCjq2W5VrNIIJedtAQQGyl+pl3XzZeNomhJpm/0mVfJ
 8UrlXZeXl/EUQ7qk40gC/Ash27pU9ZDx4CMNMy1jDIQqgufBjEoRIDSFqQlghmZq
 An5/BqMLhOMxUYNA7bRUnyeyxCBypetMdQt5ikBmVXebvBDmArXcuSNAdiy1uBFX
 KD8P3Y1AnsHIklxkLNyZRUy7fb4mgMFenUbgc0vmbYHbFl0C0pQ=
 =Zmgh
 -----END PGP SIGNATURE-----

Merge tag 'x86_cpu_for_v6.2' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull x86 cpu updates from Borislav Petkov:

 - Split MTRR and PAT init code to accomodate at least Xen PV and TDX
   guests which do not get MTRRs exposed but only PAT. (TDX guests do
   not support the cache disabling dance when setting up MTRRs so they
   fall under the same category)

   This is a cleanup work to remove all the ugly workarounds for such
   guests and init things separately (Juergen Gross)

 - Add two new Intel CPUs to the list of CPUs with "normal" Energy
   Performance Bias, leading to power savings

 - Do not do bus master arbitration in C3 (ARB_DISABLE) on modern
   Centaur CPUs

* tag 'x86_cpu_for_v6.2' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (26 commits)
  x86/mtrr: Make message for disabled MTRRs more descriptive
  x86/pat: Handle TDX guest PAT initialization
  x86/cpuid: Carve out all CPUID functionality
  x86/cpu: Switch to cpu_feature_enabled() for X86_FEATURE_XENPV
  x86/cpu: Remove X86_FEATURE_XENPV usage in setup_cpu_entry_area()
  x86/cpu: Drop 32-bit Xen PV guest code in update_task_stack()
  x86/cpu: Remove unneeded 64-bit dependency in arch_enter_from_user_mode()
  x86/cpufeatures: Add X86_FEATURE_XENPV to disabled-features.h
  x86/acpi/cstate: Optimize ARB_DISABLE on Centaur CPUs
  x86/mtrr: Simplify mtrr_ops initialization
  x86/cacheinfo: Switch cache_ap_init() to hotplug callback
  x86: Decouple PAT and MTRR handling
  x86/mtrr: Add a stop_machine() handler calling only cache_cpu_init()
  x86/mtrr: Let cache_aps_delayed_init replace mtrr_aps_delayed_init
  x86/mtrr: Get rid of __mtrr_enabled bool
  x86/mtrr: Simplify mtrr_bp_init()
  x86/mtrr: Remove set_all callback from struct mtrr_ops
  x86/mtrr: Disentangle MTRR init from PAT init
  x86/mtrr: Move cache control code to cacheinfo.c
  x86/mtrr: Split MTRR-specific handling from cache dis/enabling
  ...
2022-12-13 14:56:56 -08:00

546 lines
14 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Suspend support specific for i386/x86-64.
*
* Copyright (c) 2007 Rafael J. Wysocki <rjw@sisk.pl>
* Copyright (c) 2002 Pavel Machek <pavel@ucw.cz>
* Copyright (c) 2001 Patrick Mochel <mochel@osdl.org>
*/
#include <linux/suspend.h>
#include <linux/export.h>
#include <linux/smp.h>
#include <linux/perf_event.h>
#include <linux/tboot.h>
#include <linux/dmi.h>
#include <linux/pgtable.h>
#include <asm/proto.h>
#include <asm/mtrr.h>
#include <asm/page.h>
#include <asm/mce.h>
#include <asm/suspend.h>
#include <asm/fpu/api.h>
#include <asm/debugreg.h>
#include <asm/cpu.h>
#include <asm/cacheinfo.h>
#include <asm/mmu_context.h>
#include <asm/cpu_device_id.h>
#include <asm/microcode.h>
#ifdef CONFIG_X86_32
__visible unsigned long saved_context_ebx;
__visible unsigned long saved_context_esp, saved_context_ebp;
__visible unsigned long saved_context_esi, saved_context_edi;
__visible unsigned long saved_context_eflags;
#endif
struct saved_context saved_context;
static void msr_save_context(struct saved_context *ctxt)
{
struct saved_msr *msr = ctxt->saved_msrs.array;
struct saved_msr *end = msr + ctxt->saved_msrs.num;
while (msr < end) {
if (msr->valid)
rdmsrl(msr->info.msr_no, msr->info.reg.q);
msr++;
}
}
static void msr_restore_context(struct saved_context *ctxt)
{
struct saved_msr *msr = ctxt->saved_msrs.array;
struct saved_msr *end = msr + ctxt->saved_msrs.num;
while (msr < end) {
if (msr->valid)
wrmsrl(msr->info.msr_no, msr->info.reg.q);
msr++;
}
}
/**
* __save_processor_state() - Save CPU registers before creating a
* hibernation image and before restoring
* the memory state from it
* @ctxt: Structure to store the registers contents in.
*
* NOTE: If there is a CPU register the modification of which by the
* boot kernel (ie. the kernel used for loading the hibernation image)
* might affect the operations of the restored target kernel (ie. the one
* saved in the hibernation image), then its contents must be saved by this
* function. In other words, if kernel A is hibernated and different
* kernel B is used for loading the hibernation image into memory, the
* kernel A's __save_processor_state() function must save all registers
* needed by kernel A, so that it can operate correctly after the resume
* regardless of what kernel B does in the meantime.
*/
static void __save_processor_state(struct saved_context *ctxt)
{
#ifdef CONFIG_X86_32
mtrr_save_fixed_ranges(NULL);
#endif
kernel_fpu_begin();
/*
* descriptor tables
*/
store_idt(&ctxt->idt);
/*
* We save it here, but restore it only in the hibernate case.
* For ACPI S3 resume, this is loaded via 'early_gdt_desc' in 64-bit
* mode in "secondary_startup_64". In 32-bit mode it is done via
* 'pmode_gdt' in wakeup_start.
*/
ctxt->gdt_desc.size = GDT_SIZE - 1;
ctxt->gdt_desc.address = (unsigned long)get_cpu_gdt_rw(smp_processor_id());
store_tr(ctxt->tr);
/* XMM0..XMM15 should be handled by kernel_fpu_begin(). */
/*
* segment registers
*/
savesegment(gs, ctxt->gs);
#ifdef CONFIG_X86_64
savesegment(fs, ctxt->fs);
savesegment(ds, ctxt->ds);
savesegment(es, ctxt->es);
rdmsrl(MSR_FS_BASE, ctxt->fs_base);
rdmsrl(MSR_GS_BASE, ctxt->kernelmode_gs_base);
rdmsrl(MSR_KERNEL_GS_BASE, ctxt->usermode_gs_base);
mtrr_save_fixed_ranges(NULL);
rdmsrl(MSR_EFER, ctxt->efer);
#endif
/*
* control registers
*/
ctxt->cr0 = read_cr0();
ctxt->cr2 = read_cr2();
ctxt->cr3 = __read_cr3();
ctxt->cr4 = __read_cr4();
ctxt->misc_enable_saved = !rdmsrl_safe(MSR_IA32_MISC_ENABLE,
&ctxt->misc_enable);
msr_save_context(ctxt);
}
/* Needed by apm.c */
void save_processor_state(void)
{
__save_processor_state(&saved_context);
x86_platform.save_sched_clock_state();
}
#ifdef CONFIG_X86_32
EXPORT_SYMBOL(save_processor_state);
#endif
static void do_fpu_end(void)
{
/*
* Restore FPU regs if necessary.
*/
kernel_fpu_end();
}
static void fix_processor_context(void)
{
int cpu = smp_processor_id();
#ifdef CONFIG_X86_64
struct desc_struct *desc = get_cpu_gdt_rw(cpu);
tss_desc tss;
#endif
/*
* We need to reload TR, which requires that we change the
* GDT entry to indicate "available" first.
*
* XXX: This could probably all be replaced by a call to
* force_reload_TR().
*/
set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
#ifdef CONFIG_X86_64
memcpy(&tss, &desc[GDT_ENTRY_TSS], sizeof(tss_desc));
tss.type = 0x9; /* The available 64-bit TSS (see AMD vol 2, pg 91 */
write_gdt_entry(desc, GDT_ENTRY_TSS, &tss, DESC_TSS);
syscall_init(); /* This sets MSR_*STAR and related */
#else
if (boot_cpu_has(X86_FEATURE_SEP))
enable_sep_cpu();
#endif
load_TR_desc(); /* This does ltr */
load_mm_ldt(current->active_mm); /* This does lldt */
initialize_tlbstate_and_flush();
fpu__resume_cpu();
/* The processor is back on the direct GDT, load back the fixmap */
load_fixmap_gdt(cpu);
}
/**
* __restore_processor_state() - Restore the contents of CPU registers saved
* by __save_processor_state()
* @ctxt: Structure to load the registers contents from.
*
* The asm code that gets us here will have restored a usable GDT, although
* it will be pointing to the wrong alias.
*/
static void notrace __restore_processor_state(struct saved_context *ctxt)
{
struct cpuinfo_x86 *c;
if (ctxt->misc_enable_saved)
wrmsrl(MSR_IA32_MISC_ENABLE, ctxt->misc_enable);
/*
* control registers
*/
/* cr4 was introduced in the Pentium CPU */
#ifdef CONFIG_X86_32
if (ctxt->cr4)
__write_cr4(ctxt->cr4);
#else
/* CONFIG X86_64 */
wrmsrl(MSR_EFER, ctxt->efer);
__write_cr4(ctxt->cr4);
#endif
write_cr3(ctxt->cr3);
write_cr2(ctxt->cr2);
write_cr0(ctxt->cr0);
/* Restore the IDT. */
load_idt(&ctxt->idt);
/*
* Just in case the asm code got us here with the SS, DS, or ES
* out of sync with the GDT, update them.
*/
loadsegment(ss, __KERNEL_DS);
loadsegment(ds, __USER_DS);
loadsegment(es, __USER_DS);
/*
* Restore percpu access. Percpu access can happen in exception
* handlers or in complicated helpers like load_gs_index().
*/
#ifdef CONFIG_X86_64
wrmsrl(MSR_GS_BASE, ctxt->kernelmode_gs_base);
#else
loadsegment(fs, __KERNEL_PERCPU);
#endif
/* Restore the TSS, RO GDT, LDT, and usermode-relevant MSRs. */
fix_processor_context();
/*
* Now that we have descriptor tables fully restored and working
* exception handling, restore the usermode segments.
*/
#ifdef CONFIG_X86_64
loadsegment(ds, ctxt->es);
loadsegment(es, ctxt->es);
loadsegment(fs, ctxt->fs);
load_gs_index(ctxt->gs);
/*
* Restore FSBASE and GSBASE after restoring the selectors, since
* restoring the selectors clobbers the bases. Keep in mind
* that MSR_KERNEL_GS_BASE is horribly misnamed.
*/
wrmsrl(MSR_FS_BASE, ctxt->fs_base);
wrmsrl(MSR_KERNEL_GS_BASE, ctxt->usermode_gs_base);
#else
loadsegment(gs, ctxt->gs);
#endif
do_fpu_end();
tsc_verify_tsc_adjust(true);
x86_platform.restore_sched_clock_state();
cache_bp_restore();
perf_restore_debug_store();
c = &cpu_data(smp_processor_id());
if (cpu_has(c, X86_FEATURE_MSR_IA32_FEAT_CTL))
init_ia32_feat_ctl(c);
microcode_bsp_resume();
/*
* This needs to happen after the microcode has been updated upon resume
* because some of the MSRs are "emulated" in microcode.
*/
msr_restore_context(ctxt);
}
/* Needed by apm.c */
void notrace restore_processor_state(void)
{
__restore_processor_state(&saved_context);
}
#ifdef CONFIG_X86_32
EXPORT_SYMBOL(restore_processor_state);
#endif
#if defined(CONFIG_HIBERNATION) && defined(CONFIG_HOTPLUG_CPU)
static void resume_play_dead(void)
{
play_dead_common();
tboot_shutdown(TB_SHUTDOWN_WFS);
hlt_play_dead();
}
int hibernate_resume_nonboot_cpu_disable(void)
{
void (*play_dead)(void) = smp_ops.play_dead;
int ret;
/*
* Ensure that MONITOR/MWAIT will not be used in the "play dead" loop
* during hibernate image restoration, because it is likely that the
* monitored address will be actually written to at that time and then
* the "dead" CPU will attempt to execute instructions again, but the
* address in its instruction pointer may not be possible to resolve
* any more at that point (the page tables used by it previously may
* have been overwritten by hibernate image data).
*
* First, make sure that we wake up all the potentially disabled SMT
* threads which have been initially brought up and then put into
* mwait/cpuidle sleep.
* Those will be put to proper (not interfering with hibernation
* resume) sleep afterwards, and the resumed kernel will decide itself
* what to do with them.
*/
ret = cpuhp_smt_enable();
if (ret)
return ret;
smp_ops.play_dead = resume_play_dead;
ret = freeze_secondary_cpus(0);
smp_ops.play_dead = play_dead;
return ret;
}
#endif
/*
* When bsp_check() is called in hibernate and suspend, cpu hotplug
* is disabled already. So it's unnecessary to handle race condition between
* cpumask query and cpu hotplug.
*/
static int bsp_check(void)
{
if (cpumask_first(cpu_online_mask) != 0) {
pr_warn("CPU0 is offline.\n");
return -ENODEV;
}
return 0;
}
static int bsp_pm_callback(struct notifier_block *nb, unsigned long action,
void *ptr)
{
int ret = 0;
switch (action) {
case PM_SUSPEND_PREPARE:
case PM_HIBERNATION_PREPARE:
ret = bsp_check();
break;
#ifdef CONFIG_DEBUG_HOTPLUG_CPU0
case PM_RESTORE_PREPARE:
/*
* When system resumes from hibernation, online CPU0 because
* 1. it's required for resume and
* 2. the CPU was online before hibernation
*/
if (!cpu_online(0))
_debug_hotplug_cpu(0, 1);
break;
case PM_POST_RESTORE:
/*
* When a resume really happens, this code won't be called.
*
* This code is called only when user space hibernation software
* prepares for snapshot device during boot time. So we just
* call _debug_hotplug_cpu() to restore to CPU0's state prior to
* preparing the snapshot device.
*
* This works for normal boot case in our CPU0 hotplug debug
* mode, i.e. CPU0 is offline and user mode hibernation
* software initializes during boot time.
*
* If CPU0 is online and user application accesses snapshot
* device after boot time, this will offline CPU0 and user may
* see different CPU0 state before and after accessing
* the snapshot device. But hopefully this is not a case when
* user debugging CPU0 hotplug. Even if users hit this case,
* they can easily online CPU0 back.
*
* To simplify this debug code, we only consider normal boot
* case. Otherwise we need to remember CPU0's state and restore
* to that state and resolve racy conditions etc.
*/
_debug_hotplug_cpu(0, 0);
break;
#endif
default:
break;
}
return notifier_from_errno(ret);
}
static int __init bsp_pm_check_init(void)
{
/*
* Set this bsp_pm_callback as lower priority than
* cpu_hotplug_pm_callback. So cpu_hotplug_pm_callback will be called
* earlier to disable cpu hotplug before bsp online check.
*/
pm_notifier(bsp_pm_callback, -INT_MAX);
return 0;
}
core_initcall(bsp_pm_check_init);
static int msr_build_context(const u32 *msr_id, const int num)
{
struct saved_msrs *saved_msrs = &saved_context.saved_msrs;
struct saved_msr *msr_array;
int total_num;
int i, j;
total_num = saved_msrs->num + num;
msr_array = kmalloc_array(total_num, sizeof(struct saved_msr), GFP_KERNEL);
if (!msr_array) {
pr_err("x86/pm: Can not allocate memory to save/restore MSRs during suspend.\n");
return -ENOMEM;
}
if (saved_msrs->array) {
/*
* Multiple callbacks can invoke this function, so copy any
* MSR save requests from previous invocations.
*/
memcpy(msr_array, saved_msrs->array,
sizeof(struct saved_msr) * saved_msrs->num);
kfree(saved_msrs->array);
}
for (i = saved_msrs->num, j = 0; i < total_num; i++, j++) {
u64 dummy;
msr_array[i].info.msr_no = msr_id[j];
msr_array[i].valid = !rdmsrl_safe(msr_id[j], &dummy);
msr_array[i].info.reg.q = 0;
}
saved_msrs->num = total_num;
saved_msrs->array = msr_array;
return 0;
}
/*
* The following sections are a quirk framework for problematic BIOSen:
* Sometimes MSRs are modified by the BIOSen after suspended to
* RAM, this might cause unexpected behavior after wakeup.
* Thus we save/restore these specified MSRs across suspend/resume
* in order to work around it.
*
* For any further problematic BIOSen/platforms,
* please add your own function similar to msr_initialize_bdw.
*/
static int msr_initialize_bdw(const struct dmi_system_id *d)
{
/* Add any extra MSR ids into this array. */
u32 bdw_msr_id[] = { MSR_IA32_THERM_CONTROL };
pr_info("x86/pm: %s detected, MSR saving is needed during suspending.\n", d->ident);
return msr_build_context(bdw_msr_id, ARRAY_SIZE(bdw_msr_id));
}
static const struct dmi_system_id msr_save_dmi_table[] = {
{
.callback = msr_initialize_bdw,
.ident = "BROADWELL BDX_EP",
.matches = {
DMI_MATCH(DMI_PRODUCT_NAME, "GRANTLEY"),
DMI_MATCH(DMI_PRODUCT_VERSION, "E63448-400"),
},
},
{}
};
static int msr_save_cpuid_features(const struct x86_cpu_id *c)
{
u32 cpuid_msr_id[] = {
MSR_AMD64_CPUID_FN_1,
};
pr_info("x86/pm: family %#hx cpu detected, MSR saving is needed during suspending.\n",
c->family);
return msr_build_context(cpuid_msr_id, ARRAY_SIZE(cpuid_msr_id));
}
static const struct x86_cpu_id msr_save_cpu_table[] = {
X86_MATCH_VENDOR_FAM(AMD, 0x15, &msr_save_cpuid_features),
X86_MATCH_VENDOR_FAM(AMD, 0x16, &msr_save_cpuid_features),
{}
};
typedef int (*pm_cpu_match_t)(const struct x86_cpu_id *);
static int pm_cpu_check(const struct x86_cpu_id *c)
{
const struct x86_cpu_id *m;
int ret = 0;
m = x86_match_cpu(msr_save_cpu_table);
if (m) {
pm_cpu_match_t fn;
fn = (pm_cpu_match_t)m->driver_data;
ret = fn(m);
}
return ret;
}
static void pm_save_spec_msr(void)
{
struct msr_enumeration {
u32 msr_no;
u32 feature;
} msr_enum[] = {
{ MSR_IA32_SPEC_CTRL, X86_FEATURE_MSR_SPEC_CTRL },
{ MSR_IA32_TSX_CTRL, X86_FEATURE_MSR_TSX_CTRL },
{ MSR_TSX_FORCE_ABORT, X86_FEATURE_TSX_FORCE_ABORT },
{ MSR_IA32_MCU_OPT_CTRL, X86_FEATURE_SRBDS_CTRL },
{ MSR_AMD64_LS_CFG, X86_FEATURE_LS_CFG_SSBD },
{ MSR_AMD64_DE_CFG, X86_FEATURE_LFENCE_RDTSC },
};
int i;
for (i = 0; i < ARRAY_SIZE(msr_enum); i++) {
if (boot_cpu_has(msr_enum[i].feature))
msr_build_context(&msr_enum[i].msr_no, 1);
}
}
static int pm_check_save_msr(void)
{
dmi_check_system(msr_save_dmi_table);
pm_cpu_check(msr_save_cpu_table);
pm_save_spec_msr();
return 0;
}
device_initcall(pm_check_save_msr);