mirror of
https://github.com/torvalds/linux.git
synced 2024-11-22 20:22:09 +00:00
6aee4badd8
Pull openat2 support from Al Viro: "This is the openat2() series from Aleksa Sarai. I'm afraid that the rest of namei stuff will have to wait - it got zero review the last time I'd posted #work.namei, and there had been a leak in the posted series I'd caught only last weekend. I was going to repost it on Monday, but the window opened and the odds of getting any review during that... Oh, well. Anyway, openat2 part should be ready; that _did_ get sane amount of review and public testing, so here it comes" From Aleksa's description of the series: "For a very long time, extending openat(2) with new features has been incredibly frustrating. This stems from the fact that openat(2) is possibly the most famous counter-example to the mantra "don't silently accept garbage from userspace" -- it doesn't check whether unknown flags are present[1]. This means that (generally) the addition of new flags to openat(2) has been fraught with backwards-compatibility issues (O_TMPFILE has to be defined as __O_TMPFILE|O_DIRECTORY|[O_RDWR or O_WRONLY] to ensure old kernels gave errors, since it's insecure to silently ignore the flag[2]). All new security-related flags therefore have a tough road to being added to openat(2). Furthermore, the need for some sort of control over VFS's path resolution (to avoid malicious paths resulting in inadvertent breakouts) has been a very long-standing desire of many userspace applications. This patchset is a revival of Al Viro's old AT_NO_JUMPS[3] patchset (which was a variant of David Drysdale's O_BENEATH patchset[4] which was a spin-off of the Capsicum project[5]) with a few additions and changes made based on the previous discussion within [6] as well as others I felt were useful. In line with the conclusions of the original discussion of AT_NO_JUMPS, the flag has been split up into separate flags. However, instead of being an openat(2) flag it is provided through a new syscall openat2(2) which provides several other improvements to the openat(2) interface (see the patch description for more details). The following new LOOKUP_* flags are added: LOOKUP_NO_XDEV: Blocks all mountpoint crossings (upwards, downwards, or through absolute links). Absolute pathnames alone in openat(2) do not trigger this. Magic-link traversal which implies a vfsmount jump is also blocked (though magic-link jumps on the same vfsmount are permitted). LOOKUP_NO_MAGICLINKS: Blocks resolution through /proc/$pid/fd-style links. This is done by blocking the usage of nd_jump_link() during resolution in a filesystem. The term "magic-links" is used to match with the only reference to these links in Documentation/, but I'm happy to change the name. It should be noted that this is different to the scope of ~LOOKUP_FOLLOW in that it applies to all path components. However, you can do openat2(NO_FOLLOW|NO_MAGICLINKS) on a magic-link and it will *not* fail (assuming that no parent component was a magic-link), and you will have an fd for the magic-link. In order to correctly detect magic-links, the introduction of a new LOOKUP_MAGICLINK_JUMPED state flag was required. LOOKUP_BENEATH: Disallows escapes to outside the starting dirfd's tree, using techniques such as ".." or absolute links. Absolute paths in openat(2) are also disallowed. Conceptually this flag is to ensure you "stay below" a certain point in the filesystem tree -- but this requires some additional to protect against various races that would allow escape using "..". Currently LOOKUP_BENEATH implies LOOKUP_NO_MAGICLINKS, because it can trivially beam you around the filesystem (breaking the protection). In future, there might be similar safety checks done as in LOOKUP_IN_ROOT, but that requires more discussion. In addition, two new flags are added that expand on the above ideas: LOOKUP_NO_SYMLINKS: Does what it says on the tin. No symlink resolution is allowed at all, including magic-links. Just as with LOOKUP_NO_MAGICLINKS this can still be used with NOFOLLOW to open an fd for the symlink as long as no parent path had a symlink component. LOOKUP_IN_ROOT: This is an extension of LOOKUP_BENEATH that, rather than blocking attempts to move past the root, forces all such movements to be scoped to the starting point. This provides chroot(2)-like protection but without the cost of a chroot(2) for each filesystem operation, as well as being safe against race attacks that chroot(2) is not. If a race is detected (as with LOOKUP_BENEATH) then an error is generated, and similar to LOOKUP_BENEATH it is not permitted to cross magic-links with LOOKUP_IN_ROOT. The primary need for this is from container runtimes, which currently need to do symlink scoping in userspace[7] when opening paths in a potentially malicious container. There is a long list of CVEs that could have bene mitigated by having RESOLVE_THIS_ROOT (such as CVE-2017-1002101, CVE-2017-1002102, CVE-2018-15664, and CVE-2019-5736, just to name a few). In order to make all of the above more usable, I'm working on libpathrs[8] which is a C-friendly library for safe path resolution. It features a userspace-emulated backend if the kernel doesn't support openat2(2). Hopefully we can get userspace to switch to using it, and thus get openat2(2) support for free once it's ready. Future work would include implementing things like RESOLVE_NO_AUTOMOUNT and possibly a RESOLVE_NO_REMOTE (to allow programs to be sure they don't hit DoSes though stale NFS handles)" * 'work.openat2' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: Documentation: path-lookup: include new LOOKUP flags selftests: add openat2(2) selftests open: introduce openat2(2) syscall namei: LOOKUP_{IN_ROOT,BENEATH}: permit limited ".." resolution namei: LOOKUP_IN_ROOT: chroot-like scoped resolution namei: LOOKUP_BENEATH: O_BENEATH-like scoped resolution namei: LOOKUP_NO_XDEV: block mountpoint crossing namei: LOOKUP_NO_MAGICLINKS: block magic-link resolution namei: LOOKUP_NO_SYMLINKS: block symlink resolution namei: allow set_root() to produce errors namei: allow nd_jump_link() to produce errors nsfs: clean-up ns_get_path() signature to return int namei: only return -ECHILD from follow_dotdot_rcu()
4938 lines
125 KiB
C
4938 lines
125 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* linux/fs/namei.c
|
|
*
|
|
* Copyright (C) 1991, 1992 Linus Torvalds
|
|
*/
|
|
|
|
/*
|
|
* Some corrections by tytso.
|
|
*/
|
|
|
|
/* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
|
|
* lookup logic.
|
|
*/
|
|
/* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
|
|
*/
|
|
|
|
#include <linux/init.h>
|
|
#include <linux/export.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/namei.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/fsnotify.h>
|
|
#include <linux/personality.h>
|
|
#include <linux/security.h>
|
|
#include <linux/ima.h>
|
|
#include <linux/syscalls.h>
|
|
#include <linux/mount.h>
|
|
#include <linux/audit.h>
|
|
#include <linux/capability.h>
|
|
#include <linux/file.h>
|
|
#include <linux/fcntl.h>
|
|
#include <linux/device_cgroup.h>
|
|
#include <linux/fs_struct.h>
|
|
#include <linux/posix_acl.h>
|
|
#include <linux/hash.h>
|
|
#include <linux/bitops.h>
|
|
#include <linux/init_task.h>
|
|
#include <linux/uaccess.h>
|
|
|
|
#include "internal.h"
|
|
#include "mount.h"
|
|
|
|
/* [Feb-1997 T. Schoebel-Theuer]
|
|
* Fundamental changes in the pathname lookup mechanisms (namei)
|
|
* were necessary because of omirr. The reason is that omirr needs
|
|
* to know the _real_ pathname, not the user-supplied one, in case
|
|
* of symlinks (and also when transname replacements occur).
|
|
*
|
|
* The new code replaces the old recursive symlink resolution with
|
|
* an iterative one (in case of non-nested symlink chains). It does
|
|
* this with calls to <fs>_follow_link().
|
|
* As a side effect, dir_namei(), _namei() and follow_link() are now
|
|
* replaced with a single function lookup_dentry() that can handle all
|
|
* the special cases of the former code.
|
|
*
|
|
* With the new dcache, the pathname is stored at each inode, at least as
|
|
* long as the refcount of the inode is positive. As a side effect, the
|
|
* size of the dcache depends on the inode cache and thus is dynamic.
|
|
*
|
|
* [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
|
|
* resolution to correspond with current state of the code.
|
|
*
|
|
* Note that the symlink resolution is not *completely* iterative.
|
|
* There is still a significant amount of tail- and mid- recursion in
|
|
* the algorithm. Also, note that <fs>_readlink() is not used in
|
|
* lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
|
|
* may return different results than <fs>_follow_link(). Many virtual
|
|
* filesystems (including /proc) exhibit this behavior.
|
|
*/
|
|
|
|
/* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
|
|
* New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
|
|
* and the name already exists in form of a symlink, try to create the new
|
|
* name indicated by the symlink. The old code always complained that the
|
|
* name already exists, due to not following the symlink even if its target
|
|
* is nonexistent. The new semantics affects also mknod() and link() when
|
|
* the name is a symlink pointing to a non-existent name.
|
|
*
|
|
* I don't know which semantics is the right one, since I have no access
|
|
* to standards. But I found by trial that HP-UX 9.0 has the full "new"
|
|
* semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
|
|
* "old" one. Personally, I think the new semantics is much more logical.
|
|
* Note that "ln old new" where "new" is a symlink pointing to a non-existing
|
|
* file does succeed in both HP-UX and SunOs, but not in Solaris
|
|
* and in the old Linux semantics.
|
|
*/
|
|
|
|
/* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
|
|
* semantics. See the comments in "open_namei" and "do_link" below.
|
|
*
|
|
* [10-Sep-98 Alan Modra] Another symlink change.
|
|
*/
|
|
|
|
/* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
|
|
* inside the path - always follow.
|
|
* in the last component in creation/removal/renaming - never follow.
|
|
* if LOOKUP_FOLLOW passed - follow.
|
|
* if the pathname has trailing slashes - follow.
|
|
* otherwise - don't follow.
|
|
* (applied in that order).
|
|
*
|
|
* [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
|
|
* restored for 2.4. This is the last surviving part of old 4.2BSD bug.
|
|
* During the 2.4 we need to fix the userland stuff depending on it -
|
|
* hopefully we will be able to get rid of that wart in 2.5. So far only
|
|
* XEmacs seems to be relying on it...
|
|
*/
|
|
/*
|
|
* [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
|
|
* implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
|
|
* any extra contention...
|
|
*/
|
|
|
|
/* In order to reduce some races, while at the same time doing additional
|
|
* checking and hopefully speeding things up, we copy filenames to the
|
|
* kernel data space before using them..
|
|
*
|
|
* POSIX.1 2.4: an empty pathname is invalid (ENOENT).
|
|
* PATH_MAX includes the nul terminator --RR.
|
|
*/
|
|
|
|
#define EMBEDDED_NAME_MAX (PATH_MAX - offsetof(struct filename, iname))
|
|
|
|
struct filename *
|
|
getname_flags(const char __user *filename, int flags, int *empty)
|
|
{
|
|
struct filename *result;
|
|
char *kname;
|
|
int len;
|
|
|
|
result = audit_reusename(filename);
|
|
if (result)
|
|
return result;
|
|
|
|
result = __getname();
|
|
if (unlikely(!result))
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
/*
|
|
* First, try to embed the struct filename inside the names_cache
|
|
* allocation
|
|
*/
|
|
kname = (char *)result->iname;
|
|
result->name = kname;
|
|
|
|
len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
|
|
if (unlikely(len < 0)) {
|
|
__putname(result);
|
|
return ERR_PTR(len);
|
|
}
|
|
|
|
/*
|
|
* Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
|
|
* separate struct filename so we can dedicate the entire
|
|
* names_cache allocation for the pathname, and re-do the copy from
|
|
* userland.
|
|
*/
|
|
if (unlikely(len == EMBEDDED_NAME_MAX)) {
|
|
const size_t size = offsetof(struct filename, iname[1]);
|
|
kname = (char *)result;
|
|
|
|
/*
|
|
* size is chosen that way we to guarantee that
|
|
* result->iname[0] is within the same object and that
|
|
* kname can't be equal to result->iname, no matter what.
|
|
*/
|
|
result = kzalloc(size, GFP_KERNEL);
|
|
if (unlikely(!result)) {
|
|
__putname(kname);
|
|
return ERR_PTR(-ENOMEM);
|
|
}
|
|
result->name = kname;
|
|
len = strncpy_from_user(kname, filename, PATH_MAX);
|
|
if (unlikely(len < 0)) {
|
|
__putname(kname);
|
|
kfree(result);
|
|
return ERR_PTR(len);
|
|
}
|
|
if (unlikely(len == PATH_MAX)) {
|
|
__putname(kname);
|
|
kfree(result);
|
|
return ERR_PTR(-ENAMETOOLONG);
|
|
}
|
|
}
|
|
|
|
result->refcnt = 1;
|
|
/* The empty path is special. */
|
|
if (unlikely(!len)) {
|
|
if (empty)
|
|
*empty = 1;
|
|
if (!(flags & LOOKUP_EMPTY)) {
|
|
putname(result);
|
|
return ERR_PTR(-ENOENT);
|
|
}
|
|
}
|
|
|
|
result->uptr = filename;
|
|
result->aname = NULL;
|
|
audit_getname(result);
|
|
return result;
|
|
}
|
|
|
|
struct filename *
|
|
getname(const char __user * filename)
|
|
{
|
|
return getname_flags(filename, 0, NULL);
|
|
}
|
|
|
|
struct filename *
|
|
getname_kernel(const char * filename)
|
|
{
|
|
struct filename *result;
|
|
int len = strlen(filename) + 1;
|
|
|
|
result = __getname();
|
|
if (unlikely(!result))
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
if (len <= EMBEDDED_NAME_MAX) {
|
|
result->name = (char *)result->iname;
|
|
} else if (len <= PATH_MAX) {
|
|
const size_t size = offsetof(struct filename, iname[1]);
|
|
struct filename *tmp;
|
|
|
|
tmp = kmalloc(size, GFP_KERNEL);
|
|
if (unlikely(!tmp)) {
|
|
__putname(result);
|
|
return ERR_PTR(-ENOMEM);
|
|
}
|
|
tmp->name = (char *)result;
|
|
result = tmp;
|
|
} else {
|
|
__putname(result);
|
|
return ERR_PTR(-ENAMETOOLONG);
|
|
}
|
|
memcpy((char *)result->name, filename, len);
|
|
result->uptr = NULL;
|
|
result->aname = NULL;
|
|
result->refcnt = 1;
|
|
audit_getname(result);
|
|
|
|
return result;
|
|
}
|
|
|
|
void putname(struct filename *name)
|
|
{
|
|
BUG_ON(name->refcnt <= 0);
|
|
|
|
if (--name->refcnt > 0)
|
|
return;
|
|
|
|
if (name->name != name->iname) {
|
|
__putname(name->name);
|
|
kfree(name);
|
|
} else
|
|
__putname(name);
|
|
}
|
|
|
|
static int check_acl(struct inode *inode, int mask)
|
|
{
|
|
#ifdef CONFIG_FS_POSIX_ACL
|
|
struct posix_acl *acl;
|
|
|
|
if (mask & MAY_NOT_BLOCK) {
|
|
acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
|
|
if (!acl)
|
|
return -EAGAIN;
|
|
/* no ->get_acl() calls in RCU mode... */
|
|
if (is_uncached_acl(acl))
|
|
return -ECHILD;
|
|
return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
|
|
}
|
|
|
|
acl = get_acl(inode, ACL_TYPE_ACCESS);
|
|
if (IS_ERR(acl))
|
|
return PTR_ERR(acl);
|
|
if (acl) {
|
|
int error = posix_acl_permission(inode, acl, mask);
|
|
posix_acl_release(acl);
|
|
return error;
|
|
}
|
|
#endif
|
|
|
|
return -EAGAIN;
|
|
}
|
|
|
|
/*
|
|
* This does the basic permission checking
|
|
*/
|
|
static int acl_permission_check(struct inode *inode, int mask)
|
|
{
|
|
unsigned int mode = inode->i_mode;
|
|
|
|
if (likely(uid_eq(current_fsuid(), inode->i_uid)))
|
|
mode >>= 6;
|
|
else {
|
|
if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
|
|
int error = check_acl(inode, mask);
|
|
if (error != -EAGAIN)
|
|
return error;
|
|
}
|
|
|
|
if (in_group_p(inode->i_gid))
|
|
mode >>= 3;
|
|
}
|
|
|
|
/*
|
|
* If the DACs are ok we don't need any capability check.
|
|
*/
|
|
if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
|
|
return 0;
|
|
return -EACCES;
|
|
}
|
|
|
|
/**
|
|
* generic_permission - check for access rights on a Posix-like filesystem
|
|
* @inode: inode to check access rights for
|
|
* @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
|
|
*
|
|
* Used to check for read/write/execute permissions on a file.
|
|
* We use "fsuid" for this, letting us set arbitrary permissions
|
|
* for filesystem access without changing the "normal" uids which
|
|
* are used for other things.
|
|
*
|
|
* generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
|
|
* request cannot be satisfied (eg. requires blocking or too much complexity).
|
|
* It would then be called again in ref-walk mode.
|
|
*/
|
|
int generic_permission(struct inode *inode, int mask)
|
|
{
|
|
int ret;
|
|
|
|
/*
|
|
* Do the basic permission checks.
|
|
*/
|
|
ret = acl_permission_check(inode, mask);
|
|
if (ret != -EACCES)
|
|
return ret;
|
|
|
|
if (S_ISDIR(inode->i_mode)) {
|
|
/* DACs are overridable for directories */
|
|
if (!(mask & MAY_WRITE))
|
|
if (capable_wrt_inode_uidgid(inode,
|
|
CAP_DAC_READ_SEARCH))
|
|
return 0;
|
|
if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
|
|
return 0;
|
|
return -EACCES;
|
|
}
|
|
|
|
/*
|
|
* Searching includes executable on directories, else just read.
|
|
*/
|
|
mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
|
|
if (mask == MAY_READ)
|
|
if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH))
|
|
return 0;
|
|
/*
|
|
* Read/write DACs are always overridable.
|
|
* Executable DACs are overridable when there is
|
|
* at least one exec bit set.
|
|
*/
|
|
if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
|
|
if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
|
|
return 0;
|
|
|
|
return -EACCES;
|
|
}
|
|
EXPORT_SYMBOL(generic_permission);
|
|
|
|
/*
|
|
* We _really_ want to just do "generic_permission()" without
|
|
* even looking at the inode->i_op values. So we keep a cache
|
|
* flag in inode->i_opflags, that says "this has not special
|
|
* permission function, use the fast case".
|
|
*/
|
|
static inline int do_inode_permission(struct inode *inode, int mask)
|
|
{
|
|
if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
|
|
if (likely(inode->i_op->permission))
|
|
return inode->i_op->permission(inode, mask);
|
|
|
|
/* This gets set once for the inode lifetime */
|
|
spin_lock(&inode->i_lock);
|
|
inode->i_opflags |= IOP_FASTPERM;
|
|
spin_unlock(&inode->i_lock);
|
|
}
|
|
return generic_permission(inode, mask);
|
|
}
|
|
|
|
/**
|
|
* sb_permission - Check superblock-level permissions
|
|
* @sb: Superblock of inode to check permission on
|
|
* @inode: Inode to check permission on
|
|
* @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
|
|
*
|
|
* Separate out file-system wide checks from inode-specific permission checks.
|
|
*/
|
|
static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
|
|
{
|
|
if (unlikely(mask & MAY_WRITE)) {
|
|
umode_t mode = inode->i_mode;
|
|
|
|
/* Nobody gets write access to a read-only fs. */
|
|
if (sb_rdonly(sb) && (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
|
|
return -EROFS;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* inode_permission - Check for access rights to a given inode
|
|
* @inode: Inode to check permission on
|
|
* @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
|
|
*
|
|
* Check for read/write/execute permissions on an inode. We use fs[ug]id for
|
|
* this, letting us set arbitrary permissions for filesystem access without
|
|
* changing the "normal" UIDs which are used for other things.
|
|
*
|
|
* When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
|
|
*/
|
|
int inode_permission(struct inode *inode, int mask)
|
|
{
|
|
int retval;
|
|
|
|
retval = sb_permission(inode->i_sb, inode, mask);
|
|
if (retval)
|
|
return retval;
|
|
|
|
if (unlikely(mask & MAY_WRITE)) {
|
|
/*
|
|
* Nobody gets write access to an immutable file.
|
|
*/
|
|
if (IS_IMMUTABLE(inode))
|
|
return -EPERM;
|
|
|
|
/*
|
|
* Updating mtime will likely cause i_uid and i_gid to be
|
|
* written back improperly if their true value is unknown
|
|
* to the vfs.
|
|
*/
|
|
if (HAS_UNMAPPED_ID(inode))
|
|
return -EACCES;
|
|
}
|
|
|
|
retval = do_inode_permission(inode, mask);
|
|
if (retval)
|
|
return retval;
|
|
|
|
retval = devcgroup_inode_permission(inode, mask);
|
|
if (retval)
|
|
return retval;
|
|
|
|
return security_inode_permission(inode, mask);
|
|
}
|
|
EXPORT_SYMBOL(inode_permission);
|
|
|
|
/**
|
|
* path_get - get a reference to a path
|
|
* @path: path to get the reference to
|
|
*
|
|
* Given a path increment the reference count to the dentry and the vfsmount.
|
|
*/
|
|
void path_get(const struct path *path)
|
|
{
|
|
mntget(path->mnt);
|
|
dget(path->dentry);
|
|
}
|
|
EXPORT_SYMBOL(path_get);
|
|
|
|
/**
|
|
* path_put - put a reference to a path
|
|
* @path: path to put the reference to
|
|
*
|
|
* Given a path decrement the reference count to the dentry and the vfsmount.
|
|
*/
|
|
void path_put(const struct path *path)
|
|
{
|
|
dput(path->dentry);
|
|
mntput(path->mnt);
|
|
}
|
|
EXPORT_SYMBOL(path_put);
|
|
|
|
#define EMBEDDED_LEVELS 2
|
|
struct nameidata {
|
|
struct path path;
|
|
struct qstr last;
|
|
struct path root;
|
|
struct inode *inode; /* path.dentry.d_inode */
|
|
unsigned int flags;
|
|
unsigned seq, m_seq, r_seq;
|
|
int last_type;
|
|
unsigned depth;
|
|
int total_link_count;
|
|
struct saved {
|
|
struct path link;
|
|
struct delayed_call done;
|
|
const char *name;
|
|
unsigned seq;
|
|
} *stack, internal[EMBEDDED_LEVELS];
|
|
struct filename *name;
|
|
struct nameidata *saved;
|
|
struct inode *link_inode;
|
|
unsigned root_seq;
|
|
int dfd;
|
|
} __randomize_layout;
|
|
|
|
static void set_nameidata(struct nameidata *p, int dfd, struct filename *name)
|
|
{
|
|
struct nameidata *old = current->nameidata;
|
|
p->stack = p->internal;
|
|
p->dfd = dfd;
|
|
p->name = name;
|
|
p->total_link_count = old ? old->total_link_count : 0;
|
|
p->saved = old;
|
|
current->nameidata = p;
|
|
}
|
|
|
|
static void restore_nameidata(void)
|
|
{
|
|
struct nameidata *now = current->nameidata, *old = now->saved;
|
|
|
|
current->nameidata = old;
|
|
if (old)
|
|
old->total_link_count = now->total_link_count;
|
|
if (now->stack != now->internal)
|
|
kfree(now->stack);
|
|
}
|
|
|
|
static int __nd_alloc_stack(struct nameidata *nd)
|
|
{
|
|
struct saved *p;
|
|
|
|
if (nd->flags & LOOKUP_RCU) {
|
|
p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved),
|
|
GFP_ATOMIC);
|
|
if (unlikely(!p))
|
|
return -ECHILD;
|
|
} else {
|
|
p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved),
|
|
GFP_KERNEL);
|
|
if (unlikely(!p))
|
|
return -ENOMEM;
|
|
}
|
|
memcpy(p, nd->internal, sizeof(nd->internal));
|
|
nd->stack = p;
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* path_connected - Verify that a path->dentry is below path->mnt.mnt_root
|
|
* @path: nameidate to verify
|
|
*
|
|
* Rename can sometimes move a file or directory outside of a bind
|
|
* mount, path_connected allows those cases to be detected.
|
|
*/
|
|
static bool path_connected(const struct path *path)
|
|
{
|
|
struct vfsmount *mnt = path->mnt;
|
|
struct super_block *sb = mnt->mnt_sb;
|
|
|
|
/* Bind mounts and multi-root filesystems can have disconnected paths */
|
|
if (!(sb->s_iflags & SB_I_MULTIROOT) && (mnt->mnt_root == sb->s_root))
|
|
return true;
|
|
|
|
return is_subdir(path->dentry, mnt->mnt_root);
|
|
}
|
|
|
|
static inline int nd_alloc_stack(struct nameidata *nd)
|
|
{
|
|
if (likely(nd->depth != EMBEDDED_LEVELS))
|
|
return 0;
|
|
if (likely(nd->stack != nd->internal))
|
|
return 0;
|
|
return __nd_alloc_stack(nd);
|
|
}
|
|
|
|
static void drop_links(struct nameidata *nd)
|
|
{
|
|
int i = nd->depth;
|
|
while (i--) {
|
|
struct saved *last = nd->stack + i;
|
|
do_delayed_call(&last->done);
|
|
clear_delayed_call(&last->done);
|
|
}
|
|
}
|
|
|
|
static void terminate_walk(struct nameidata *nd)
|
|
{
|
|
drop_links(nd);
|
|
if (!(nd->flags & LOOKUP_RCU)) {
|
|
int i;
|
|
path_put(&nd->path);
|
|
for (i = 0; i < nd->depth; i++)
|
|
path_put(&nd->stack[i].link);
|
|
if (nd->flags & LOOKUP_ROOT_GRABBED) {
|
|
path_put(&nd->root);
|
|
nd->flags &= ~LOOKUP_ROOT_GRABBED;
|
|
}
|
|
} else {
|
|
nd->flags &= ~LOOKUP_RCU;
|
|
rcu_read_unlock();
|
|
}
|
|
nd->depth = 0;
|
|
}
|
|
|
|
/* path_put is needed afterwards regardless of success or failure */
|
|
static bool legitimize_path(struct nameidata *nd,
|
|
struct path *path, unsigned seq)
|
|
{
|
|
int res = __legitimize_mnt(path->mnt, nd->m_seq);
|
|
if (unlikely(res)) {
|
|
if (res > 0)
|
|
path->mnt = NULL;
|
|
path->dentry = NULL;
|
|
return false;
|
|
}
|
|
if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) {
|
|
path->dentry = NULL;
|
|
return false;
|
|
}
|
|
return !read_seqcount_retry(&path->dentry->d_seq, seq);
|
|
}
|
|
|
|
static bool legitimize_links(struct nameidata *nd)
|
|
{
|
|
int i;
|
|
for (i = 0; i < nd->depth; i++) {
|
|
struct saved *last = nd->stack + i;
|
|
if (unlikely(!legitimize_path(nd, &last->link, last->seq))) {
|
|
drop_links(nd);
|
|
nd->depth = i + 1;
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static bool legitimize_root(struct nameidata *nd)
|
|
{
|
|
/*
|
|
* For scoped-lookups (where nd->root has been zeroed), we need to
|
|
* restart the whole lookup from scratch -- because set_root() is wrong
|
|
* for these lookups (nd->dfd is the root, not the filesystem root).
|
|
*/
|
|
if (!nd->root.mnt && (nd->flags & LOOKUP_IS_SCOPED))
|
|
return false;
|
|
/* Nothing to do if nd->root is zero or is managed by the VFS user. */
|
|
if (!nd->root.mnt || (nd->flags & LOOKUP_ROOT))
|
|
return true;
|
|
nd->flags |= LOOKUP_ROOT_GRABBED;
|
|
return legitimize_path(nd, &nd->root, nd->root_seq);
|
|
}
|
|
|
|
/*
|
|
* Path walking has 2 modes, rcu-walk and ref-walk (see
|
|
* Documentation/filesystems/path-lookup.txt). In situations when we can't
|
|
* continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
|
|
* normal reference counts on dentries and vfsmounts to transition to ref-walk
|
|
* mode. Refcounts are grabbed at the last known good point before rcu-walk
|
|
* got stuck, so ref-walk may continue from there. If this is not successful
|
|
* (eg. a seqcount has changed), then failure is returned and it's up to caller
|
|
* to restart the path walk from the beginning in ref-walk mode.
|
|
*/
|
|
|
|
/**
|
|
* unlazy_walk - try to switch to ref-walk mode.
|
|
* @nd: nameidata pathwalk data
|
|
* Returns: 0 on success, -ECHILD on failure
|
|
*
|
|
* unlazy_walk attempts to legitimize the current nd->path and nd->root
|
|
* for ref-walk mode.
|
|
* Must be called from rcu-walk context.
|
|
* Nothing should touch nameidata between unlazy_walk() failure and
|
|
* terminate_walk().
|
|
*/
|
|
static int unlazy_walk(struct nameidata *nd)
|
|
{
|
|
struct dentry *parent = nd->path.dentry;
|
|
|
|
BUG_ON(!(nd->flags & LOOKUP_RCU));
|
|
|
|
nd->flags &= ~LOOKUP_RCU;
|
|
if (unlikely(!legitimize_links(nd)))
|
|
goto out1;
|
|
if (unlikely(!legitimize_path(nd, &nd->path, nd->seq)))
|
|
goto out;
|
|
if (unlikely(!legitimize_root(nd)))
|
|
goto out;
|
|
rcu_read_unlock();
|
|
BUG_ON(nd->inode != parent->d_inode);
|
|
return 0;
|
|
|
|
out1:
|
|
nd->path.mnt = NULL;
|
|
nd->path.dentry = NULL;
|
|
out:
|
|
rcu_read_unlock();
|
|
return -ECHILD;
|
|
}
|
|
|
|
/**
|
|
* unlazy_child - try to switch to ref-walk mode.
|
|
* @nd: nameidata pathwalk data
|
|
* @dentry: child of nd->path.dentry
|
|
* @seq: seq number to check dentry against
|
|
* Returns: 0 on success, -ECHILD on failure
|
|
*
|
|
* unlazy_child attempts to legitimize the current nd->path, nd->root and dentry
|
|
* for ref-walk mode. @dentry must be a path found by a do_lookup call on
|
|
* @nd. Must be called from rcu-walk context.
|
|
* Nothing should touch nameidata between unlazy_child() failure and
|
|
* terminate_walk().
|
|
*/
|
|
static int unlazy_child(struct nameidata *nd, struct dentry *dentry, unsigned seq)
|
|
{
|
|
BUG_ON(!(nd->flags & LOOKUP_RCU));
|
|
|
|
nd->flags &= ~LOOKUP_RCU;
|
|
if (unlikely(!legitimize_links(nd)))
|
|
goto out2;
|
|
if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq)))
|
|
goto out2;
|
|
if (unlikely(!lockref_get_not_dead(&nd->path.dentry->d_lockref)))
|
|
goto out1;
|
|
|
|
/*
|
|
* We need to move both the parent and the dentry from the RCU domain
|
|
* to be properly refcounted. And the sequence number in the dentry
|
|
* validates *both* dentry counters, since we checked the sequence
|
|
* number of the parent after we got the child sequence number. So we
|
|
* know the parent must still be valid if the child sequence number is
|
|
*/
|
|
if (unlikely(!lockref_get_not_dead(&dentry->d_lockref)))
|
|
goto out;
|
|
if (unlikely(read_seqcount_retry(&dentry->d_seq, seq)))
|
|
goto out_dput;
|
|
/*
|
|
* Sequence counts matched. Now make sure that the root is
|
|
* still valid and get it if required.
|
|
*/
|
|
if (unlikely(!legitimize_root(nd)))
|
|
goto out_dput;
|
|
rcu_read_unlock();
|
|
return 0;
|
|
|
|
out2:
|
|
nd->path.mnt = NULL;
|
|
out1:
|
|
nd->path.dentry = NULL;
|
|
out:
|
|
rcu_read_unlock();
|
|
return -ECHILD;
|
|
out_dput:
|
|
rcu_read_unlock();
|
|
dput(dentry);
|
|
return -ECHILD;
|
|
}
|
|
|
|
static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
|
|
{
|
|
if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
|
|
return dentry->d_op->d_revalidate(dentry, flags);
|
|
else
|
|
return 1;
|
|
}
|
|
|
|
/**
|
|
* complete_walk - successful completion of path walk
|
|
* @nd: pointer nameidata
|
|
*
|
|
* If we had been in RCU mode, drop out of it and legitimize nd->path.
|
|
* Revalidate the final result, unless we'd already done that during
|
|
* the path walk or the filesystem doesn't ask for it. Return 0 on
|
|
* success, -error on failure. In case of failure caller does not
|
|
* need to drop nd->path.
|
|
*/
|
|
static int complete_walk(struct nameidata *nd)
|
|
{
|
|
struct dentry *dentry = nd->path.dentry;
|
|
int status;
|
|
|
|
if (nd->flags & LOOKUP_RCU) {
|
|
/*
|
|
* We don't want to zero nd->root for scoped-lookups or
|
|
* externally-managed nd->root.
|
|
*/
|
|
if (!(nd->flags & (LOOKUP_ROOT | LOOKUP_IS_SCOPED)))
|
|
nd->root.mnt = NULL;
|
|
if (unlikely(unlazy_walk(nd)))
|
|
return -ECHILD;
|
|
}
|
|
|
|
if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) {
|
|
/*
|
|
* While the guarantee of LOOKUP_IS_SCOPED is (roughly) "don't
|
|
* ever step outside the root during lookup" and should already
|
|
* be guaranteed by the rest of namei, we want to avoid a namei
|
|
* BUG resulting in userspace being given a path that was not
|
|
* scoped within the root at some point during the lookup.
|
|
*
|
|
* So, do a final sanity-check to make sure that in the
|
|
* worst-case scenario (a complete bypass of LOOKUP_IS_SCOPED)
|
|
* we won't silently return an fd completely outside of the
|
|
* requested root to userspace.
|
|
*
|
|
* Userspace could move the path outside the root after this
|
|
* check, but as discussed elsewhere this is not a concern (the
|
|
* resolved file was inside the root at some point).
|
|
*/
|
|
if (!path_is_under(&nd->path, &nd->root))
|
|
return -EXDEV;
|
|
}
|
|
|
|
if (likely(!(nd->flags & LOOKUP_JUMPED)))
|
|
return 0;
|
|
|
|
if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
|
|
return 0;
|
|
|
|
status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
|
|
if (status > 0)
|
|
return 0;
|
|
|
|
if (!status)
|
|
status = -ESTALE;
|
|
|
|
return status;
|
|
}
|
|
|
|
static int set_root(struct nameidata *nd)
|
|
{
|
|
struct fs_struct *fs = current->fs;
|
|
|
|
/*
|
|
* Jumping to the real root in a scoped-lookup is a BUG in namei, but we
|
|
* still have to ensure it doesn't happen because it will cause a breakout
|
|
* from the dirfd.
|
|
*/
|
|
if (WARN_ON(nd->flags & LOOKUP_IS_SCOPED))
|
|
return -ENOTRECOVERABLE;
|
|
|
|
if (nd->flags & LOOKUP_RCU) {
|
|
unsigned seq;
|
|
|
|
do {
|
|
seq = read_seqcount_begin(&fs->seq);
|
|
nd->root = fs->root;
|
|
nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
|
|
} while (read_seqcount_retry(&fs->seq, seq));
|
|
} else {
|
|
get_fs_root(fs, &nd->root);
|
|
nd->flags |= LOOKUP_ROOT_GRABBED;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void path_put_conditional(struct path *path, struct nameidata *nd)
|
|
{
|
|
dput(path->dentry);
|
|
if (path->mnt != nd->path.mnt)
|
|
mntput(path->mnt);
|
|
}
|
|
|
|
static inline void path_to_nameidata(const struct path *path,
|
|
struct nameidata *nd)
|
|
{
|
|
if (!(nd->flags & LOOKUP_RCU)) {
|
|
dput(nd->path.dentry);
|
|
if (nd->path.mnt != path->mnt)
|
|
mntput(nd->path.mnt);
|
|
}
|
|
nd->path.mnt = path->mnt;
|
|
nd->path.dentry = path->dentry;
|
|
}
|
|
|
|
static int nd_jump_root(struct nameidata *nd)
|
|
{
|
|
if (unlikely(nd->flags & LOOKUP_BENEATH))
|
|
return -EXDEV;
|
|
if (unlikely(nd->flags & LOOKUP_NO_XDEV)) {
|
|
/* Absolute path arguments to path_init() are allowed. */
|
|
if (nd->path.mnt != NULL && nd->path.mnt != nd->root.mnt)
|
|
return -EXDEV;
|
|
}
|
|
if (!nd->root.mnt) {
|
|
int error = set_root(nd);
|
|
if (error)
|
|
return error;
|
|
}
|
|
if (nd->flags & LOOKUP_RCU) {
|
|
struct dentry *d;
|
|
nd->path = nd->root;
|
|
d = nd->path.dentry;
|
|
nd->inode = d->d_inode;
|
|
nd->seq = nd->root_seq;
|
|
if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq)))
|
|
return -ECHILD;
|
|
} else {
|
|
path_put(&nd->path);
|
|
nd->path = nd->root;
|
|
path_get(&nd->path);
|
|
nd->inode = nd->path.dentry->d_inode;
|
|
}
|
|
nd->flags |= LOOKUP_JUMPED;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Helper to directly jump to a known parsed path from ->get_link,
|
|
* caller must have taken a reference to path beforehand.
|
|
*/
|
|
int nd_jump_link(struct path *path)
|
|
{
|
|
int error = -ELOOP;
|
|
struct nameidata *nd = current->nameidata;
|
|
|
|
if (unlikely(nd->flags & LOOKUP_NO_MAGICLINKS))
|
|
goto err;
|
|
|
|
error = -EXDEV;
|
|
if (unlikely(nd->flags & LOOKUP_NO_XDEV)) {
|
|
if (nd->path.mnt != path->mnt)
|
|
goto err;
|
|
}
|
|
/* Not currently safe for scoped-lookups. */
|
|
if (unlikely(nd->flags & LOOKUP_IS_SCOPED))
|
|
goto err;
|
|
|
|
path_put(&nd->path);
|
|
nd->path = *path;
|
|
nd->inode = nd->path.dentry->d_inode;
|
|
nd->flags |= LOOKUP_JUMPED;
|
|
return 0;
|
|
|
|
err:
|
|
path_put(path);
|
|
return error;
|
|
}
|
|
|
|
static inline void put_link(struct nameidata *nd)
|
|
{
|
|
struct saved *last = nd->stack + --nd->depth;
|
|
do_delayed_call(&last->done);
|
|
if (!(nd->flags & LOOKUP_RCU))
|
|
path_put(&last->link);
|
|
}
|
|
|
|
int sysctl_protected_symlinks __read_mostly = 0;
|
|
int sysctl_protected_hardlinks __read_mostly = 0;
|
|
int sysctl_protected_fifos __read_mostly;
|
|
int sysctl_protected_regular __read_mostly;
|
|
|
|
/**
|
|
* may_follow_link - Check symlink following for unsafe situations
|
|
* @nd: nameidata pathwalk data
|
|
*
|
|
* In the case of the sysctl_protected_symlinks sysctl being enabled,
|
|
* CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
|
|
* in a sticky world-writable directory. This is to protect privileged
|
|
* processes from failing races against path names that may change out
|
|
* from under them by way of other users creating malicious symlinks.
|
|
* It will permit symlinks to be followed only when outside a sticky
|
|
* world-writable directory, or when the uid of the symlink and follower
|
|
* match, or when the directory owner matches the symlink's owner.
|
|
*
|
|
* Returns 0 if following the symlink is allowed, -ve on error.
|
|
*/
|
|
static inline int may_follow_link(struct nameidata *nd)
|
|
{
|
|
const struct inode *inode;
|
|
const struct inode *parent;
|
|
kuid_t puid;
|
|
|
|
if (!sysctl_protected_symlinks)
|
|
return 0;
|
|
|
|
/* Allowed if owner and follower match. */
|
|
inode = nd->link_inode;
|
|
if (uid_eq(current_cred()->fsuid, inode->i_uid))
|
|
return 0;
|
|
|
|
/* Allowed if parent directory not sticky and world-writable. */
|
|
parent = nd->inode;
|
|
if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
|
|
return 0;
|
|
|
|
/* Allowed if parent directory and link owner match. */
|
|
puid = parent->i_uid;
|
|
if (uid_valid(puid) && uid_eq(puid, inode->i_uid))
|
|
return 0;
|
|
|
|
if (nd->flags & LOOKUP_RCU)
|
|
return -ECHILD;
|
|
|
|
audit_inode(nd->name, nd->stack[0].link.dentry, 0);
|
|
audit_log_path_denied(AUDIT_ANOM_LINK, "follow_link");
|
|
return -EACCES;
|
|
}
|
|
|
|
/**
|
|
* safe_hardlink_source - Check for safe hardlink conditions
|
|
* @inode: the source inode to hardlink from
|
|
*
|
|
* Return false if at least one of the following conditions:
|
|
* - inode is not a regular file
|
|
* - inode is setuid
|
|
* - inode is setgid and group-exec
|
|
* - access failure for read and write
|
|
*
|
|
* Otherwise returns true.
|
|
*/
|
|
static bool safe_hardlink_source(struct inode *inode)
|
|
{
|
|
umode_t mode = inode->i_mode;
|
|
|
|
/* Special files should not get pinned to the filesystem. */
|
|
if (!S_ISREG(mode))
|
|
return false;
|
|
|
|
/* Setuid files should not get pinned to the filesystem. */
|
|
if (mode & S_ISUID)
|
|
return false;
|
|
|
|
/* Executable setgid files should not get pinned to the filesystem. */
|
|
if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
|
|
return false;
|
|
|
|
/* Hardlinking to unreadable or unwritable sources is dangerous. */
|
|
if (inode_permission(inode, MAY_READ | MAY_WRITE))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* may_linkat - Check permissions for creating a hardlink
|
|
* @link: the source to hardlink from
|
|
*
|
|
* Block hardlink when all of:
|
|
* - sysctl_protected_hardlinks enabled
|
|
* - fsuid does not match inode
|
|
* - hardlink source is unsafe (see safe_hardlink_source() above)
|
|
* - not CAP_FOWNER in a namespace with the inode owner uid mapped
|
|
*
|
|
* Returns 0 if successful, -ve on error.
|
|
*/
|
|
static int may_linkat(struct path *link)
|
|
{
|
|
struct inode *inode = link->dentry->d_inode;
|
|
|
|
/* Inode writeback is not safe when the uid or gid are invalid. */
|
|
if (!uid_valid(inode->i_uid) || !gid_valid(inode->i_gid))
|
|
return -EOVERFLOW;
|
|
|
|
if (!sysctl_protected_hardlinks)
|
|
return 0;
|
|
|
|
/* Source inode owner (or CAP_FOWNER) can hardlink all they like,
|
|
* otherwise, it must be a safe source.
|
|
*/
|
|
if (safe_hardlink_source(inode) || inode_owner_or_capable(inode))
|
|
return 0;
|
|
|
|
audit_log_path_denied(AUDIT_ANOM_LINK, "linkat");
|
|
return -EPERM;
|
|
}
|
|
|
|
/**
|
|
* may_create_in_sticky - Check whether an O_CREAT open in a sticky directory
|
|
* should be allowed, or not, on files that already
|
|
* exist.
|
|
* @dir_mode: mode bits of directory
|
|
* @dir_uid: owner of directory
|
|
* @inode: the inode of the file to open
|
|
*
|
|
* Block an O_CREAT open of a FIFO (or a regular file) when:
|
|
* - sysctl_protected_fifos (or sysctl_protected_regular) is enabled
|
|
* - the file already exists
|
|
* - we are in a sticky directory
|
|
* - we don't own the file
|
|
* - the owner of the directory doesn't own the file
|
|
* - the directory is world writable
|
|
* If the sysctl_protected_fifos (or sysctl_protected_regular) is set to 2
|
|
* the directory doesn't have to be world writable: being group writable will
|
|
* be enough.
|
|
*
|
|
* Returns 0 if the open is allowed, -ve on error.
|
|
*/
|
|
static int may_create_in_sticky(umode_t dir_mode, kuid_t dir_uid,
|
|
struct inode * const inode)
|
|
{
|
|
if ((!sysctl_protected_fifos && S_ISFIFO(inode->i_mode)) ||
|
|
(!sysctl_protected_regular && S_ISREG(inode->i_mode)) ||
|
|
likely(!(dir_mode & S_ISVTX)) ||
|
|
uid_eq(inode->i_uid, dir_uid) ||
|
|
uid_eq(current_fsuid(), inode->i_uid))
|
|
return 0;
|
|
|
|
if (likely(dir_mode & 0002) ||
|
|
(dir_mode & 0020 &&
|
|
((sysctl_protected_fifos >= 2 && S_ISFIFO(inode->i_mode)) ||
|
|
(sysctl_protected_regular >= 2 && S_ISREG(inode->i_mode))))) {
|
|
const char *operation = S_ISFIFO(inode->i_mode) ?
|
|
"sticky_create_fifo" :
|
|
"sticky_create_regular";
|
|
audit_log_path_denied(AUDIT_ANOM_CREAT, operation);
|
|
return -EACCES;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static __always_inline
|
|
const char *get_link(struct nameidata *nd)
|
|
{
|
|
struct saved *last = nd->stack + nd->depth - 1;
|
|
struct dentry *dentry = last->link.dentry;
|
|
struct inode *inode = nd->link_inode;
|
|
int error;
|
|
const char *res;
|
|
|
|
if (unlikely(nd->flags & LOOKUP_NO_SYMLINKS))
|
|
return ERR_PTR(-ELOOP);
|
|
|
|
if (!(nd->flags & LOOKUP_RCU)) {
|
|
touch_atime(&last->link);
|
|
cond_resched();
|
|
} else if (atime_needs_update(&last->link, inode)) {
|
|
if (unlikely(unlazy_walk(nd)))
|
|
return ERR_PTR(-ECHILD);
|
|
touch_atime(&last->link);
|
|
}
|
|
|
|
error = security_inode_follow_link(dentry, inode,
|
|
nd->flags & LOOKUP_RCU);
|
|
if (unlikely(error))
|
|
return ERR_PTR(error);
|
|
|
|
nd->last_type = LAST_BIND;
|
|
res = READ_ONCE(inode->i_link);
|
|
if (!res) {
|
|
const char * (*get)(struct dentry *, struct inode *,
|
|
struct delayed_call *);
|
|
get = inode->i_op->get_link;
|
|
if (nd->flags & LOOKUP_RCU) {
|
|
res = get(NULL, inode, &last->done);
|
|
if (res == ERR_PTR(-ECHILD)) {
|
|
if (unlikely(unlazy_walk(nd)))
|
|
return ERR_PTR(-ECHILD);
|
|
res = get(dentry, inode, &last->done);
|
|
}
|
|
} else {
|
|
res = get(dentry, inode, &last->done);
|
|
}
|
|
if (IS_ERR_OR_NULL(res))
|
|
return res;
|
|
}
|
|
if (*res == '/') {
|
|
error = nd_jump_root(nd);
|
|
if (unlikely(error))
|
|
return ERR_PTR(error);
|
|
while (unlikely(*++res == '/'))
|
|
;
|
|
}
|
|
if (!*res)
|
|
res = NULL;
|
|
return res;
|
|
}
|
|
|
|
/*
|
|
* follow_up - Find the mountpoint of path's vfsmount
|
|
*
|
|
* Given a path, find the mountpoint of its source file system.
|
|
* Replace @path with the path of the mountpoint in the parent mount.
|
|
* Up is towards /.
|
|
*
|
|
* Return 1 if we went up a level and 0 if we were already at the
|
|
* root.
|
|
*/
|
|
int follow_up(struct path *path)
|
|
{
|
|
struct mount *mnt = real_mount(path->mnt);
|
|
struct mount *parent;
|
|
struct dentry *mountpoint;
|
|
|
|
read_seqlock_excl(&mount_lock);
|
|
parent = mnt->mnt_parent;
|
|
if (parent == mnt) {
|
|
read_sequnlock_excl(&mount_lock);
|
|
return 0;
|
|
}
|
|
mntget(&parent->mnt);
|
|
mountpoint = dget(mnt->mnt_mountpoint);
|
|
read_sequnlock_excl(&mount_lock);
|
|
dput(path->dentry);
|
|
path->dentry = mountpoint;
|
|
mntput(path->mnt);
|
|
path->mnt = &parent->mnt;
|
|
return 1;
|
|
}
|
|
EXPORT_SYMBOL(follow_up);
|
|
|
|
/*
|
|
* Perform an automount
|
|
* - return -EISDIR to tell follow_managed() to stop and return the path we
|
|
* were called with.
|
|
*/
|
|
static int follow_automount(struct path *path, struct nameidata *nd,
|
|
bool *need_mntput)
|
|
{
|
|
struct vfsmount *mnt;
|
|
int err;
|
|
|
|
if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
|
|
return -EREMOTE;
|
|
|
|
/* We don't want to mount if someone's just doing a stat -
|
|
* unless they're stat'ing a directory and appended a '/' to
|
|
* the name.
|
|
*
|
|
* We do, however, want to mount if someone wants to open or
|
|
* create a file of any type under the mountpoint, wants to
|
|
* traverse through the mountpoint or wants to open the
|
|
* mounted directory. Also, autofs may mark negative dentries
|
|
* as being automount points. These will need the attentions
|
|
* of the daemon to instantiate them before they can be used.
|
|
*/
|
|
if (!(nd->flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
|
|
LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
|
|
path->dentry->d_inode)
|
|
return -EISDIR;
|
|
|
|
nd->total_link_count++;
|
|
if (nd->total_link_count >= 40)
|
|
return -ELOOP;
|
|
|
|
mnt = path->dentry->d_op->d_automount(path);
|
|
if (IS_ERR(mnt)) {
|
|
/*
|
|
* The filesystem is allowed to return -EISDIR here to indicate
|
|
* it doesn't want to automount. For instance, autofs would do
|
|
* this so that its userspace daemon can mount on this dentry.
|
|
*
|
|
* However, we can only permit this if it's a terminal point in
|
|
* the path being looked up; if it wasn't then the remainder of
|
|
* the path is inaccessible and we should say so.
|
|
*/
|
|
if (PTR_ERR(mnt) == -EISDIR && (nd->flags & LOOKUP_PARENT))
|
|
return -EREMOTE;
|
|
return PTR_ERR(mnt);
|
|
}
|
|
|
|
if (!mnt) /* mount collision */
|
|
return 0;
|
|
|
|
if (!*need_mntput) {
|
|
/* lock_mount() may release path->mnt on error */
|
|
mntget(path->mnt);
|
|
*need_mntput = true;
|
|
}
|
|
err = finish_automount(mnt, path);
|
|
|
|
switch (err) {
|
|
case -EBUSY:
|
|
/* Someone else made a mount here whilst we were busy */
|
|
return 0;
|
|
case 0:
|
|
path_put(path);
|
|
path->mnt = mnt;
|
|
path->dentry = dget(mnt->mnt_root);
|
|
return 0;
|
|
default:
|
|
return err;
|
|
}
|
|
|
|
}
|
|
|
|
/*
|
|
* Handle a dentry that is managed in some way.
|
|
* - Flagged for transit management (autofs)
|
|
* - Flagged as mountpoint
|
|
* - Flagged as automount point
|
|
*
|
|
* This may only be called in refwalk mode.
|
|
* On success path->dentry is known positive.
|
|
*
|
|
* Serialization is taken care of in namespace.c
|
|
*/
|
|
static int follow_managed(struct path *path, struct nameidata *nd)
|
|
{
|
|
struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
|
|
unsigned flags;
|
|
bool need_mntput = false;
|
|
int ret = 0;
|
|
|
|
/* Given that we're not holding a lock here, we retain the value in a
|
|
* local variable for each dentry as we look at it so that we don't see
|
|
* the components of that value change under us */
|
|
while (flags = smp_load_acquire(&path->dentry->d_flags),
|
|
unlikely(flags & DCACHE_MANAGED_DENTRY)) {
|
|
/* Allow the filesystem to manage the transit without i_mutex
|
|
* being held. */
|
|
if (flags & DCACHE_MANAGE_TRANSIT) {
|
|
BUG_ON(!path->dentry->d_op);
|
|
BUG_ON(!path->dentry->d_op->d_manage);
|
|
ret = path->dentry->d_op->d_manage(path, false);
|
|
flags = smp_load_acquire(&path->dentry->d_flags);
|
|
if (ret < 0)
|
|
break;
|
|
}
|
|
|
|
/* Transit to a mounted filesystem. */
|
|
if (flags & DCACHE_MOUNTED) {
|
|
struct vfsmount *mounted = lookup_mnt(path);
|
|
if (mounted) {
|
|
dput(path->dentry);
|
|
if (need_mntput)
|
|
mntput(path->mnt);
|
|
path->mnt = mounted;
|
|
path->dentry = dget(mounted->mnt_root);
|
|
need_mntput = true;
|
|
continue;
|
|
}
|
|
|
|
/* Something is mounted on this dentry in another
|
|
* namespace and/or whatever was mounted there in this
|
|
* namespace got unmounted before lookup_mnt() could
|
|
* get it */
|
|
}
|
|
|
|
/* Handle an automount point */
|
|
if (flags & DCACHE_NEED_AUTOMOUNT) {
|
|
ret = follow_automount(path, nd, &need_mntput);
|
|
if (ret < 0)
|
|
break;
|
|
continue;
|
|
}
|
|
|
|
/* We didn't change the current path point */
|
|
break;
|
|
}
|
|
|
|
if (need_mntput) {
|
|
if (path->mnt == mnt)
|
|
mntput(path->mnt);
|
|
if (unlikely(nd->flags & LOOKUP_NO_XDEV))
|
|
ret = -EXDEV;
|
|
else
|
|
nd->flags |= LOOKUP_JUMPED;
|
|
}
|
|
if (ret == -EISDIR || !ret)
|
|
ret = 1;
|
|
if (ret > 0 && unlikely(d_flags_negative(flags)))
|
|
ret = -ENOENT;
|
|
if (unlikely(ret < 0))
|
|
path_put_conditional(path, nd);
|
|
return ret;
|
|
}
|
|
|
|
int follow_down_one(struct path *path)
|
|
{
|
|
struct vfsmount *mounted;
|
|
|
|
mounted = lookup_mnt(path);
|
|
if (mounted) {
|
|
dput(path->dentry);
|
|
mntput(path->mnt);
|
|
path->mnt = mounted;
|
|
path->dentry = dget(mounted->mnt_root);
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(follow_down_one);
|
|
|
|
static inline int managed_dentry_rcu(const struct path *path)
|
|
{
|
|
return (path->dentry->d_flags & DCACHE_MANAGE_TRANSIT) ?
|
|
path->dentry->d_op->d_manage(path, true) : 0;
|
|
}
|
|
|
|
/*
|
|
* Try to skip to top of mountpoint pile in rcuwalk mode. Fail if
|
|
* we meet a managed dentry that would need blocking.
|
|
*/
|
|
static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
|
|
struct inode **inode, unsigned *seqp)
|
|
{
|
|
for (;;) {
|
|
struct mount *mounted;
|
|
/*
|
|
* Don't forget we might have a non-mountpoint managed dentry
|
|
* that wants to block transit.
|
|
*/
|
|
switch (managed_dentry_rcu(path)) {
|
|
case -ECHILD:
|
|
default:
|
|
return false;
|
|
case -EISDIR:
|
|
return true;
|
|
case 0:
|
|
break;
|
|
}
|
|
|
|
if (!d_mountpoint(path->dentry))
|
|
return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
|
|
|
|
mounted = __lookup_mnt(path->mnt, path->dentry);
|
|
if (!mounted)
|
|
break;
|
|
if (unlikely(nd->flags & LOOKUP_NO_XDEV))
|
|
return false;
|
|
path->mnt = &mounted->mnt;
|
|
path->dentry = mounted->mnt.mnt_root;
|
|
nd->flags |= LOOKUP_JUMPED;
|
|
*seqp = read_seqcount_begin(&path->dentry->d_seq);
|
|
/*
|
|
* Update the inode too. We don't need to re-check the
|
|
* dentry sequence number here after this d_inode read,
|
|
* because a mount-point is always pinned.
|
|
*/
|
|
*inode = path->dentry->d_inode;
|
|
}
|
|
return !read_seqretry(&mount_lock, nd->m_seq) &&
|
|
!(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
|
|
}
|
|
|
|
static int follow_dotdot_rcu(struct nameidata *nd)
|
|
{
|
|
struct inode *inode = nd->inode;
|
|
|
|
while (1) {
|
|
if (path_equal(&nd->path, &nd->root)) {
|
|
if (unlikely(nd->flags & LOOKUP_BENEATH))
|
|
return -ECHILD;
|
|
break;
|
|
}
|
|
if (nd->path.dentry != nd->path.mnt->mnt_root) {
|
|
struct dentry *old = nd->path.dentry;
|
|
struct dentry *parent = old->d_parent;
|
|
unsigned seq;
|
|
|
|
inode = parent->d_inode;
|
|
seq = read_seqcount_begin(&parent->d_seq);
|
|
if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq)))
|
|
return -ECHILD;
|
|
nd->path.dentry = parent;
|
|
nd->seq = seq;
|
|
if (unlikely(!path_connected(&nd->path)))
|
|
return -ECHILD;
|
|
break;
|
|
} else {
|
|
struct mount *mnt = real_mount(nd->path.mnt);
|
|
struct mount *mparent = mnt->mnt_parent;
|
|
struct dentry *mountpoint = mnt->mnt_mountpoint;
|
|
struct inode *inode2 = mountpoint->d_inode;
|
|
unsigned seq = read_seqcount_begin(&mountpoint->d_seq);
|
|
if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
|
|
return -ECHILD;
|
|
if (&mparent->mnt == nd->path.mnt)
|
|
break;
|
|
if (unlikely(nd->flags & LOOKUP_NO_XDEV))
|
|
return -ECHILD;
|
|
/* we know that mountpoint was pinned */
|
|
nd->path.dentry = mountpoint;
|
|
nd->path.mnt = &mparent->mnt;
|
|
inode = inode2;
|
|
nd->seq = seq;
|
|
}
|
|
}
|
|
while (unlikely(d_mountpoint(nd->path.dentry))) {
|
|
struct mount *mounted;
|
|
mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry);
|
|
if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
|
|
return -ECHILD;
|
|
if (!mounted)
|
|
break;
|
|
if (unlikely(nd->flags & LOOKUP_NO_XDEV))
|
|
return -ECHILD;
|
|
nd->path.mnt = &mounted->mnt;
|
|
nd->path.dentry = mounted->mnt.mnt_root;
|
|
inode = nd->path.dentry->d_inode;
|
|
nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
|
|
}
|
|
nd->inode = inode;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Follow down to the covering mount currently visible to userspace. At each
|
|
* point, the filesystem owning that dentry may be queried as to whether the
|
|
* caller is permitted to proceed or not.
|
|
*/
|
|
int follow_down(struct path *path)
|
|
{
|
|
unsigned managed;
|
|
int ret;
|
|
|
|
while (managed = READ_ONCE(path->dentry->d_flags),
|
|
unlikely(managed & DCACHE_MANAGED_DENTRY)) {
|
|
/* Allow the filesystem to manage the transit without i_mutex
|
|
* being held.
|
|
*
|
|
* We indicate to the filesystem if someone is trying to mount
|
|
* something here. This gives autofs the chance to deny anyone
|
|
* other than its daemon the right to mount on its
|
|
* superstructure.
|
|
*
|
|
* The filesystem may sleep at this point.
|
|
*/
|
|
if (managed & DCACHE_MANAGE_TRANSIT) {
|
|
BUG_ON(!path->dentry->d_op);
|
|
BUG_ON(!path->dentry->d_op->d_manage);
|
|
ret = path->dentry->d_op->d_manage(path, false);
|
|
if (ret < 0)
|
|
return ret == -EISDIR ? 0 : ret;
|
|
}
|
|
|
|
/* Transit to a mounted filesystem. */
|
|
if (managed & DCACHE_MOUNTED) {
|
|
struct vfsmount *mounted = lookup_mnt(path);
|
|
if (!mounted)
|
|
break;
|
|
dput(path->dentry);
|
|
mntput(path->mnt);
|
|
path->mnt = mounted;
|
|
path->dentry = dget(mounted->mnt_root);
|
|
continue;
|
|
}
|
|
|
|
/* Don't handle automount points here */
|
|
break;
|
|
}
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(follow_down);
|
|
|
|
/*
|
|
* Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
|
|
*/
|
|
static void follow_mount(struct path *path)
|
|
{
|
|
while (d_mountpoint(path->dentry)) {
|
|
struct vfsmount *mounted = lookup_mnt(path);
|
|
if (!mounted)
|
|
break;
|
|
dput(path->dentry);
|
|
mntput(path->mnt);
|
|
path->mnt = mounted;
|
|
path->dentry = dget(mounted->mnt_root);
|
|
}
|
|
}
|
|
|
|
static int path_parent_directory(struct path *path)
|
|
{
|
|
struct dentry *old = path->dentry;
|
|
/* rare case of legitimate dget_parent()... */
|
|
path->dentry = dget_parent(path->dentry);
|
|
dput(old);
|
|
if (unlikely(!path_connected(path)))
|
|
return -ENOENT;
|
|
return 0;
|
|
}
|
|
|
|
static int follow_dotdot(struct nameidata *nd)
|
|
{
|
|
while (1) {
|
|
if (path_equal(&nd->path, &nd->root)) {
|
|
if (unlikely(nd->flags & LOOKUP_BENEATH))
|
|
return -EXDEV;
|
|
break;
|
|
}
|
|
if (nd->path.dentry != nd->path.mnt->mnt_root) {
|
|
int ret = path_parent_directory(&nd->path);
|
|
if (ret)
|
|
return ret;
|
|
break;
|
|
}
|
|
if (!follow_up(&nd->path))
|
|
break;
|
|
if (unlikely(nd->flags & LOOKUP_NO_XDEV))
|
|
return -EXDEV;
|
|
}
|
|
follow_mount(&nd->path);
|
|
nd->inode = nd->path.dentry->d_inode;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* This looks up the name in dcache and possibly revalidates the found dentry.
|
|
* NULL is returned if the dentry does not exist in the cache.
|
|
*/
|
|
static struct dentry *lookup_dcache(const struct qstr *name,
|
|
struct dentry *dir,
|
|
unsigned int flags)
|
|
{
|
|
struct dentry *dentry = d_lookup(dir, name);
|
|
if (dentry) {
|
|
int error = d_revalidate(dentry, flags);
|
|
if (unlikely(error <= 0)) {
|
|
if (!error)
|
|
d_invalidate(dentry);
|
|
dput(dentry);
|
|
return ERR_PTR(error);
|
|
}
|
|
}
|
|
return dentry;
|
|
}
|
|
|
|
/*
|
|
* Parent directory has inode locked exclusive. This is one
|
|
* and only case when ->lookup() gets called on non in-lookup
|
|
* dentries - as the matter of fact, this only gets called
|
|
* when directory is guaranteed to have no in-lookup children
|
|
* at all.
|
|
*/
|
|
static struct dentry *__lookup_hash(const struct qstr *name,
|
|
struct dentry *base, unsigned int flags)
|
|
{
|
|
struct dentry *dentry = lookup_dcache(name, base, flags);
|
|
struct dentry *old;
|
|
struct inode *dir = base->d_inode;
|
|
|
|
if (dentry)
|
|
return dentry;
|
|
|
|
/* Don't create child dentry for a dead directory. */
|
|
if (unlikely(IS_DEADDIR(dir)))
|
|
return ERR_PTR(-ENOENT);
|
|
|
|
dentry = d_alloc(base, name);
|
|
if (unlikely(!dentry))
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
old = dir->i_op->lookup(dir, dentry, flags);
|
|
if (unlikely(old)) {
|
|
dput(dentry);
|
|
dentry = old;
|
|
}
|
|
return dentry;
|
|
}
|
|
|
|
static int lookup_fast(struct nameidata *nd,
|
|
struct path *path, struct inode **inode,
|
|
unsigned *seqp)
|
|
{
|
|
struct vfsmount *mnt = nd->path.mnt;
|
|
struct dentry *dentry, *parent = nd->path.dentry;
|
|
int status = 1;
|
|
int err;
|
|
|
|
/*
|
|
* Rename seqlock is not required here because in the off chance
|
|
* of a false negative due to a concurrent rename, the caller is
|
|
* going to fall back to non-racy lookup.
|
|
*/
|
|
if (nd->flags & LOOKUP_RCU) {
|
|
unsigned seq;
|
|
bool negative;
|
|
dentry = __d_lookup_rcu(parent, &nd->last, &seq);
|
|
if (unlikely(!dentry)) {
|
|
if (unlazy_walk(nd))
|
|
return -ECHILD;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* This sequence count validates that the inode matches
|
|
* the dentry name information from lookup.
|
|
*/
|
|
*inode = d_backing_inode(dentry);
|
|
negative = d_is_negative(dentry);
|
|
if (unlikely(read_seqcount_retry(&dentry->d_seq, seq)))
|
|
return -ECHILD;
|
|
|
|
/*
|
|
* This sequence count validates that the parent had no
|
|
* changes while we did the lookup of the dentry above.
|
|
*
|
|
* The memory barrier in read_seqcount_begin of child is
|
|
* enough, we can use __read_seqcount_retry here.
|
|
*/
|
|
if (unlikely(__read_seqcount_retry(&parent->d_seq, nd->seq)))
|
|
return -ECHILD;
|
|
|
|
*seqp = seq;
|
|
status = d_revalidate(dentry, nd->flags);
|
|
if (likely(status > 0)) {
|
|
/*
|
|
* Note: do negative dentry check after revalidation in
|
|
* case that drops it.
|
|
*/
|
|
if (unlikely(negative))
|
|
return -ENOENT;
|
|
path->mnt = mnt;
|
|
path->dentry = dentry;
|
|
if (likely(__follow_mount_rcu(nd, path, inode, seqp)))
|
|
return 1;
|
|
}
|
|
if (unlazy_child(nd, dentry, seq))
|
|
return -ECHILD;
|
|
if (unlikely(status == -ECHILD))
|
|
/* we'd been told to redo it in non-rcu mode */
|
|
status = d_revalidate(dentry, nd->flags);
|
|
} else {
|
|
dentry = __d_lookup(parent, &nd->last);
|
|
if (unlikely(!dentry))
|
|
return 0;
|
|
status = d_revalidate(dentry, nd->flags);
|
|
}
|
|
if (unlikely(status <= 0)) {
|
|
if (!status)
|
|
d_invalidate(dentry);
|
|
dput(dentry);
|
|
return status;
|
|
}
|
|
|
|
path->mnt = mnt;
|
|
path->dentry = dentry;
|
|
err = follow_managed(path, nd);
|
|
if (likely(err > 0))
|
|
*inode = d_backing_inode(path->dentry);
|
|
return err;
|
|
}
|
|
|
|
/* Fast lookup failed, do it the slow way */
|
|
static struct dentry *__lookup_slow(const struct qstr *name,
|
|
struct dentry *dir,
|
|
unsigned int flags)
|
|
{
|
|
struct dentry *dentry, *old;
|
|
struct inode *inode = dir->d_inode;
|
|
DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
|
|
|
|
/* Don't go there if it's already dead */
|
|
if (unlikely(IS_DEADDIR(inode)))
|
|
return ERR_PTR(-ENOENT);
|
|
again:
|
|
dentry = d_alloc_parallel(dir, name, &wq);
|
|
if (IS_ERR(dentry))
|
|
return dentry;
|
|
if (unlikely(!d_in_lookup(dentry))) {
|
|
int error = d_revalidate(dentry, flags);
|
|
if (unlikely(error <= 0)) {
|
|
if (!error) {
|
|
d_invalidate(dentry);
|
|
dput(dentry);
|
|
goto again;
|
|
}
|
|
dput(dentry);
|
|
dentry = ERR_PTR(error);
|
|
}
|
|
} else {
|
|
old = inode->i_op->lookup(inode, dentry, flags);
|
|
d_lookup_done(dentry);
|
|
if (unlikely(old)) {
|
|
dput(dentry);
|
|
dentry = old;
|
|
}
|
|
}
|
|
return dentry;
|
|
}
|
|
|
|
static struct dentry *lookup_slow(const struct qstr *name,
|
|
struct dentry *dir,
|
|
unsigned int flags)
|
|
{
|
|
struct inode *inode = dir->d_inode;
|
|
struct dentry *res;
|
|
inode_lock_shared(inode);
|
|
res = __lookup_slow(name, dir, flags);
|
|
inode_unlock_shared(inode);
|
|
return res;
|
|
}
|
|
|
|
static inline int may_lookup(struct nameidata *nd)
|
|
{
|
|
if (nd->flags & LOOKUP_RCU) {
|
|
int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
|
|
if (err != -ECHILD)
|
|
return err;
|
|
if (unlazy_walk(nd))
|
|
return -ECHILD;
|
|
}
|
|
return inode_permission(nd->inode, MAY_EXEC);
|
|
}
|
|
|
|
static inline int handle_dots(struct nameidata *nd, int type)
|
|
{
|
|
if (type == LAST_DOTDOT) {
|
|
int error = 0;
|
|
|
|
if (!nd->root.mnt) {
|
|
error = set_root(nd);
|
|
if (error)
|
|
return error;
|
|
}
|
|
if (nd->flags & LOOKUP_RCU)
|
|
error = follow_dotdot_rcu(nd);
|
|
else
|
|
error = follow_dotdot(nd);
|
|
if (error)
|
|
return error;
|
|
|
|
if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) {
|
|
/*
|
|
* If there was a racing rename or mount along our
|
|
* path, then we can't be sure that ".." hasn't jumped
|
|
* above nd->root (and so userspace should retry or use
|
|
* some fallback).
|
|
*/
|
|
smp_rmb();
|
|
if (unlikely(__read_seqcount_retry(&mount_lock.seqcount, nd->m_seq)))
|
|
return -EAGAIN;
|
|
if (unlikely(__read_seqcount_retry(&rename_lock.seqcount, nd->r_seq)))
|
|
return -EAGAIN;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int pick_link(struct nameidata *nd, struct path *link,
|
|
struct inode *inode, unsigned seq)
|
|
{
|
|
int error;
|
|
struct saved *last;
|
|
if (unlikely(nd->total_link_count++ >= MAXSYMLINKS)) {
|
|
path_to_nameidata(link, nd);
|
|
return -ELOOP;
|
|
}
|
|
if (!(nd->flags & LOOKUP_RCU)) {
|
|
if (link->mnt == nd->path.mnt)
|
|
mntget(link->mnt);
|
|
}
|
|
error = nd_alloc_stack(nd);
|
|
if (unlikely(error)) {
|
|
if (error == -ECHILD) {
|
|
if (unlikely(!legitimize_path(nd, link, seq))) {
|
|
drop_links(nd);
|
|
nd->depth = 0;
|
|
nd->flags &= ~LOOKUP_RCU;
|
|
nd->path.mnt = NULL;
|
|
nd->path.dentry = NULL;
|
|
rcu_read_unlock();
|
|
} else if (likely(unlazy_walk(nd)) == 0)
|
|
error = nd_alloc_stack(nd);
|
|
}
|
|
if (error) {
|
|
path_put(link);
|
|
return error;
|
|
}
|
|
}
|
|
|
|
last = nd->stack + nd->depth++;
|
|
last->link = *link;
|
|
clear_delayed_call(&last->done);
|
|
nd->link_inode = inode;
|
|
last->seq = seq;
|
|
return 1;
|
|
}
|
|
|
|
enum {WALK_FOLLOW = 1, WALK_MORE = 2};
|
|
|
|
/*
|
|
* Do we need to follow links? We _really_ want to be able
|
|
* to do this check without having to look at inode->i_op,
|
|
* so we keep a cache of "no, this doesn't need follow_link"
|
|
* for the common case.
|
|
*/
|
|
static inline int step_into(struct nameidata *nd, struct path *path,
|
|
int flags, struct inode *inode, unsigned seq)
|
|
{
|
|
if (!(flags & WALK_MORE) && nd->depth)
|
|
put_link(nd);
|
|
if (likely(!d_is_symlink(path->dentry)) ||
|
|
!(flags & WALK_FOLLOW || nd->flags & LOOKUP_FOLLOW)) {
|
|
/* not a symlink or should not follow */
|
|
path_to_nameidata(path, nd);
|
|
nd->inode = inode;
|
|
nd->seq = seq;
|
|
return 0;
|
|
}
|
|
/* make sure that d_is_symlink above matches inode */
|
|
if (nd->flags & LOOKUP_RCU) {
|
|
if (read_seqcount_retry(&path->dentry->d_seq, seq))
|
|
return -ECHILD;
|
|
}
|
|
return pick_link(nd, path, inode, seq);
|
|
}
|
|
|
|
static int walk_component(struct nameidata *nd, int flags)
|
|
{
|
|
struct path path;
|
|
struct inode *inode;
|
|
unsigned seq;
|
|
int err;
|
|
/*
|
|
* "." and ".." are special - ".." especially so because it has
|
|
* to be able to know about the current root directory and
|
|
* parent relationships.
|
|
*/
|
|
if (unlikely(nd->last_type != LAST_NORM)) {
|
|
err = handle_dots(nd, nd->last_type);
|
|
if (!(flags & WALK_MORE) && nd->depth)
|
|
put_link(nd);
|
|
return err;
|
|
}
|
|
err = lookup_fast(nd, &path, &inode, &seq);
|
|
if (unlikely(err <= 0)) {
|
|
if (err < 0)
|
|
return err;
|
|
path.dentry = lookup_slow(&nd->last, nd->path.dentry,
|
|
nd->flags);
|
|
if (IS_ERR(path.dentry))
|
|
return PTR_ERR(path.dentry);
|
|
|
|
path.mnt = nd->path.mnt;
|
|
err = follow_managed(&path, nd);
|
|
if (unlikely(err < 0))
|
|
return err;
|
|
|
|
seq = 0; /* we are already out of RCU mode */
|
|
inode = d_backing_inode(path.dentry);
|
|
}
|
|
|
|
return step_into(nd, &path, flags, inode, seq);
|
|
}
|
|
|
|
/*
|
|
* We can do the critical dentry name comparison and hashing
|
|
* operations one word at a time, but we are limited to:
|
|
*
|
|
* - Architectures with fast unaligned word accesses. We could
|
|
* do a "get_unaligned()" if this helps and is sufficiently
|
|
* fast.
|
|
*
|
|
* - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
|
|
* do not trap on the (extremely unlikely) case of a page
|
|
* crossing operation.
|
|
*
|
|
* - Furthermore, we need an efficient 64-bit compile for the
|
|
* 64-bit case in order to generate the "number of bytes in
|
|
* the final mask". Again, that could be replaced with a
|
|
* efficient population count instruction or similar.
|
|
*/
|
|
#ifdef CONFIG_DCACHE_WORD_ACCESS
|
|
|
|
#include <asm/word-at-a-time.h>
|
|
|
|
#ifdef HASH_MIX
|
|
|
|
/* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */
|
|
|
|
#elif defined(CONFIG_64BIT)
|
|
/*
|
|
* Register pressure in the mixing function is an issue, particularly
|
|
* on 32-bit x86, but almost any function requires one state value and
|
|
* one temporary. Instead, use a function designed for two state values
|
|
* and no temporaries.
|
|
*
|
|
* This function cannot create a collision in only two iterations, so
|
|
* we have two iterations to achieve avalanche. In those two iterations,
|
|
* we have six layers of mixing, which is enough to spread one bit's
|
|
* influence out to 2^6 = 64 state bits.
|
|
*
|
|
* Rotate constants are scored by considering either 64 one-bit input
|
|
* deltas or 64*63/2 = 2016 two-bit input deltas, and finding the
|
|
* probability of that delta causing a change to each of the 128 output
|
|
* bits, using a sample of random initial states.
|
|
*
|
|
* The Shannon entropy of the computed probabilities is then summed
|
|
* to produce a score. Ideally, any input change has a 50% chance of
|
|
* toggling any given output bit.
|
|
*
|
|
* Mixing scores (in bits) for (12,45):
|
|
* Input delta: 1-bit 2-bit
|
|
* 1 round: 713.3 42542.6
|
|
* 2 rounds: 2753.7 140389.8
|
|
* 3 rounds: 5954.1 233458.2
|
|
* 4 rounds: 7862.6 256672.2
|
|
* Perfect: 8192 258048
|
|
* (64*128) (64*63/2 * 128)
|
|
*/
|
|
#define HASH_MIX(x, y, a) \
|
|
( x ^= (a), \
|
|
y ^= x, x = rol64(x,12),\
|
|
x += y, y = rol64(y,45),\
|
|
y *= 9 )
|
|
|
|
/*
|
|
* Fold two longs into one 32-bit hash value. This must be fast, but
|
|
* latency isn't quite as critical, as there is a fair bit of additional
|
|
* work done before the hash value is used.
|
|
*/
|
|
static inline unsigned int fold_hash(unsigned long x, unsigned long y)
|
|
{
|
|
y ^= x * GOLDEN_RATIO_64;
|
|
y *= GOLDEN_RATIO_64;
|
|
return y >> 32;
|
|
}
|
|
|
|
#else /* 32-bit case */
|
|
|
|
/*
|
|
* Mixing scores (in bits) for (7,20):
|
|
* Input delta: 1-bit 2-bit
|
|
* 1 round: 330.3 9201.6
|
|
* 2 rounds: 1246.4 25475.4
|
|
* 3 rounds: 1907.1 31295.1
|
|
* 4 rounds: 2042.3 31718.6
|
|
* Perfect: 2048 31744
|
|
* (32*64) (32*31/2 * 64)
|
|
*/
|
|
#define HASH_MIX(x, y, a) \
|
|
( x ^= (a), \
|
|
y ^= x, x = rol32(x, 7),\
|
|
x += y, y = rol32(y,20),\
|
|
y *= 9 )
|
|
|
|
static inline unsigned int fold_hash(unsigned long x, unsigned long y)
|
|
{
|
|
/* Use arch-optimized multiply if one exists */
|
|
return __hash_32(y ^ __hash_32(x));
|
|
}
|
|
|
|
#endif
|
|
|
|
/*
|
|
* Return the hash of a string of known length. This is carfully
|
|
* designed to match hash_name(), which is the more critical function.
|
|
* In particular, we must end by hashing a final word containing 0..7
|
|
* payload bytes, to match the way that hash_name() iterates until it
|
|
* finds the delimiter after the name.
|
|
*/
|
|
unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
|
|
{
|
|
unsigned long a, x = 0, y = (unsigned long)salt;
|
|
|
|
for (;;) {
|
|
if (!len)
|
|
goto done;
|
|
a = load_unaligned_zeropad(name);
|
|
if (len < sizeof(unsigned long))
|
|
break;
|
|
HASH_MIX(x, y, a);
|
|
name += sizeof(unsigned long);
|
|
len -= sizeof(unsigned long);
|
|
}
|
|
x ^= a & bytemask_from_count(len);
|
|
done:
|
|
return fold_hash(x, y);
|
|
}
|
|
EXPORT_SYMBOL(full_name_hash);
|
|
|
|
/* Return the "hash_len" (hash and length) of a null-terminated string */
|
|
u64 hashlen_string(const void *salt, const char *name)
|
|
{
|
|
unsigned long a = 0, x = 0, y = (unsigned long)salt;
|
|
unsigned long adata, mask, len;
|
|
const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
|
|
|
|
len = 0;
|
|
goto inside;
|
|
|
|
do {
|
|
HASH_MIX(x, y, a);
|
|
len += sizeof(unsigned long);
|
|
inside:
|
|
a = load_unaligned_zeropad(name+len);
|
|
} while (!has_zero(a, &adata, &constants));
|
|
|
|
adata = prep_zero_mask(a, adata, &constants);
|
|
mask = create_zero_mask(adata);
|
|
x ^= a & zero_bytemask(mask);
|
|
|
|
return hashlen_create(fold_hash(x, y), len + find_zero(mask));
|
|
}
|
|
EXPORT_SYMBOL(hashlen_string);
|
|
|
|
/*
|
|
* Calculate the length and hash of the path component, and
|
|
* return the "hash_len" as the result.
|
|
*/
|
|
static inline u64 hash_name(const void *salt, const char *name)
|
|
{
|
|
unsigned long a = 0, b, x = 0, y = (unsigned long)salt;
|
|
unsigned long adata, bdata, mask, len;
|
|
const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
|
|
|
|
len = 0;
|
|
goto inside;
|
|
|
|
do {
|
|
HASH_MIX(x, y, a);
|
|
len += sizeof(unsigned long);
|
|
inside:
|
|
a = load_unaligned_zeropad(name+len);
|
|
b = a ^ REPEAT_BYTE('/');
|
|
} while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
|
|
|
|
adata = prep_zero_mask(a, adata, &constants);
|
|
bdata = prep_zero_mask(b, bdata, &constants);
|
|
mask = create_zero_mask(adata | bdata);
|
|
x ^= a & zero_bytemask(mask);
|
|
|
|
return hashlen_create(fold_hash(x, y), len + find_zero(mask));
|
|
}
|
|
|
|
#else /* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */
|
|
|
|
/* Return the hash of a string of known length */
|
|
unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
|
|
{
|
|
unsigned long hash = init_name_hash(salt);
|
|
while (len--)
|
|
hash = partial_name_hash((unsigned char)*name++, hash);
|
|
return end_name_hash(hash);
|
|
}
|
|
EXPORT_SYMBOL(full_name_hash);
|
|
|
|
/* Return the "hash_len" (hash and length) of a null-terminated string */
|
|
u64 hashlen_string(const void *salt, const char *name)
|
|
{
|
|
unsigned long hash = init_name_hash(salt);
|
|
unsigned long len = 0, c;
|
|
|
|
c = (unsigned char)*name;
|
|
while (c) {
|
|
len++;
|
|
hash = partial_name_hash(c, hash);
|
|
c = (unsigned char)name[len];
|
|
}
|
|
return hashlen_create(end_name_hash(hash), len);
|
|
}
|
|
EXPORT_SYMBOL(hashlen_string);
|
|
|
|
/*
|
|
* We know there's a real path component here of at least
|
|
* one character.
|
|
*/
|
|
static inline u64 hash_name(const void *salt, const char *name)
|
|
{
|
|
unsigned long hash = init_name_hash(salt);
|
|
unsigned long len = 0, c;
|
|
|
|
c = (unsigned char)*name;
|
|
do {
|
|
len++;
|
|
hash = partial_name_hash(c, hash);
|
|
c = (unsigned char)name[len];
|
|
} while (c && c != '/');
|
|
return hashlen_create(end_name_hash(hash), len);
|
|
}
|
|
|
|
#endif
|
|
|
|
/*
|
|
* Name resolution.
|
|
* This is the basic name resolution function, turning a pathname into
|
|
* the final dentry. We expect 'base' to be positive and a directory.
|
|
*
|
|
* Returns 0 and nd will have valid dentry and mnt on success.
|
|
* Returns error and drops reference to input namei data on failure.
|
|
*/
|
|
static int link_path_walk(const char *name, struct nameidata *nd)
|
|
{
|
|
int err;
|
|
|
|
if (IS_ERR(name))
|
|
return PTR_ERR(name);
|
|
while (*name=='/')
|
|
name++;
|
|
if (!*name)
|
|
return 0;
|
|
|
|
/* At this point we know we have a real path component. */
|
|
for(;;) {
|
|
u64 hash_len;
|
|
int type;
|
|
|
|
err = may_lookup(nd);
|
|
if (err)
|
|
return err;
|
|
|
|
hash_len = hash_name(nd->path.dentry, name);
|
|
|
|
type = LAST_NORM;
|
|
if (name[0] == '.') switch (hashlen_len(hash_len)) {
|
|
case 2:
|
|
if (name[1] == '.') {
|
|
type = LAST_DOTDOT;
|
|
nd->flags |= LOOKUP_JUMPED;
|
|
}
|
|
break;
|
|
case 1:
|
|
type = LAST_DOT;
|
|
}
|
|
if (likely(type == LAST_NORM)) {
|
|
struct dentry *parent = nd->path.dentry;
|
|
nd->flags &= ~LOOKUP_JUMPED;
|
|
if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
|
|
struct qstr this = { { .hash_len = hash_len }, .name = name };
|
|
err = parent->d_op->d_hash(parent, &this);
|
|
if (err < 0)
|
|
return err;
|
|
hash_len = this.hash_len;
|
|
name = this.name;
|
|
}
|
|
}
|
|
|
|
nd->last.hash_len = hash_len;
|
|
nd->last.name = name;
|
|
nd->last_type = type;
|
|
|
|
name += hashlen_len(hash_len);
|
|
if (!*name)
|
|
goto OK;
|
|
/*
|
|
* If it wasn't NUL, we know it was '/'. Skip that
|
|
* slash, and continue until no more slashes.
|
|
*/
|
|
do {
|
|
name++;
|
|
} while (unlikely(*name == '/'));
|
|
if (unlikely(!*name)) {
|
|
OK:
|
|
/* pathname body, done */
|
|
if (!nd->depth)
|
|
return 0;
|
|
name = nd->stack[nd->depth - 1].name;
|
|
/* trailing symlink, done */
|
|
if (!name)
|
|
return 0;
|
|
/* last component of nested symlink */
|
|
err = walk_component(nd, WALK_FOLLOW);
|
|
} else {
|
|
/* not the last component */
|
|
err = walk_component(nd, WALK_FOLLOW | WALK_MORE);
|
|
}
|
|
if (err < 0)
|
|
return err;
|
|
|
|
if (err) {
|
|
const char *s = get_link(nd);
|
|
|
|
if (IS_ERR(s))
|
|
return PTR_ERR(s);
|
|
err = 0;
|
|
if (unlikely(!s)) {
|
|
/* jumped */
|
|
put_link(nd);
|
|
} else {
|
|
nd->stack[nd->depth - 1].name = name;
|
|
name = s;
|
|
continue;
|
|
}
|
|
}
|
|
if (unlikely(!d_can_lookup(nd->path.dentry))) {
|
|
if (nd->flags & LOOKUP_RCU) {
|
|
if (unlazy_walk(nd))
|
|
return -ECHILD;
|
|
}
|
|
return -ENOTDIR;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* must be paired with terminate_walk() */
|
|
static const char *path_init(struct nameidata *nd, unsigned flags)
|
|
{
|
|
int error;
|
|
const char *s = nd->name->name;
|
|
|
|
if (!*s)
|
|
flags &= ~LOOKUP_RCU;
|
|
if (flags & LOOKUP_RCU)
|
|
rcu_read_lock();
|
|
|
|
nd->last_type = LAST_ROOT; /* if there are only slashes... */
|
|
nd->flags = flags | LOOKUP_JUMPED | LOOKUP_PARENT;
|
|
nd->depth = 0;
|
|
|
|
nd->m_seq = __read_seqcount_begin(&mount_lock.seqcount);
|
|
nd->r_seq = __read_seqcount_begin(&rename_lock.seqcount);
|
|
smp_rmb();
|
|
|
|
if (flags & LOOKUP_ROOT) {
|
|
struct dentry *root = nd->root.dentry;
|
|
struct inode *inode = root->d_inode;
|
|
if (*s && unlikely(!d_can_lookup(root)))
|
|
return ERR_PTR(-ENOTDIR);
|
|
nd->path = nd->root;
|
|
nd->inode = inode;
|
|
if (flags & LOOKUP_RCU) {
|
|
nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
|
|
nd->root_seq = nd->seq;
|
|
} else {
|
|
path_get(&nd->path);
|
|
}
|
|
return s;
|
|
}
|
|
|
|
nd->root.mnt = NULL;
|
|
nd->path.mnt = NULL;
|
|
nd->path.dentry = NULL;
|
|
|
|
/* Absolute pathname -- fetch the root (LOOKUP_IN_ROOT uses nd->dfd). */
|
|
if (*s == '/' && !(flags & LOOKUP_IN_ROOT)) {
|
|
error = nd_jump_root(nd);
|
|
if (unlikely(error))
|
|
return ERR_PTR(error);
|
|
return s;
|
|
}
|
|
|
|
/* Relative pathname -- get the starting-point it is relative to. */
|
|
if (nd->dfd == AT_FDCWD) {
|
|
if (flags & LOOKUP_RCU) {
|
|
struct fs_struct *fs = current->fs;
|
|
unsigned seq;
|
|
|
|
do {
|
|
seq = read_seqcount_begin(&fs->seq);
|
|
nd->path = fs->pwd;
|
|
nd->inode = nd->path.dentry->d_inode;
|
|
nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
|
|
} while (read_seqcount_retry(&fs->seq, seq));
|
|
} else {
|
|
get_fs_pwd(current->fs, &nd->path);
|
|
nd->inode = nd->path.dentry->d_inode;
|
|
}
|
|
} else {
|
|
/* Caller must check execute permissions on the starting path component */
|
|
struct fd f = fdget_raw(nd->dfd);
|
|
struct dentry *dentry;
|
|
|
|
if (!f.file)
|
|
return ERR_PTR(-EBADF);
|
|
|
|
dentry = f.file->f_path.dentry;
|
|
|
|
if (*s && unlikely(!d_can_lookup(dentry))) {
|
|
fdput(f);
|
|
return ERR_PTR(-ENOTDIR);
|
|
}
|
|
|
|
nd->path = f.file->f_path;
|
|
if (flags & LOOKUP_RCU) {
|
|
nd->inode = nd->path.dentry->d_inode;
|
|
nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
|
|
} else {
|
|
path_get(&nd->path);
|
|
nd->inode = nd->path.dentry->d_inode;
|
|
}
|
|
fdput(f);
|
|
}
|
|
|
|
/* For scoped-lookups we need to set the root to the dirfd as well. */
|
|
if (flags & LOOKUP_IS_SCOPED) {
|
|
nd->root = nd->path;
|
|
if (flags & LOOKUP_RCU) {
|
|
nd->root_seq = nd->seq;
|
|
} else {
|
|
path_get(&nd->root);
|
|
nd->flags |= LOOKUP_ROOT_GRABBED;
|
|
}
|
|
}
|
|
return s;
|
|
}
|
|
|
|
static const char *trailing_symlink(struct nameidata *nd)
|
|
{
|
|
const char *s;
|
|
int error = may_follow_link(nd);
|
|
if (unlikely(error))
|
|
return ERR_PTR(error);
|
|
nd->flags |= LOOKUP_PARENT;
|
|
nd->stack[0].name = NULL;
|
|
s = get_link(nd);
|
|
return s ? s : "";
|
|
}
|
|
|
|
static inline int lookup_last(struct nameidata *nd)
|
|
{
|
|
if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
|
|
nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
|
|
|
|
nd->flags &= ~LOOKUP_PARENT;
|
|
return walk_component(nd, 0);
|
|
}
|
|
|
|
static int handle_lookup_down(struct nameidata *nd)
|
|
{
|
|
struct path path = nd->path;
|
|
struct inode *inode = nd->inode;
|
|
unsigned seq = nd->seq;
|
|
int err;
|
|
|
|
if (nd->flags & LOOKUP_RCU) {
|
|
/*
|
|
* don't bother with unlazy_walk on failure - we are
|
|
* at the very beginning of walk, so we lose nothing
|
|
* if we simply redo everything in non-RCU mode
|
|
*/
|
|
if (unlikely(!__follow_mount_rcu(nd, &path, &inode, &seq)))
|
|
return -ECHILD;
|
|
} else {
|
|
dget(path.dentry);
|
|
err = follow_managed(&path, nd);
|
|
if (unlikely(err < 0))
|
|
return err;
|
|
inode = d_backing_inode(path.dentry);
|
|
seq = 0;
|
|
}
|
|
path_to_nameidata(&path, nd);
|
|
nd->inode = inode;
|
|
nd->seq = seq;
|
|
return 0;
|
|
}
|
|
|
|
/* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
|
|
static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path)
|
|
{
|
|
const char *s = path_init(nd, flags);
|
|
int err;
|
|
|
|
if (unlikely(flags & LOOKUP_DOWN) && !IS_ERR(s)) {
|
|
err = handle_lookup_down(nd);
|
|
if (unlikely(err < 0))
|
|
s = ERR_PTR(err);
|
|
}
|
|
|
|
while (!(err = link_path_walk(s, nd))
|
|
&& ((err = lookup_last(nd)) > 0)) {
|
|
s = trailing_symlink(nd);
|
|
}
|
|
if (!err)
|
|
err = complete_walk(nd);
|
|
|
|
if (!err && nd->flags & LOOKUP_DIRECTORY)
|
|
if (!d_can_lookup(nd->path.dentry))
|
|
err = -ENOTDIR;
|
|
if (!err) {
|
|
*path = nd->path;
|
|
nd->path.mnt = NULL;
|
|
nd->path.dentry = NULL;
|
|
}
|
|
terminate_walk(nd);
|
|
return err;
|
|
}
|
|
|
|
int filename_lookup(int dfd, struct filename *name, unsigned flags,
|
|
struct path *path, struct path *root)
|
|
{
|
|
int retval;
|
|
struct nameidata nd;
|
|
if (IS_ERR(name))
|
|
return PTR_ERR(name);
|
|
if (unlikely(root)) {
|
|
nd.root = *root;
|
|
flags |= LOOKUP_ROOT;
|
|
}
|
|
set_nameidata(&nd, dfd, name);
|
|
retval = path_lookupat(&nd, flags | LOOKUP_RCU, path);
|
|
if (unlikely(retval == -ECHILD))
|
|
retval = path_lookupat(&nd, flags, path);
|
|
if (unlikely(retval == -ESTALE))
|
|
retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path);
|
|
|
|
if (likely(!retval))
|
|
audit_inode(name, path->dentry, 0);
|
|
restore_nameidata();
|
|
putname(name);
|
|
return retval;
|
|
}
|
|
|
|
/* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
|
|
static int path_parentat(struct nameidata *nd, unsigned flags,
|
|
struct path *parent)
|
|
{
|
|
const char *s = path_init(nd, flags);
|
|
int err = link_path_walk(s, nd);
|
|
if (!err)
|
|
err = complete_walk(nd);
|
|
if (!err) {
|
|
*parent = nd->path;
|
|
nd->path.mnt = NULL;
|
|
nd->path.dentry = NULL;
|
|
}
|
|
terminate_walk(nd);
|
|
return err;
|
|
}
|
|
|
|
static struct filename *filename_parentat(int dfd, struct filename *name,
|
|
unsigned int flags, struct path *parent,
|
|
struct qstr *last, int *type)
|
|
{
|
|
int retval;
|
|
struct nameidata nd;
|
|
|
|
if (IS_ERR(name))
|
|
return name;
|
|
set_nameidata(&nd, dfd, name);
|
|
retval = path_parentat(&nd, flags | LOOKUP_RCU, parent);
|
|
if (unlikely(retval == -ECHILD))
|
|
retval = path_parentat(&nd, flags, parent);
|
|
if (unlikely(retval == -ESTALE))
|
|
retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent);
|
|
if (likely(!retval)) {
|
|
*last = nd.last;
|
|
*type = nd.last_type;
|
|
audit_inode(name, parent->dentry, AUDIT_INODE_PARENT);
|
|
} else {
|
|
putname(name);
|
|
name = ERR_PTR(retval);
|
|
}
|
|
restore_nameidata();
|
|
return name;
|
|
}
|
|
|
|
/* does lookup, returns the object with parent locked */
|
|
struct dentry *kern_path_locked(const char *name, struct path *path)
|
|
{
|
|
struct filename *filename;
|
|
struct dentry *d;
|
|
struct qstr last;
|
|
int type;
|
|
|
|
filename = filename_parentat(AT_FDCWD, getname_kernel(name), 0, path,
|
|
&last, &type);
|
|
if (IS_ERR(filename))
|
|
return ERR_CAST(filename);
|
|
if (unlikely(type != LAST_NORM)) {
|
|
path_put(path);
|
|
putname(filename);
|
|
return ERR_PTR(-EINVAL);
|
|
}
|
|
inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
|
|
d = __lookup_hash(&last, path->dentry, 0);
|
|
if (IS_ERR(d)) {
|
|
inode_unlock(path->dentry->d_inode);
|
|
path_put(path);
|
|
}
|
|
putname(filename);
|
|
return d;
|
|
}
|
|
|
|
int kern_path(const char *name, unsigned int flags, struct path *path)
|
|
{
|
|
return filename_lookup(AT_FDCWD, getname_kernel(name),
|
|
flags, path, NULL);
|
|
}
|
|
EXPORT_SYMBOL(kern_path);
|
|
|
|
/**
|
|
* vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
|
|
* @dentry: pointer to dentry of the base directory
|
|
* @mnt: pointer to vfs mount of the base directory
|
|
* @name: pointer to file name
|
|
* @flags: lookup flags
|
|
* @path: pointer to struct path to fill
|
|
*/
|
|
int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
|
|
const char *name, unsigned int flags,
|
|
struct path *path)
|
|
{
|
|
struct path root = {.mnt = mnt, .dentry = dentry};
|
|
/* the first argument of filename_lookup() is ignored with root */
|
|
return filename_lookup(AT_FDCWD, getname_kernel(name),
|
|
flags , path, &root);
|
|
}
|
|
EXPORT_SYMBOL(vfs_path_lookup);
|
|
|
|
static int lookup_one_len_common(const char *name, struct dentry *base,
|
|
int len, struct qstr *this)
|
|
{
|
|
this->name = name;
|
|
this->len = len;
|
|
this->hash = full_name_hash(base, name, len);
|
|
if (!len)
|
|
return -EACCES;
|
|
|
|
if (unlikely(name[0] == '.')) {
|
|
if (len < 2 || (len == 2 && name[1] == '.'))
|
|
return -EACCES;
|
|
}
|
|
|
|
while (len--) {
|
|
unsigned int c = *(const unsigned char *)name++;
|
|
if (c == '/' || c == '\0')
|
|
return -EACCES;
|
|
}
|
|
/*
|
|
* See if the low-level filesystem might want
|
|
* to use its own hash..
|
|
*/
|
|
if (base->d_flags & DCACHE_OP_HASH) {
|
|
int err = base->d_op->d_hash(base, this);
|
|
if (err < 0)
|
|
return err;
|
|
}
|
|
|
|
return inode_permission(base->d_inode, MAY_EXEC);
|
|
}
|
|
|
|
/**
|
|
* try_lookup_one_len - filesystem helper to lookup single pathname component
|
|
* @name: pathname component to lookup
|
|
* @base: base directory to lookup from
|
|
* @len: maximum length @len should be interpreted to
|
|
*
|
|
* Look up a dentry by name in the dcache, returning NULL if it does not
|
|
* currently exist. The function does not try to create a dentry.
|
|
*
|
|
* Note that this routine is purely a helper for filesystem usage and should
|
|
* not be called by generic code.
|
|
*
|
|
* The caller must hold base->i_mutex.
|
|
*/
|
|
struct dentry *try_lookup_one_len(const char *name, struct dentry *base, int len)
|
|
{
|
|
struct qstr this;
|
|
int err;
|
|
|
|
WARN_ON_ONCE(!inode_is_locked(base->d_inode));
|
|
|
|
err = lookup_one_len_common(name, base, len, &this);
|
|
if (err)
|
|
return ERR_PTR(err);
|
|
|
|
return lookup_dcache(&this, base, 0);
|
|
}
|
|
EXPORT_SYMBOL(try_lookup_one_len);
|
|
|
|
/**
|
|
* lookup_one_len - filesystem helper to lookup single pathname component
|
|
* @name: pathname component to lookup
|
|
* @base: base directory to lookup from
|
|
* @len: maximum length @len should be interpreted to
|
|
*
|
|
* Note that this routine is purely a helper for filesystem usage and should
|
|
* not be called by generic code.
|
|
*
|
|
* The caller must hold base->i_mutex.
|
|
*/
|
|
struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
|
|
{
|
|
struct dentry *dentry;
|
|
struct qstr this;
|
|
int err;
|
|
|
|
WARN_ON_ONCE(!inode_is_locked(base->d_inode));
|
|
|
|
err = lookup_one_len_common(name, base, len, &this);
|
|
if (err)
|
|
return ERR_PTR(err);
|
|
|
|
dentry = lookup_dcache(&this, base, 0);
|
|
return dentry ? dentry : __lookup_slow(&this, base, 0);
|
|
}
|
|
EXPORT_SYMBOL(lookup_one_len);
|
|
|
|
/**
|
|
* lookup_one_len_unlocked - filesystem helper to lookup single pathname component
|
|
* @name: pathname component to lookup
|
|
* @base: base directory to lookup from
|
|
* @len: maximum length @len should be interpreted to
|
|
*
|
|
* Note that this routine is purely a helper for filesystem usage and should
|
|
* not be called by generic code.
|
|
*
|
|
* Unlike lookup_one_len, it should be called without the parent
|
|
* i_mutex held, and will take the i_mutex itself if necessary.
|
|
*/
|
|
struct dentry *lookup_one_len_unlocked(const char *name,
|
|
struct dentry *base, int len)
|
|
{
|
|
struct qstr this;
|
|
int err;
|
|
struct dentry *ret;
|
|
|
|
err = lookup_one_len_common(name, base, len, &this);
|
|
if (err)
|
|
return ERR_PTR(err);
|
|
|
|
ret = lookup_dcache(&this, base, 0);
|
|
if (!ret)
|
|
ret = lookup_slow(&this, base, 0);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(lookup_one_len_unlocked);
|
|
|
|
/*
|
|
* Like lookup_one_len_unlocked(), except that it yields ERR_PTR(-ENOENT)
|
|
* on negatives. Returns known positive or ERR_PTR(); that's what
|
|
* most of the users want. Note that pinned negative with unlocked parent
|
|
* _can_ become positive at any time, so callers of lookup_one_len_unlocked()
|
|
* need to be very careful; pinned positives have ->d_inode stable, so
|
|
* this one avoids such problems.
|
|
*/
|
|
struct dentry *lookup_positive_unlocked(const char *name,
|
|
struct dentry *base, int len)
|
|
{
|
|
struct dentry *ret = lookup_one_len_unlocked(name, base, len);
|
|
if (!IS_ERR(ret) && d_flags_negative(smp_load_acquire(&ret->d_flags))) {
|
|
dput(ret);
|
|
ret = ERR_PTR(-ENOENT);
|
|
}
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(lookup_positive_unlocked);
|
|
|
|
#ifdef CONFIG_UNIX98_PTYS
|
|
int path_pts(struct path *path)
|
|
{
|
|
/* Find something mounted on "pts" in the same directory as
|
|
* the input path.
|
|
*/
|
|
struct dentry *child, *parent;
|
|
struct qstr this;
|
|
int ret;
|
|
|
|
ret = path_parent_directory(path);
|
|
if (ret)
|
|
return ret;
|
|
|
|
parent = path->dentry;
|
|
this.name = "pts";
|
|
this.len = 3;
|
|
child = d_hash_and_lookup(parent, &this);
|
|
if (!child)
|
|
return -ENOENT;
|
|
|
|
path->dentry = child;
|
|
dput(parent);
|
|
follow_mount(path);
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
|
|
struct path *path, int *empty)
|
|
{
|
|
return filename_lookup(dfd, getname_flags(name, flags, empty),
|
|
flags, path, NULL);
|
|
}
|
|
EXPORT_SYMBOL(user_path_at_empty);
|
|
|
|
/**
|
|
* path_mountpoint - look up a path to be umounted
|
|
* @nd: lookup context
|
|
* @flags: lookup flags
|
|
* @path: pointer to container for result
|
|
*
|
|
* Look up the given name, but don't attempt to revalidate the last component.
|
|
* Returns 0 and "path" will be valid on success; Returns error otherwise.
|
|
*/
|
|
static int
|
|
path_mountpoint(struct nameidata *nd, unsigned flags, struct path *path)
|
|
{
|
|
const char *s = path_init(nd, flags);
|
|
int err;
|
|
|
|
while (!(err = link_path_walk(s, nd)) &&
|
|
(err = lookup_last(nd)) > 0) {
|
|
s = trailing_symlink(nd);
|
|
}
|
|
if (!err && (nd->flags & LOOKUP_RCU))
|
|
err = unlazy_walk(nd);
|
|
if (!err)
|
|
err = handle_lookup_down(nd);
|
|
if (!err) {
|
|
*path = nd->path;
|
|
nd->path.mnt = NULL;
|
|
nd->path.dentry = NULL;
|
|
}
|
|
terminate_walk(nd);
|
|
return err;
|
|
}
|
|
|
|
static int
|
|
filename_mountpoint(int dfd, struct filename *name, struct path *path,
|
|
unsigned int flags)
|
|
{
|
|
struct nameidata nd;
|
|
int error;
|
|
if (IS_ERR(name))
|
|
return PTR_ERR(name);
|
|
set_nameidata(&nd, dfd, name);
|
|
error = path_mountpoint(&nd, flags | LOOKUP_RCU, path);
|
|
if (unlikely(error == -ECHILD))
|
|
error = path_mountpoint(&nd, flags, path);
|
|
if (unlikely(error == -ESTALE))
|
|
error = path_mountpoint(&nd, flags | LOOKUP_REVAL, path);
|
|
if (likely(!error))
|
|
audit_inode(name, path->dentry, AUDIT_INODE_NOEVAL);
|
|
restore_nameidata();
|
|
putname(name);
|
|
return error;
|
|
}
|
|
|
|
/**
|
|
* user_path_mountpoint_at - lookup a path from userland in order to umount it
|
|
* @dfd: directory file descriptor
|
|
* @name: pathname from userland
|
|
* @flags: lookup flags
|
|
* @path: pointer to container to hold result
|
|
*
|
|
* A umount is a special case for path walking. We're not actually interested
|
|
* in the inode in this situation, and ESTALE errors can be a problem. We
|
|
* simply want track down the dentry and vfsmount attached at the mountpoint
|
|
* and avoid revalidating the last component.
|
|
*
|
|
* Returns 0 and populates "path" on success.
|
|
*/
|
|
int
|
|
user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags,
|
|
struct path *path)
|
|
{
|
|
return filename_mountpoint(dfd, getname(name), path, flags);
|
|
}
|
|
|
|
int
|
|
kern_path_mountpoint(int dfd, const char *name, struct path *path,
|
|
unsigned int flags)
|
|
{
|
|
return filename_mountpoint(dfd, getname_kernel(name), path, flags);
|
|
}
|
|
EXPORT_SYMBOL(kern_path_mountpoint);
|
|
|
|
int __check_sticky(struct inode *dir, struct inode *inode)
|
|
{
|
|
kuid_t fsuid = current_fsuid();
|
|
|
|
if (uid_eq(inode->i_uid, fsuid))
|
|
return 0;
|
|
if (uid_eq(dir->i_uid, fsuid))
|
|
return 0;
|
|
return !capable_wrt_inode_uidgid(inode, CAP_FOWNER);
|
|
}
|
|
EXPORT_SYMBOL(__check_sticky);
|
|
|
|
/*
|
|
* Check whether we can remove a link victim from directory dir, check
|
|
* whether the type of victim is right.
|
|
* 1. We can't do it if dir is read-only (done in permission())
|
|
* 2. We should have write and exec permissions on dir
|
|
* 3. We can't remove anything from append-only dir
|
|
* 4. We can't do anything with immutable dir (done in permission())
|
|
* 5. If the sticky bit on dir is set we should either
|
|
* a. be owner of dir, or
|
|
* b. be owner of victim, or
|
|
* c. have CAP_FOWNER capability
|
|
* 6. If the victim is append-only or immutable we can't do antyhing with
|
|
* links pointing to it.
|
|
* 7. If the victim has an unknown uid or gid we can't change the inode.
|
|
* 8. If we were asked to remove a directory and victim isn't one - ENOTDIR.
|
|
* 9. If we were asked to remove a non-directory and victim isn't one - EISDIR.
|
|
* 10. We can't remove a root or mountpoint.
|
|
* 11. We don't allow removal of NFS sillyrenamed files; it's handled by
|
|
* nfs_async_unlink().
|
|
*/
|
|
static int may_delete(struct inode *dir, struct dentry *victim, bool isdir)
|
|
{
|
|
struct inode *inode = d_backing_inode(victim);
|
|
int error;
|
|
|
|
if (d_is_negative(victim))
|
|
return -ENOENT;
|
|
BUG_ON(!inode);
|
|
|
|
BUG_ON(victim->d_parent->d_inode != dir);
|
|
|
|
/* Inode writeback is not safe when the uid or gid are invalid. */
|
|
if (!uid_valid(inode->i_uid) || !gid_valid(inode->i_gid))
|
|
return -EOVERFLOW;
|
|
|
|
audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
|
|
|
|
error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
|
|
if (error)
|
|
return error;
|
|
if (IS_APPEND(dir))
|
|
return -EPERM;
|
|
|
|
if (check_sticky(dir, inode) || IS_APPEND(inode) ||
|
|
IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) || HAS_UNMAPPED_ID(inode))
|
|
return -EPERM;
|
|
if (isdir) {
|
|
if (!d_is_dir(victim))
|
|
return -ENOTDIR;
|
|
if (IS_ROOT(victim))
|
|
return -EBUSY;
|
|
} else if (d_is_dir(victim))
|
|
return -EISDIR;
|
|
if (IS_DEADDIR(dir))
|
|
return -ENOENT;
|
|
if (victim->d_flags & DCACHE_NFSFS_RENAMED)
|
|
return -EBUSY;
|
|
return 0;
|
|
}
|
|
|
|
/* Check whether we can create an object with dentry child in directory
|
|
* dir.
|
|
* 1. We can't do it if child already exists (open has special treatment for
|
|
* this case, but since we are inlined it's OK)
|
|
* 2. We can't do it if dir is read-only (done in permission())
|
|
* 3. We can't do it if the fs can't represent the fsuid or fsgid.
|
|
* 4. We should have write and exec permissions on dir
|
|
* 5. We can't do it if dir is immutable (done in permission())
|
|
*/
|
|
static inline int may_create(struct inode *dir, struct dentry *child)
|
|
{
|
|
struct user_namespace *s_user_ns;
|
|
audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
|
|
if (child->d_inode)
|
|
return -EEXIST;
|
|
if (IS_DEADDIR(dir))
|
|
return -ENOENT;
|
|
s_user_ns = dir->i_sb->s_user_ns;
|
|
if (!kuid_has_mapping(s_user_ns, current_fsuid()) ||
|
|
!kgid_has_mapping(s_user_ns, current_fsgid()))
|
|
return -EOVERFLOW;
|
|
return inode_permission(dir, MAY_WRITE | MAY_EXEC);
|
|
}
|
|
|
|
/*
|
|
* p1 and p2 should be directories on the same fs.
|
|
*/
|
|
struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
|
|
{
|
|
struct dentry *p;
|
|
|
|
if (p1 == p2) {
|
|
inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
|
|
return NULL;
|
|
}
|
|
|
|
mutex_lock(&p1->d_sb->s_vfs_rename_mutex);
|
|
|
|
p = d_ancestor(p2, p1);
|
|
if (p) {
|
|
inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
|
|
inode_lock_nested(p1->d_inode, I_MUTEX_CHILD);
|
|
return p;
|
|
}
|
|
|
|
p = d_ancestor(p1, p2);
|
|
if (p) {
|
|
inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
|
|
inode_lock_nested(p2->d_inode, I_MUTEX_CHILD);
|
|
return p;
|
|
}
|
|
|
|
inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
|
|
inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
|
|
return NULL;
|
|
}
|
|
EXPORT_SYMBOL(lock_rename);
|
|
|
|
void unlock_rename(struct dentry *p1, struct dentry *p2)
|
|
{
|
|
inode_unlock(p1->d_inode);
|
|
if (p1 != p2) {
|
|
inode_unlock(p2->d_inode);
|
|
mutex_unlock(&p1->d_sb->s_vfs_rename_mutex);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(unlock_rename);
|
|
|
|
int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
|
|
bool want_excl)
|
|
{
|
|
int error = may_create(dir, dentry);
|
|
if (error)
|
|
return error;
|
|
|
|
if (!dir->i_op->create)
|
|
return -EACCES; /* shouldn't it be ENOSYS? */
|
|
mode &= S_IALLUGO;
|
|
mode |= S_IFREG;
|
|
error = security_inode_create(dir, dentry, mode);
|
|
if (error)
|
|
return error;
|
|
error = dir->i_op->create(dir, dentry, mode, want_excl);
|
|
if (!error)
|
|
fsnotify_create(dir, dentry);
|
|
return error;
|
|
}
|
|
EXPORT_SYMBOL(vfs_create);
|
|
|
|
int vfs_mkobj(struct dentry *dentry, umode_t mode,
|
|
int (*f)(struct dentry *, umode_t, void *),
|
|
void *arg)
|
|
{
|
|
struct inode *dir = dentry->d_parent->d_inode;
|
|
int error = may_create(dir, dentry);
|
|
if (error)
|
|
return error;
|
|
|
|
mode &= S_IALLUGO;
|
|
mode |= S_IFREG;
|
|
error = security_inode_create(dir, dentry, mode);
|
|
if (error)
|
|
return error;
|
|
error = f(dentry, mode, arg);
|
|
if (!error)
|
|
fsnotify_create(dir, dentry);
|
|
return error;
|
|
}
|
|
EXPORT_SYMBOL(vfs_mkobj);
|
|
|
|
bool may_open_dev(const struct path *path)
|
|
{
|
|
return !(path->mnt->mnt_flags & MNT_NODEV) &&
|
|
!(path->mnt->mnt_sb->s_iflags & SB_I_NODEV);
|
|
}
|
|
|
|
static int may_open(const struct path *path, int acc_mode, int flag)
|
|
{
|
|
struct dentry *dentry = path->dentry;
|
|
struct inode *inode = dentry->d_inode;
|
|
int error;
|
|
|
|
if (!inode)
|
|
return -ENOENT;
|
|
|
|
switch (inode->i_mode & S_IFMT) {
|
|
case S_IFLNK:
|
|
return -ELOOP;
|
|
case S_IFDIR:
|
|
if (acc_mode & MAY_WRITE)
|
|
return -EISDIR;
|
|
break;
|
|
case S_IFBLK:
|
|
case S_IFCHR:
|
|
if (!may_open_dev(path))
|
|
return -EACCES;
|
|
/*FALLTHRU*/
|
|
case S_IFIFO:
|
|
case S_IFSOCK:
|
|
flag &= ~O_TRUNC;
|
|
break;
|
|
}
|
|
|
|
error = inode_permission(inode, MAY_OPEN | acc_mode);
|
|
if (error)
|
|
return error;
|
|
|
|
/*
|
|
* An append-only file must be opened in append mode for writing.
|
|
*/
|
|
if (IS_APPEND(inode)) {
|
|
if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
|
|
return -EPERM;
|
|
if (flag & O_TRUNC)
|
|
return -EPERM;
|
|
}
|
|
|
|
/* O_NOATIME can only be set by the owner or superuser */
|
|
if (flag & O_NOATIME && !inode_owner_or_capable(inode))
|
|
return -EPERM;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int handle_truncate(struct file *filp)
|
|
{
|
|
const struct path *path = &filp->f_path;
|
|
struct inode *inode = path->dentry->d_inode;
|
|
int error = get_write_access(inode);
|
|
if (error)
|
|
return error;
|
|
/*
|
|
* Refuse to truncate files with mandatory locks held on them.
|
|
*/
|
|
error = locks_verify_locked(filp);
|
|
if (!error)
|
|
error = security_path_truncate(path);
|
|
if (!error) {
|
|
error = do_truncate(path->dentry, 0,
|
|
ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
|
|
filp);
|
|
}
|
|
put_write_access(inode);
|
|
return error;
|
|
}
|
|
|
|
static inline int open_to_namei_flags(int flag)
|
|
{
|
|
if ((flag & O_ACCMODE) == 3)
|
|
flag--;
|
|
return flag;
|
|
}
|
|
|
|
static int may_o_create(const struct path *dir, struct dentry *dentry, umode_t mode)
|
|
{
|
|
struct user_namespace *s_user_ns;
|
|
int error = security_path_mknod(dir, dentry, mode, 0);
|
|
if (error)
|
|
return error;
|
|
|
|
s_user_ns = dir->dentry->d_sb->s_user_ns;
|
|
if (!kuid_has_mapping(s_user_ns, current_fsuid()) ||
|
|
!kgid_has_mapping(s_user_ns, current_fsgid()))
|
|
return -EOVERFLOW;
|
|
|
|
error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
|
|
if (error)
|
|
return error;
|
|
|
|
return security_inode_create(dir->dentry->d_inode, dentry, mode);
|
|
}
|
|
|
|
/*
|
|
* Attempt to atomically look up, create and open a file from a negative
|
|
* dentry.
|
|
*
|
|
* Returns 0 if successful. The file will have been created and attached to
|
|
* @file by the filesystem calling finish_open().
|
|
*
|
|
* If the file was looked up only or didn't need creating, FMODE_OPENED won't
|
|
* be set. The caller will need to perform the open themselves. @path will
|
|
* have been updated to point to the new dentry. This may be negative.
|
|
*
|
|
* Returns an error code otherwise.
|
|
*/
|
|
static int atomic_open(struct nameidata *nd, struct dentry *dentry,
|
|
struct path *path, struct file *file,
|
|
const struct open_flags *op,
|
|
int open_flag, umode_t mode)
|
|
{
|
|
struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
|
|
struct inode *dir = nd->path.dentry->d_inode;
|
|
int error;
|
|
|
|
if (!(~open_flag & (O_EXCL | O_CREAT))) /* both O_EXCL and O_CREAT */
|
|
open_flag &= ~O_TRUNC;
|
|
|
|
if (nd->flags & LOOKUP_DIRECTORY)
|
|
open_flag |= O_DIRECTORY;
|
|
|
|
file->f_path.dentry = DENTRY_NOT_SET;
|
|
file->f_path.mnt = nd->path.mnt;
|
|
error = dir->i_op->atomic_open(dir, dentry, file,
|
|
open_to_namei_flags(open_flag), mode);
|
|
d_lookup_done(dentry);
|
|
if (!error) {
|
|
if (file->f_mode & FMODE_OPENED) {
|
|
/*
|
|
* We didn't have the inode before the open, so check open
|
|
* permission here.
|
|
*/
|
|
int acc_mode = op->acc_mode;
|
|
if (file->f_mode & FMODE_CREATED) {
|
|
WARN_ON(!(open_flag & O_CREAT));
|
|
fsnotify_create(dir, dentry);
|
|
acc_mode = 0;
|
|
}
|
|
error = may_open(&file->f_path, acc_mode, open_flag);
|
|
if (WARN_ON(error > 0))
|
|
error = -EINVAL;
|
|
} else if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
|
|
error = -EIO;
|
|
} else {
|
|
if (file->f_path.dentry) {
|
|
dput(dentry);
|
|
dentry = file->f_path.dentry;
|
|
}
|
|
if (file->f_mode & FMODE_CREATED)
|
|
fsnotify_create(dir, dentry);
|
|
if (unlikely(d_is_negative(dentry))) {
|
|
error = -ENOENT;
|
|
} else {
|
|
path->dentry = dentry;
|
|
path->mnt = nd->path.mnt;
|
|
return 0;
|
|
}
|
|
}
|
|
}
|
|
dput(dentry);
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Look up and maybe create and open the last component.
|
|
*
|
|
* Must be called with parent locked (exclusive in O_CREAT case).
|
|
*
|
|
* Returns 0 on success, that is, if
|
|
* the file was successfully atomically created (if necessary) and opened, or
|
|
* the file was not completely opened at this time, though lookups and
|
|
* creations were performed.
|
|
* These case are distinguished by presence of FMODE_OPENED on file->f_mode.
|
|
* In the latter case dentry returned in @path might be negative if O_CREAT
|
|
* hadn't been specified.
|
|
*
|
|
* An error code is returned on failure.
|
|
*/
|
|
static int lookup_open(struct nameidata *nd, struct path *path,
|
|
struct file *file,
|
|
const struct open_flags *op,
|
|
bool got_write)
|
|
{
|
|
struct dentry *dir = nd->path.dentry;
|
|
struct inode *dir_inode = dir->d_inode;
|
|
int open_flag = op->open_flag;
|
|
struct dentry *dentry;
|
|
int error, create_error = 0;
|
|
umode_t mode = op->mode;
|
|
DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
|
|
|
|
if (unlikely(IS_DEADDIR(dir_inode)))
|
|
return -ENOENT;
|
|
|
|
file->f_mode &= ~FMODE_CREATED;
|
|
dentry = d_lookup(dir, &nd->last);
|
|
for (;;) {
|
|
if (!dentry) {
|
|
dentry = d_alloc_parallel(dir, &nd->last, &wq);
|
|
if (IS_ERR(dentry))
|
|
return PTR_ERR(dentry);
|
|
}
|
|
if (d_in_lookup(dentry))
|
|
break;
|
|
|
|
error = d_revalidate(dentry, nd->flags);
|
|
if (likely(error > 0))
|
|
break;
|
|
if (error)
|
|
goto out_dput;
|
|
d_invalidate(dentry);
|
|
dput(dentry);
|
|
dentry = NULL;
|
|
}
|
|
if (dentry->d_inode) {
|
|
/* Cached positive dentry: will open in f_op->open */
|
|
goto out_no_open;
|
|
}
|
|
|
|
/*
|
|
* Checking write permission is tricky, bacuse we don't know if we are
|
|
* going to actually need it: O_CREAT opens should work as long as the
|
|
* file exists. But checking existence breaks atomicity. The trick is
|
|
* to check access and if not granted clear O_CREAT from the flags.
|
|
*
|
|
* Another problem is returing the "right" error value (e.g. for an
|
|
* O_EXCL open we want to return EEXIST not EROFS).
|
|
*/
|
|
if (open_flag & O_CREAT) {
|
|
if (!IS_POSIXACL(dir->d_inode))
|
|
mode &= ~current_umask();
|
|
if (unlikely(!got_write)) {
|
|
create_error = -EROFS;
|
|
open_flag &= ~O_CREAT;
|
|
if (open_flag & (O_EXCL | O_TRUNC))
|
|
goto no_open;
|
|
/* No side effects, safe to clear O_CREAT */
|
|
} else {
|
|
create_error = may_o_create(&nd->path, dentry, mode);
|
|
if (create_error) {
|
|
open_flag &= ~O_CREAT;
|
|
if (open_flag & O_EXCL)
|
|
goto no_open;
|
|
}
|
|
}
|
|
} else if ((open_flag & (O_TRUNC|O_WRONLY|O_RDWR)) &&
|
|
unlikely(!got_write)) {
|
|
/*
|
|
* No O_CREATE -> atomicity not a requirement -> fall
|
|
* back to lookup + open
|
|
*/
|
|
goto no_open;
|
|
}
|
|
|
|
if (dir_inode->i_op->atomic_open) {
|
|
error = atomic_open(nd, dentry, path, file, op, open_flag,
|
|
mode);
|
|
if (unlikely(error == -ENOENT) && create_error)
|
|
error = create_error;
|
|
return error;
|
|
}
|
|
|
|
no_open:
|
|
if (d_in_lookup(dentry)) {
|
|
struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry,
|
|
nd->flags);
|
|
d_lookup_done(dentry);
|
|
if (unlikely(res)) {
|
|
if (IS_ERR(res)) {
|
|
error = PTR_ERR(res);
|
|
goto out_dput;
|
|
}
|
|
dput(dentry);
|
|
dentry = res;
|
|
}
|
|
}
|
|
|
|
/* Negative dentry, just create the file */
|
|
if (!dentry->d_inode && (open_flag & O_CREAT)) {
|
|
file->f_mode |= FMODE_CREATED;
|
|
audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE);
|
|
if (!dir_inode->i_op->create) {
|
|
error = -EACCES;
|
|
goto out_dput;
|
|
}
|
|
error = dir_inode->i_op->create(dir_inode, dentry, mode,
|
|
open_flag & O_EXCL);
|
|
if (error)
|
|
goto out_dput;
|
|
fsnotify_create(dir_inode, dentry);
|
|
}
|
|
if (unlikely(create_error) && !dentry->d_inode) {
|
|
error = create_error;
|
|
goto out_dput;
|
|
}
|
|
out_no_open:
|
|
path->dentry = dentry;
|
|
path->mnt = nd->path.mnt;
|
|
return 0;
|
|
|
|
out_dput:
|
|
dput(dentry);
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Handle the last step of open()
|
|
*/
|
|
static int do_last(struct nameidata *nd,
|
|
struct file *file, const struct open_flags *op)
|
|
{
|
|
struct dentry *dir = nd->path.dentry;
|
|
kuid_t dir_uid = dir->d_inode->i_uid;
|
|
umode_t dir_mode = dir->d_inode->i_mode;
|
|
int open_flag = op->open_flag;
|
|
bool will_truncate = (open_flag & O_TRUNC) != 0;
|
|
bool got_write = false;
|
|
int acc_mode = op->acc_mode;
|
|
unsigned seq;
|
|
struct inode *inode;
|
|
struct path path;
|
|
int error;
|
|
|
|
nd->flags &= ~LOOKUP_PARENT;
|
|
nd->flags |= op->intent;
|
|
|
|
if (nd->last_type != LAST_NORM) {
|
|
error = handle_dots(nd, nd->last_type);
|
|
if (unlikely(error))
|
|
return error;
|
|
goto finish_open;
|
|
}
|
|
|
|
if (!(open_flag & O_CREAT)) {
|
|
if (nd->last.name[nd->last.len])
|
|
nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
|
|
/* we _can_ be in RCU mode here */
|
|
error = lookup_fast(nd, &path, &inode, &seq);
|
|
if (likely(error > 0))
|
|
goto finish_lookup;
|
|
|
|
if (error < 0)
|
|
return error;
|
|
|
|
BUG_ON(nd->inode != dir->d_inode);
|
|
BUG_ON(nd->flags & LOOKUP_RCU);
|
|
} else {
|
|
/* create side of things */
|
|
/*
|
|
* This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
|
|
* has been cleared when we got to the last component we are
|
|
* about to look up
|
|
*/
|
|
error = complete_walk(nd);
|
|
if (error)
|
|
return error;
|
|
|
|
audit_inode(nd->name, dir, AUDIT_INODE_PARENT);
|
|
/* trailing slashes? */
|
|
if (unlikely(nd->last.name[nd->last.len]))
|
|
return -EISDIR;
|
|
}
|
|
|
|
if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
|
|
error = mnt_want_write(nd->path.mnt);
|
|
if (!error)
|
|
got_write = true;
|
|
/*
|
|
* do _not_ fail yet - we might not need that or fail with
|
|
* a different error; let lookup_open() decide; we'll be
|
|
* dropping this one anyway.
|
|
*/
|
|
}
|
|
if (open_flag & O_CREAT)
|
|
inode_lock(dir->d_inode);
|
|
else
|
|
inode_lock_shared(dir->d_inode);
|
|
error = lookup_open(nd, &path, file, op, got_write);
|
|
if (open_flag & O_CREAT)
|
|
inode_unlock(dir->d_inode);
|
|
else
|
|
inode_unlock_shared(dir->d_inode);
|
|
|
|
if (error)
|
|
goto out;
|
|
|
|
if (file->f_mode & FMODE_OPENED) {
|
|
if ((file->f_mode & FMODE_CREATED) ||
|
|
!S_ISREG(file_inode(file)->i_mode))
|
|
will_truncate = false;
|
|
|
|
audit_inode(nd->name, file->f_path.dentry, 0);
|
|
goto opened;
|
|
}
|
|
|
|
if (file->f_mode & FMODE_CREATED) {
|
|
/* Don't check for write permission, don't truncate */
|
|
open_flag &= ~O_TRUNC;
|
|
will_truncate = false;
|
|
acc_mode = 0;
|
|
path_to_nameidata(&path, nd);
|
|
goto finish_open_created;
|
|
}
|
|
|
|
/*
|
|
* If atomic_open() acquired write access it is dropped now due to
|
|
* possible mount and symlink following (this might be optimized away if
|
|
* necessary...)
|
|
*/
|
|
if (got_write) {
|
|
mnt_drop_write(nd->path.mnt);
|
|
got_write = false;
|
|
}
|
|
|
|
error = follow_managed(&path, nd);
|
|
if (unlikely(error < 0))
|
|
return error;
|
|
|
|
/*
|
|
* create/update audit record if it already exists.
|
|
*/
|
|
audit_inode(nd->name, path.dentry, 0);
|
|
|
|
if (unlikely((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))) {
|
|
path_to_nameidata(&path, nd);
|
|
return -EEXIST;
|
|
}
|
|
|
|
seq = 0; /* out of RCU mode, so the value doesn't matter */
|
|
inode = d_backing_inode(path.dentry);
|
|
finish_lookup:
|
|
error = step_into(nd, &path, 0, inode, seq);
|
|
if (unlikely(error))
|
|
return error;
|
|
finish_open:
|
|
/* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */
|
|
error = complete_walk(nd);
|
|
if (error)
|
|
return error;
|
|
audit_inode(nd->name, nd->path.dentry, 0);
|
|
if (open_flag & O_CREAT) {
|
|
error = -EISDIR;
|
|
if (d_is_dir(nd->path.dentry))
|
|
goto out;
|
|
error = may_create_in_sticky(dir_mode, dir_uid,
|
|
d_backing_inode(nd->path.dentry));
|
|
if (unlikely(error))
|
|
goto out;
|
|
}
|
|
error = -ENOTDIR;
|
|
if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
|
|
goto out;
|
|
if (!d_is_reg(nd->path.dentry))
|
|
will_truncate = false;
|
|
|
|
if (will_truncate) {
|
|
error = mnt_want_write(nd->path.mnt);
|
|
if (error)
|
|
goto out;
|
|
got_write = true;
|
|
}
|
|
finish_open_created:
|
|
error = may_open(&nd->path, acc_mode, open_flag);
|
|
if (error)
|
|
goto out;
|
|
BUG_ON(file->f_mode & FMODE_OPENED); /* once it's opened, it's opened */
|
|
error = vfs_open(&nd->path, file);
|
|
if (error)
|
|
goto out;
|
|
opened:
|
|
error = ima_file_check(file, op->acc_mode);
|
|
if (!error && will_truncate)
|
|
error = handle_truncate(file);
|
|
out:
|
|
if (unlikely(error > 0)) {
|
|
WARN_ON(1);
|
|
error = -EINVAL;
|
|
}
|
|
if (got_write)
|
|
mnt_drop_write(nd->path.mnt);
|
|
return error;
|
|
}
|
|
|
|
struct dentry *vfs_tmpfile(struct dentry *dentry, umode_t mode, int open_flag)
|
|
{
|
|
struct dentry *child = NULL;
|
|
struct inode *dir = dentry->d_inode;
|
|
struct inode *inode;
|
|
int error;
|
|
|
|
/* we want directory to be writable */
|
|
error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
|
|
if (error)
|
|
goto out_err;
|
|
error = -EOPNOTSUPP;
|
|
if (!dir->i_op->tmpfile)
|
|
goto out_err;
|
|
error = -ENOMEM;
|
|
child = d_alloc(dentry, &slash_name);
|
|
if (unlikely(!child))
|
|
goto out_err;
|
|
error = dir->i_op->tmpfile(dir, child, mode);
|
|
if (error)
|
|
goto out_err;
|
|
error = -ENOENT;
|
|
inode = child->d_inode;
|
|
if (unlikely(!inode))
|
|
goto out_err;
|
|
if (!(open_flag & O_EXCL)) {
|
|
spin_lock(&inode->i_lock);
|
|
inode->i_state |= I_LINKABLE;
|
|
spin_unlock(&inode->i_lock);
|
|
}
|
|
ima_post_create_tmpfile(inode);
|
|
return child;
|
|
|
|
out_err:
|
|
dput(child);
|
|
return ERR_PTR(error);
|
|
}
|
|
EXPORT_SYMBOL(vfs_tmpfile);
|
|
|
|
static int do_tmpfile(struct nameidata *nd, unsigned flags,
|
|
const struct open_flags *op,
|
|
struct file *file)
|
|
{
|
|
struct dentry *child;
|
|
struct path path;
|
|
int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path);
|
|
if (unlikely(error))
|
|
return error;
|
|
error = mnt_want_write(path.mnt);
|
|
if (unlikely(error))
|
|
goto out;
|
|
child = vfs_tmpfile(path.dentry, op->mode, op->open_flag);
|
|
error = PTR_ERR(child);
|
|
if (IS_ERR(child))
|
|
goto out2;
|
|
dput(path.dentry);
|
|
path.dentry = child;
|
|
audit_inode(nd->name, child, 0);
|
|
/* Don't check for other permissions, the inode was just created */
|
|
error = may_open(&path, 0, op->open_flag);
|
|
if (error)
|
|
goto out2;
|
|
file->f_path.mnt = path.mnt;
|
|
error = finish_open(file, child, NULL);
|
|
out2:
|
|
mnt_drop_write(path.mnt);
|
|
out:
|
|
path_put(&path);
|
|
return error;
|
|
}
|
|
|
|
static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file)
|
|
{
|
|
struct path path;
|
|
int error = path_lookupat(nd, flags, &path);
|
|
if (!error) {
|
|
audit_inode(nd->name, path.dentry, 0);
|
|
error = vfs_open(&path, file);
|
|
path_put(&path);
|
|
}
|
|
return error;
|
|
}
|
|
|
|
static struct file *path_openat(struct nameidata *nd,
|
|
const struct open_flags *op, unsigned flags)
|
|
{
|
|
struct file *file;
|
|
int error;
|
|
|
|
file = alloc_empty_file(op->open_flag, current_cred());
|
|
if (IS_ERR(file))
|
|
return file;
|
|
|
|
if (unlikely(file->f_flags & __O_TMPFILE)) {
|
|
error = do_tmpfile(nd, flags, op, file);
|
|
} else if (unlikely(file->f_flags & O_PATH)) {
|
|
error = do_o_path(nd, flags, file);
|
|
} else {
|
|
const char *s = path_init(nd, flags);
|
|
while (!(error = link_path_walk(s, nd)) &&
|
|
(error = do_last(nd, file, op)) > 0) {
|
|
nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
|
|
s = trailing_symlink(nd);
|
|
}
|
|
terminate_walk(nd);
|
|
}
|
|
if (likely(!error)) {
|
|
if (likely(file->f_mode & FMODE_OPENED))
|
|
return file;
|
|
WARN_ON(1);
|
|
error = -EINVAL;
|
|
}
|
|
fput(file);
|
|
if (error == -EOPENSTALE) {
|
|
if (flags & LOOKUP_RCU)
|
|
error = -ECHILD;
|
|
else
|
|
error = -ESTALE;
|
|
}
|
|
return ERR_PTR(error);
|
|
}
|
|
|
|
struct file *do_filp_open(int dfd, struct filename *pathname,
|
|
const struct open_flags *op)
|
|
{
|
|
struct nameidata nd;
|
|
int flags = op->lookup_flags;
|
|
struct file *filp;
|
|
|
|
set_nameidata(&nd, dfd, pathname);
|
|
filp = path_openat(&nd, op, flags | LOOKUP_RCU);
|
|
if (unlikely(filp == ERR_PTR(-ECHILD)))
|
|
filp = path_openat(&nd, op, flags);
|
|
if (unlikely(filp == ERR_PTR(-ESTALE)))
|
|
filp = path_openat(&nd, op, flags | LOOKUP_REVAL);
|
|
restore_nameidata();
|
|
return filp;
|
|
}
|
|
|
|
struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
|
|
const char *name, const struct open_flags *op)
|
|
{
|
|
struct nameidata nd;
|
|
struct file *file;
|
|
struct filename *filename;
|
|
int flags = op->lookup_flags | LOOKUP_ROOT;
|
|
|
|
nd.root.mnt = mnt;
|
|
nd.root.dentry = dentry;
|
|
|
|
if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
|
|
return ERR_PTR(-ELOOP);
|
|
|
|
filename = getname_kernel(name);
|
|
if (IS_ERR(filename))
|
|
return ERR_CAST(filename);
|
|
|
|
set_nameidata(&nd, -1, filename);
|
|
file = path_openat(&nd, op, flags | LOOKUP_RCU);
|
|
if (unlikely(file == ERR_PTR(-ECHILD)))
|
|
file = path_openat(&nd, op, flags);
|
|
if (unlikely(file == ERR_PTR(-ESTALE)))
|
|
file = path_openat(&nd, op, flags | LOOKUP_REVAL);
|
|
restore_nameidata();
|
|
putname(filename);
|
|
return file;
|
|
}
|
|
|
|
static struct dentry *filename_create(int dfd, struct filename *name,
|
|
struct path *path, unsigned int lookup_flags)
|
|
{
|
|
struct dentry *dentry = ERR_PTR(-EEXIST);
|
|
struct qstr last;
|
|
int type;
|
|
int err2;
|
|
int error;
|
|
bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
|
|
|
|
/*
|
|
* Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
|
|
* other flags passed in are ignored!
|
|
*/
|
|
lookup_flags &= LOOKUP_REVAL;
|
|
|
|
name = filename_parentat(dfd, name, lookup_flags, path, &last, &type);
|
|
if (IS_ERR(name))
|
|
return ERR_CAST(name);
|
|
|
|
/*
|
|
* Yucky last component or no last component at all?
|
|
* (foo/., foo/.., /////)
|
|
*/
|
|
if (unlikely(type != LAST_NORM))
|
|
goto out;
|
|
|
|
/* don't fail immediately if it's r/o, at least try to report other errors */
|
|
err2 = mnt_want_write(path->mnt);
|
|
/*
|
|
* Do the final lookup.
|
|
*/
|
|
lookup_flags |= LOOKUP_CREATE | LOOKUP_EXCL;
|
|
inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
|
|
dentry = __lookup_hash(&last, path->dentry, lookup_flags);
|
|
if (IS_ERR(dentry))
|
|
goto unlock;
|
|
|
|
error = -EEXIST;
|
|
if (d_is_positive(dentry))
|
|
goto fail;
|
|
|
|
/*
|
|
* Special case - lookup gave negative, but... we had foo/bar/
|
|
* From the vfs_mknod() POV we just have a negative dentry -
|
|
* all is fine. Let's be bastards - you had / on the end, you've
|
|
* been asking for (non-existent) directory. -ENOENT for you.
|
|
*/
|
|
if (unlikely(!is_dir && last.name[last.len])) {
|
|
error = -ENOENT;
|
|
goto fail;
|
|
}
|
|
if (unlikely(err2)) {
|
|
error = err2;
|
|
goto fail;
|
|
}
|
|
putname(name);
|
|
return dentry;
|
|
fail:
|
|
dput(dentry);
|
|
dentry = ERR_PTR(error);
|
|
unlock:
|
|
inode_unlock(path->dentry->d_inode);
|
|
if (!err2)
|
|
mnt_drop_write(path->mnt);
|
|
out:
|
|
path_put(path);
|
|
putname(name);
|
|
return dentry;
|
|
}
|
|
|
|
struct dentry *kern_path_create(int dfd, const char *pathname,
|
|
struct path *path, unsigned int lookup_flags)
|
|
{
|
|
return filename_create(dfd, getname_kernel(pathname),
|
|
path, lookup_flags);
|
|
}
|
|
EXPORT_SYMBOL(kern_path_create);
|
|
|
|
void done_path_create(struct path *path, struct dentry *dentry)
|
|
{
|
|
dput(dentry);
|
|
inode_unlock(path->dentry->d_inode);
|
|
mnt_drop_write(path->mnt);
|
|
path_put(path);
|
|
}
|
|
EXPORT_SYMBOL(done_path_create);
|
|
|
|
inline struct dentry *user_path_create(int dfd, const char __user *pathname,
|
|
struct path *path, unsigned int lookup_flags)
|
|
{
|
|
return filename_create(dfd, getname(pathname), path, lookup_flags);
|
|
}
|
|
EXPORT_SYMBOL(user_path_create);
|
|
|
|
int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
|
|
{
|
|
int error = may_create(dir, dentry);
|
|
|
|
if (error)
|
|
return error;
|
|
|
|
if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
|
|
return -EPERM;
|
|
|
|
if (!dir->i_op->mknod)
|
|
return -EPERM;
|
|
|
|
error = devcgroup_inode_mknod(mode, dev);
|
|
if (error)
|
|
return error;
|
|
|
|
error = security_inode_mknod(dir, dentry, mode, dev);
|
|
if (error)
|
|
return error;
|
|
|
|
error = dir->i_op->mknod(dir, dentry, mode, dev);
|
|
if (!error)
|
|
fsnotify_create(dir, dentry);
|
|
return error;
|
|
}
|
|
EXPORT_SYMBOL(vfs_mknod);
|
|
|
|
static int may_mknod(umode_t mode)
|
|
{
|
|
switch (mode & S_IFMT) {
|
|
case S_IFREG:
|
|
case S_IFCHR:
|
|
case S_IFBLK:
|
|
case S_IFIFO:
|
|
case S_IFSOCK:
|
|
case 0: /* zero mode translates to S_IFREG */
|
|
return 0;
|
|
case S_IFDIR:
|
|
return -EPERM;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
long do_mknodat(int dfd, const char __user *filename, umode_t mode,
|
|
unsigned int dev)
|
|
{
|
|
struct dentry *dentry;
|
|
struct path path;
|
|
int error;
|
|
unsigned int lookup_flags = 0;
|
|
|
|
error = may_mknod(mode);
|
|
if (error)
|
|
return error;
|
|
retry:
|
|
dentry = user_path_create(dfd, filename, &path, lookup_flags);
|
|
if (IS_ERR(dentry))
|
|
return PTR_ERR(dentry);
|
|
|
|
if (!IS_POSIXACL(path.dentry->d_inode))
|
|
mode &= ~current_umask();
|
|
error = security_path_mknod(&path, dentry, mode, dev);
|
|
if (error)
|
|
goto out;
|
|
switch (mode & S_IFMT) {
|
|
case 0: case S_IFREG:
|
|
error = vfs_create(path.dentry->d_inode,dentry,mode,true);
|
|
if (!error)
|
|
ima_post_path_mknod(dentry);
|
|
break;
|
|
case S_IFCHR: case S_IFBLK:
|
|
error = vfs_mknod(path.dentry->d_inode,dentry,mode,
|
|
new_decode_dev(dev));
|
|
break;
|
|
case S_IFIFO: case S_IFSOCK:
|
|
error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
|
|
break;
|
|
}
|
|
out:
|
|
done_path_create(&path, dentry);
|
|
if (retry_estale(error, lookup_flags)) {
|
|
lookup_flags |= LOOKUP_REVAL;
|
|
goto retry;
|
|
}
|
|
return error;
|
|
}
|
|
|
|
SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
|
|
unsigned int, dev)
|
|
{
|
|
return do_mknodat(dfd, filename, mode, dev);
|
|
}
|
|
|
|
SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
|
|
{
|
|
return do_mknodat(AT_FDCWD, filename, mode, dev);
|
|
}
|
|
|
|
int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
|
|
{
|
|
int error = may_create(dir, dentry);
|
|
unsigned max_links = dir->i_sb->s_max_links;
|
|
|
|
if (error)
|
|
return error;
|
|
|
|
if (!dir->i_op->mkdir)
|
|
return -EPERM;
|
|
|
|
mode &= (S_IRWXUGO|S_ISVTX);
|
|
error = security_inode_mkdir(dir, dentry, mode);
|
|
if (error)
|
|
return error;
|
|
|
|
if (max_links && dir->i_nlink >= max_links)
|
|
return -EMLINK;
|
|
|
|
error = dir->i_op->mkdir(dir, dentry, mode);
|
|
if (!error)
|
|
fsnotify_mkdir(dir, dentry);
|
|
return error;
|
|
}
|
|
EXPORT_SYMBOL(vfs_mkdir);
|
|
|
|
long do_mkdirat(int dfd, const char __user *pathname, umode_t mode)
|
|
{
|
|
struct dentry *dentry;
|
|
struct path path;
|
|
int error;
|
|
unsigned int lookup_flags = LOOKUP_DIRECTORY;
|
|
|
|
retry:
|
|
dentry = user_path_create(dfd, pathname, &path, lookup_flags);
|
|
if (IS_ERR(dentry))
|
|
return PTR_ERR(dentry);
|
|
|
|
if (!IS_POSIXACL(path.dentry->d_inode))
|
|
mode &= ~current_umask();
|
|
error = security_path_mkdir(&path, dentry, mode);
|
|
if (!error)
|
|
error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
|
|
done_path_create(&path, dentry);
|
|
if (retry_estale(error, lookup_flags)) {
|
|
lookup_flags |= LOOKUP_REVAL;
|
|
goto retry;
|
|
}
|
|
return error;
|
|
}
|
|
|
|
SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
|
|
{
|
|
return do_mkdirat(dfd, pathname, mode);
|
|
}
|
|
|
|
SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
|
|
{
|
|
return do_mkdirat(AT_FDCWD, pathname, mode);
|
|
}
|
|
|
|
int vfs_rmdir(struct inode *dir, struct dentry *dentry)
|
|
{
|
|
int error = may_delete(dir, dentry, 1);
|
|
|
|
if (error)
|
|
return error;
|
|
|
|
if (!dir->i_op->rmdir)
|
|
return -EPERM;
|
|
|
|
dget(dentry);
|
|
inode_lock(dentry->d_inode);
|
|
|
|
error = -EBUSY;
|
|
if (is_local_mountpoint(dentry))
|
|
goto out;
|
|
|
|
error = security_inode_rmdir(dir, dentry);
|
|
if (error)
|
|
goto out;
|
|
|
|
error = dir->i_op->rmdir(dir, dentry);
|
|
if (error)
|
|
goto out;
|
|
|
|
shrink_dcache_parent(dentry);
|
|
dentry->d_inode->i_flags |= S_DEAD;
|
|
dont_mount(dentry);
|
|
detach_mounts(dentry);
|
|
fsnotify_rmdir(dir, dentry);
|
|
|
|
out:
|
|
inode_unlock(dentry->d_inode);
|
|
dput(dentry);
|
|
if (!error)
|
|
d_delete(dentry);
|
|
return error;
|
|
}
|
|
EXPORT_SYMBOL(vfs_rmdir);
|
|
|
|
long do_rmdir(int dfd, const char __user *pathname)
|
|
{
|
|
int error = 0;
|
|
struct filename *name;
|
|
struct dentry *dentry;
|
|
struct path path;
|
|
struct qstr last;
|
|
int type;
|
|
unsigned int lookup_flags = 0;
|
|
retry:
|
|
name = filename_parentat(dfd, getname(pathname), lookup_flags,
|
|
&path, &last, &type);
|
|
if (IS_ERR(name))
|
|
return PTR_ERR(name);
|
|
|
|
switch (type) {
|
|
case LAST_DOTDOT:
|
|
error = -ENOTEMPTY;
|
|
goto exit1;
|
|
case LAST_DOT:
|
|
error = -EINVAL;
|
|
goto exit1;
|
|
case LAST_ROOT:
|
|
error = -EBUSY;
|
|
goto exit1;
|
|
}
|
|
|
|
error = mnt_want_write(path.mnt);
|
|
if (error)
|
|
goto exit1;
|
|
|
|
inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
|
|
dentry = __lookup_hash(&last, path.dentry, lookup_flags);
|
|
error = PTR_ERR(dentry);
|
|
if (IS_ERR(dentry))
|
|
goto exit2;
|
|
if (!dentry->d_inode) {
|
|
error = -ENOENT;
|
|
goto exit3;
|
|
}
|
|
error = security_path_rmdir(&path, dentry);
|
|
if (error)
|
|
goto exit3;
|
|
error = vfs_rmdir(path.dentry->d_inode, dentry);
|
|
exit3:
|
|
dput(dentry);
|
|
exit2:
|
|
inode_unlock(path.dentry->d_inode);
|
|
mnt_drop_write(path.mnt);
|
|
exit1:
|
|
path_put(&path);
|
|
putname(name);
|
|
if (retry_estale(error, lookup_flags)) {
|
|
lookup_flags |= LOOKUP_REVAL;
|
|
goto retry;
|
|
}
|
|
return error;
|
|
}
|
|
|
|
SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
|
|
{
|
|
return do_rmdir(AT_FDCWD, pathname);
|
|
}
|
|
|
|
/**
|
|
* vfs_unlink - unlink a filesystem object
|
|
* @dir: parent directory
|
|
* @dentry: victim
|
|
* @delegated_inode: returns victim inode, if the inode is delegated.
|
|
*
|
|
* The caller must hold dir->i_mutex.
|
|
*
|
|
* If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
|
|
* return a reference to the inode in delegated_inode. The caller
|
|
* should then break the delegation on that inode and retry. Because
|
|
* breaking a delegation may take a long time, the caller should drop
|
|
* dir->i_mutex before doing so.
|
|
*
|
|
* Alternatively, a caller may pass NULL for delegated_inode. This may
|
|
* be appropriate for callers that expect the underlying filesystem not
|
|
* to be NFS exported.
|
|
*/
|
|
int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
|
|
{
|
|
struct inode *target = dentry->d_inode;
|
|
int error = may_delete(dir, dentry, 0);
|
|
|
|
if (error)
|
|
return error;
|
|
|
|
if (!dir->i_op->unlink)
|
|
return -EPERM;
|
|
|
|
inode_lock(target);
|
|
if (is_local_mountpoint(dentry))
|
|
error = -EBUSY;
|
|
else {
|
|
error = security_inode_unlink(dir, dentry);
|
|
if (!error) {
|
|
error = try_break_deleg(target, delegated_inode);
|
|
if (error)
|
|
goto out;
|
|
error = dir->i_op->unlink(dir, dentry);
|
|
if (!error) {
|
|
dont_mount(dentry);
|
|
detach_mounts(dentry);
|
|
fsnotify_unlink(dir, dentry);
|
|
}
|
|
}
|
|
}
|
|
out:
|
|
inode_unlock(target);
|
|
|
|
/* We don't d_delete() NFS sillyrenamed files--they still exist. */
|
|
if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
|
|
fsnotify_link_count(target);
|
|
d_delete(dentry);
|
|
}
|
|
|
|
return error;
|
|
}
|
|
EXPORT_SYMBOL(vfs_unlink);
|
|
|
|
/*
|
|
* Make sure that the actual truncation of the file will occur outside its
|
|
* directory's i_mutex. Truncate can take a long time if there is a lot of
|
|
* writeout happening, and we don't want to prevent access to the directory
|
|
* while waiting on the I/O.
|
|
*/
|
|
long do_unlinkat(int dfd, struct filename *name)
|
|
{
|
|
int error;
|
|
struct dentry *dentry;
|
|
struct path path;
|
|
struct qstr last;
|
|
int type;
|
|
struct inode *inode = NULL;
|
|
struct inode *delegated_inode = NULL;
|
|
unsigned int lookup_flags = 0;
|
|
retry:
|
|
name = filename_parentat(dfd, name, lookup_flags, &path, &last, &type);
|
|
if (IS_ERR(name))
|
|
return PTR_ERR(name);
|
|
|
|
error = -EISDIR;
|
|
if (type != LAST_NORM)
|
|
goto exit1;
|
|
|
|
error = mnt_want_write(path.mnt);
|
|
if (error)
|
|
goto exit1;
|
|
retry_deleg:
|
|
inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
|
|
dentry = __lookup_hash(&last, path.dentry, lookup_flags);
|
|
error = PTR_ERR(dentry);
|
|
if (!IS_ERR(dentry)) {
|
|
/* Why not before? Because we want correct error value */
|
|
if (last.name[last.len])
|
|
goto slashes;
|
|
inode = dentry->d_inode;
|
|
if (d_is_negative(dentry))
|
|
goto slashes;
|
|
ihold(inode);
|
|
error = security_path_unlink(&path, dentry);
|
|
if (error)
|
|
goto exit2;
|
|
error = vfs_unlink(path.dentry->d_inode, dentry, &delegated_inode);
|
|
exit2:
|
|
dput(dentry);
|
|
}
|
|
inode_unlock(path.dentry->d_inode);
|
|
if (inode)
|
|
iput(inode); /* truncate the inode here */
|
|
inode = NULL;
|
|
if (delegated_inode) {
|
|
error = break_deleg_wait(&delegated_inode);
|
|
if (!error)
|
|
goto retry_deleg;
|
|
}
|
|
mnt_drop_write(path.mnt);
|
|
exit1:
|
|
path_put(&path);
|
|
if (retry_estale(error, lookup_flags)) {
|
|
lookup_flags |= LOOKUP_REVAL;
|
|
inode = NULL;
|
|
goto retry;
|
|
}
|
|
putname(name);
|
|
return error;
|
|
|
|
slashes:
|
|
if (d_is_negative(dentry))
|
|
error = -ENOENT;
|
|
else if (d_is_dir(dentry))
|
|
error = -EISDIR;
|
|
else
|
|
error = -ENOTDIR;
|
|
goto exit2;
|
|
}
|
|
|
|
SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
|
|
{
|
|
if ((flag & ~AT_REMOVEDIR) != 0)
|
|
return -EINVAL;
|
|
|
|
if (flag & AT_REMOVEDIR)
|
|
return do_rmdir(dfd, pathname);
|
|
|
|
return do_unlinkat(dfd, getname(pathname));
|
|
}
|
|
|
|
SYSCALL_DEFINE1(unlink, const char __user *, pathname)
|
|
{
|
|
return do_unlinkat(AT_FDCWD, getname(pathname));
|
|
}
|
|
|
|
int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
|
|
{
|
|
int error = may_create(dir, dentry);
|
|
|
|
if (error)
|
|
return error;
|
|
|
|
if (!dir->i_op->symlink)
|
|
return -EPERM;
|
|
|
|
error = security_inode_symlink(dir, dentry, oldname);
|
|
if (error)
|
|
return error;
|
|
|
|
error = dir->i_op->symlink(dir, dentry, oldname);
|
|
if (!error)
|
|
fsnotify_create(dir, dentry);
|
|
return error;
|
|
}
|
|
EXPORT_SYMBOL(vfs_symlink);
|
|
|
|
long do_symlinkat(const char __user *oldname, int newdfd,
|
|
const char __user *newname)
|
|
{
|
|
int error;
|
|
struct filename *from;
|
|
struct dentry *dentry;
|
|
struct path path;
|
|
unsigned int lookup_flags = 0;
|
|
|
|
from = getname(oldname);
|
|
if (IS_ERR(from))
|
|
return PTR_ERR(from);
|
|
retry:
|
|
dentry = user_path_create(newdfd, newname, &path, lookup_flags);
|
|
error = PTR_ERR(dentry);
|
|
if (IS_ERR(dentry))
|
|
goto out_putname;
|
|
|
|
error = security_path_symlink(&path, dentry, from->name);
|
|
if (!error)
|
|
error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
|
|
done_path_create(&path, dentry);
|
|
if (retry_estale(error, lookup_flags)) {
|
|
lookup_flags |= LOOKUP_REVAL;
|
|
goto retry;
|
|
}
|
|
out_putname:
|
|
putname(from);
|
|
return error;
|
|
}
|
|
|
|
SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
|
|
int, newdfd, const char __user *, newname)
|
|
{
|
|
return do_symlinkat(oldname, newdfd, newname);
|
|
}
|
|
|
|
SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
|
|
{
|
|
return do_symlinkat(oldname, AT_FDCWD, newname);
|
|
}
|
|
|
|
/**
|
|
* vfs_link - create a new link
|
|
* @old_dentry: object to be linked
|
|
* @dir: new parent
|
|
* @new_dentry: where to create the new link
|
|
* @delegated_inode: returns inode needing a delegation break
|
|
*
|
|
* The caller must hold dir->i_mutex
|
|
*
|
|
* If vfs_link discovers a delegation on the to-be-linked file in need
|
|
* of breaking, it will return -EWOULDBLOCK and return a reference to the
|
|
* inode in delegated_inode. The caller should then break the delegation
|
|
* and retry. Because breaking a delegation may take a long time, the
|
|
* caller should drop the i_mutex before doing so.
|
|
*
|
|
* Alternatively, a caller may pass NULL for delegated_inode. This may
|
|
* be appropriate for callers that expect the underlying filesystem not
|
|
* to be NFS exported.
|
|
*/
|
|
int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
|
|
{
|
|
struct inode *inode = old_dentry->d_inode;
|
|
unsigned max_links = dir->i_sb->s_max_links;
|
|
int error;
|
|
|
|
if (!inode)
|
|
return -ENOENT;
|
|
|
|
error = may_create(dir, new_dentry);
|
|
if (error)
|
|
return error;
|
|
|
|
if (dir->i_sb != inode->i_sb)
|
|
return -EXDEV;
|
|
|
|
/*
|
|
* A link to an append-only or immutable file cannot be created.
|
|
*/
|
|
if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
|
|
return -EPERM;
|
|
/*
|
|
* Updating the link count will likely cause i_uid and i_gid to
|
|
* be writen back improperly if their true value is unknown to
|
|
* the vfs.
|
|
*/
|
|
if (HAS_UNMAPPED_ID(inode))
|
|
return -EPERM;
|
|
if (!dir->i_op->link)
|
|
return -EPERM;
|
|
if (S_ISDIR(inode->i_mode))
|
|
return -EPERM;
|
|
|
|
error = security_inode_link(old_dentry, dir, new_dentry);
|
|
if (error)
|
|
return error;
|
|
|
|
inode_lock(inode);
|
|
/* Make sure we don't allow creating hardlink to an unlinked file */
|
|
if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
|
|
error = -ENOENT;
|
|
else if (max_links && inode->i_nlink >= max_links)
|
|
error = -EMLINK;
|
|
else {
|
|
error = try_break_deleg(inode, delegated_inode);
|
|
if (!error)
|
|
error = dir->i_op->link(old_dentry, dir, new_dentry);
|
|
}
|
|
|
|
if (!error && (inode->i_state & I_LINKABLE)) {
|
|
spin_lock(&inode->i_lock);
|
|
inode->i_state &= ~I_LINKABLE;
|
|
spin_unlock(&inode->i_lock);
|
|
}
|
|
inode_unlock(inode);
|
|
if (!error)
|
|
fsnotify_link(dir, inode, new_dentry);
|
|
return error;
|
|
}
|
|
EXPORT_SYMBOL(vfs_link);
|
|
|
|
/*
|
|
* Hardlinks are often used in delicate situations. We avoid
|
|
* security-related surprises by not following symlinks on the
|
|
* newname. --KAB
|
|
*
|
|
* We don't follow them on the oldname either to be compatible
|
|
* with linux 2.0, and to avoid hard-linking to directories
|
|
* and other special files. --ADM
|
|
*/
|
|
int do_linkat(int olddfd, const char __user *oldname, int newdfd,
|
|
const char __user *newname, int flags)
|
|
{
|
|
struct dentry *new_dentry;
|
|
struct path old_path, new_path;
|
|
struct inode *delegated_inode = NULL;
|
|
int how = 0;
|
|
int error;
|
|
|
|
if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
|
|
return -EINVAL;
|
|
/*
|
|
* To use null names we require CAP_DAC_READ_SEARCH
|
|
* This ensures that not everyone will be able to create
|
|
* handlink using the passed filedescriptor.
|
|
*/
|
|
if (flags & AT_EMPTY_PATH) {
|
|
if (!capable(CAP_DAC_READ_SEARCH))
|
|
return -ENOENT;
|
|
how = LOOKUP_EMPTY;
|
|
}
|
|
|
|
if (flags & AT_SYMLINK_FOLLOW)
|
|
how |= LOOKUP_FOLLOW;
|
|
retry:
|
|
error = user_path_at(olddfd, oldname, how, &old_path);
|
|
if (error)
|
|
return error;
|
|
|
|
new_dentry = user_path_create(newdfd, newname, &new_path,
|
|
(how & LOOKUP_REVAL));
|
|
error = PTR_ERR(new_dentry);
|
|
if (IS_ERR(new_dentry))
|
|
goto out;
|
|
|
|
error = -EXDEV;
|
|
if (old_path.mnt != new_path.mnt)
|
|
goto out_dput;
|
|
error = may_linkat(&old_path);
|
|
if (unlikely(error))
|
|
goto out_dput;
|
|
error = security_path_link(old_path.dentry, &new_path, new_dentry);
|
|
if (error)
|
|
goto out_dput;
|
|
error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
|
|
out_dput:
|
|
done_path_create(&new_path, new_dentry);
|
|
if (delegated_inode) {
|
|
error = break_deleg_wait(&delegated_inode);
|
|
if (!error) {
|
|
path_put(&old_path);
|
|
goto retry;
|
|
}
|
|
}
|
|
if (retry_estale(error, how)) {
|
|
path_put(&old_path);
|
|
how |= LOOKUP_REVAL;
|
|
goto retry;
|
|
}
|
|
out:
|
|
path_put(&old_path);
|
|
|
|
return error;
|
|
}
|
|
|
|
SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
|
|
int, newdfd, const char __user *, newname, int, flags)
|
|
{
|
|
return do_linkat(olddfd, oldname, newdfd, newname, flags);
|
|
}
|
|
|
|
SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
|
|
{
|
|
return do_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
|
|
}
|
|
|
|
/**
|
|
* vfs_rename - rename a filesystem object
|
|
* @old_dir: parent of source
|
|
* @old_dentry: source
|
|
* @new_dir: parent of destination
|
|
* @new_dentry: destination
|
|
* @delegated_inode: returns an inode needing a delegation break
|
|
* @flags: rename flags
|
|
*
|
|
* The caller must hold multiple mutexes--see lock_rename()).
|
|
*
|
|
* If vfs_rename discovers a delegation in need of breaking at either
|
|
* the source or destination, it will return -EWOULDBLOCK and return a
|
|
* reference to the inode in delegated_inode. The caller should then
|
|
* break the delegation and retry. Because breaking a delegation may
|
|
* take a long time, the caller should drop all locks before doing
|
|
* so.
|
|
*
|
|
* Alternatively, a caller may pass NULL for delegated_inode. This may
|
|
* be appropriate for callers that expect the underlying filesystem not
|
|
* to be NFS exported.
|
|
*
|
|
* The worst of all namespace operations - renaming directory. "Perverted"
|
|
* doesn't even start to describe it. Somebody in UCB had a heck of a trip...
|
|
* Problems:
|
|
*
|
|
* a) we can get into loop creation.
|
|
* b) race potential - two innocent renames can create a loop together.
|
|
* That's where 4.4 screws up. Current fix: serialization on
|
|
* sb->s_vfs_rename_mutex. We might be more accurate, but that's another
|
|
* story.
|
|
* c) we have to lock _four_ objects - parents and victim (if it exists),
|
|
* and source (if it is not a directory).
|
|
* And that - after we got ->i_mutex on parents (until then we don't know
|
|
* whether the target exists). Solution: try to be smart with locking
|
|
* order for inodes. We rely on the fact that tree topology may change
|
|
* only under ->s_vfs_rename_mutex _and_ that parent of the object we
|
|
* move will be locked. Thus we can rank directories by the tree
|
|
* (ancestors first) and rank all non-directories after them.
|
|
* That works since everybody except rename does "lock parent, lookup,
|
|
* lock child" and rename is under ->s_vfs_rename_mutex.
|
|
* HOWEVER, it relies on the assumption that any object with ->lookup()
|
|
* has no more than 1 dentry. If "hybrid" objects will ever appear,
|
|
* we'd better make sure that there's no link(2) for them.
|
|
* d) conversion from fhandle to dentry may come in the wrong moment - when
|
|
* we are removing the target. Solution: we will have to grab ->i_mutex
|
|
* in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
|
|
* ->i_mutex on parents, which works but leads to some truly excessive
|
|
* locking].
|
|
*/
|
|
int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
|
|
struct inode *new_dir, struct dentry *new_dentry,
|
|
struct inode **delegated_inode, unsigned int flags)
|
|
{
|
|
int error;
|
|
bool is_dir = d_is_dir(old_dentry);
|
|
struct inode *source = old_dentry->d_inode;
|
|
struct inode *target = new_dentry->d_inode;
|
|
bool new_is_dir = false;
|
|
unsigned max_links = new_dir->i_sb->s_max_links;
|
|
struct name_snapshot old_name;
|
|
|
|
if (source == target)
|
|
return 0;
|
|
|
|
error = may_delete(old_dir, old_dentry, is_dir);
|
|
if (error)
|
|
return error;
|
|
|
|
if (!target) {
|
|
error = may_create(new_dir, new_dentry);
|
|
} else {
|
|
new_is_dir = d_is_dir(new_dentry);
|
|
|
|
if (!(flags & RENAME_EXCHANGE))
|
|
error = may_delete(new_dir, new_dentry, is_dir);
|
|
else
|
|
error = may_delete(new_dir, new_dentry, new_is_dir);
|
|
}
|
|
if (error)
|
|
return error;
|
|
|
|
if (!old_dir->i_op->rename)
|
|
return -EPERM;
|
|
|
|
/*
|
|
* If we are going to change the parent - check write permissions,
|
|
* we'll need to flip '..'.
|
|
*/
|
|
if (new_dir != old_dir) {
|
|
if (is_dir) {
|
|
error = inode_permission(source, MAY_WRITE);
|
|
if (error)
|
|
return error;
|
|
}
|
|
if ((flags & RENAME_EXCHANGE) && new_is_dir) {
|
|
error = inode_permission(target, MAY_WRITE);
|
|
if (error)
|
|
return error;
|
|
}
|
|
}
|
|
|
|
error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
|
|
flags);
|
|
if (error)
|
|
return error;
|
|
|
|
take_dentry_name_snapshot(&old_name, old_dentry);
|
|
dget(new_dentry);
|
|
if (!is_dir || (flags & RENAME_EXCHANGE))
|
|
lock_two_nondirectories(source, target);
|
|
else if (target)
|
|
inode_lock(target);
|
|
|
|
error = -EBUSY;
|
|
if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
|
|
goto out;
|
|
|
|
if (max_links && new_dir != old_dir) {
|
|
error = -EMLINK;
|
|
if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
|
|
goto out;
|
|
if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
|
|
old_dir->i_nlink >= max_links)
|
|
goto out;
|
|
}
|
|
if (!is_dir) {
|
|
error = try_break_deleg(source, delegated_inode);
|
|
if (error)
|
|
goto out;
|
|
}
|
|
if (target && !new_is_dir) {
|
|
error = try_break_deleg(target, delegated_inode);
|
|
if (error)
|
|
goto out;
|
|
}
|
|
error = old_dir->i_op->rename(old_dir, old_dentry,
|
|
new_dir, new_dentry, flags);
|
|
if (error)
|
|
goto out;
|
|
|
|
if (!(flags & RENAME_EXCHANGE) && target) {
|
|
if (is_dir) {
|
|
shrink_dcache_parent(new_dentry);
|
|
target->i_flags |= S_DEAD;
|
|
}
|
|
dont_mount(new_dentry);
|
|
detach_mounts(new_dentry);
|
|
}
|
|
if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
|
|
if (!(flags & RENAME_EXCHANGE))
|
|
d_move(old_dentry, new_dentry);
|
|
else
|
|
d_exchange(old_dentry, new_dentry);
|
|
}
|
|
out:
|
|
if (!is_dir || (flags & RENAME_EXCHANGE))
|
|
unlock_two_nondirectories(source, target);
|
|
else if (target)
|
|
inode_unlock(target);
|
|
dput(new_dentry);
|
|
if (!error) {
|
|
fsnotify_move(old_dir, new_dir, &old_name.name, is_dir,
|
|
!(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
|
|
if (flags & RENAME_EXCHANGE) {
|
|
fsnotify_move(new_dir, old_dir, &old_dentry->d_name,
|
|
new_is_dir, NULL, new_dentry);
|
|
}
|
|
}
|
|
release_dentry_name_snapshot(&old_name);
|
|
|
|
return error;
|
|
}
|
|
EXPORT_SYMBOL(vfs_rename);
|
|
|
|
static int do_renameat2(int olddfd, const char __user *oldname, int newdfd,
|
|
const char __user *newname, unsigned int flags)
|
|
{
|
|
struct dentry *old_dentry, *new_dentry;
|
|
struct dentry *trap;
|
|
struct path old_path, new_path;
|
|
struct qstr old_last, new_last;
|
|
int old_type, new_type;
|
|
struct inode *delegated_inode = NULL;
|
|
struct filename *from;
|
|
struct filename *to;
|
|
unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
|
|
bool should_retry = false;
|
|
int error;
|
|
|
|
if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
|
|
return -EINVAL;
|
|
|
|
if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
|
|
(flags & RENAME_EXCHANGE))
|
|
return -EINVAL;
|
|
|
|
if ((flags & RENAME_WHITEOUT) && !capable(CAP_MKNOD))
|
|
return -EPERM;
|
|
|
|
if (flags & RENAME_EXCHANGE)
|
|
target_flags = 0;
|
|
|
|
retry:
|
|
from = filename_parentat(olddfd, getname(oldname), lookup_flags,
|
|
&old_path, &old_last, &old_type);
|
|
if (IS_ERR(from)) {
|
|
error = PTR_ERR(from);
|
|
goto exit;
|
|
}
|
|
|
|
to = filename_parentat(newdfd, getname(newname), lookup_flags,
|
|
&new_path, &new_last, &new_type);
|
|
if (IS_ERR(to)) {
|
|
error = PTR_ERR(to);
|
|
goto exit1;
|
|
}
|
|
|
|
error = -EXDEV;
|
|
if (old_path.mnt != new_path.mnt)
|
|
goto exit2;
|
|
|
|
error = -EBUSY;
|
|
if (old_type != LAST_NORM)
|
|
goto exit2;
|
|
|
|
if (flags & RENAME_NOREPLACE)
|
|
error = -EEXIST;
|
|
if (new_type != LAST_NORM)
|
|
goto exit2;
|
|
|
|
error = mnt_want_write(old_path.mnt);
|
|
if (error)
|
|
goto exit2;
|
|
|
|
retry_deleg:
|
|
trap = lock_rename(new_path.dentry, old_path.dentry);
|
|
|
|
old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags);
|
|
error = PTR_ERR(old_dentry);
|
|
if (IS_ERR(old_dentry))
|
|
goto exit3;
|
|
/* source must exist */
|
|
error = -ENOENT;
|
|
if (d_is_negative(old_dentry))
|
|
goto exit4;
|
|
new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags);
|
|
error = PTR_ERR(new_dentry);
|
|
if (IS_ERR(new_dentry))
|
|
goto exit4;
|
|
error = -EEXIST;
|
|
if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
|
|
goto exit5;
|
|
if (flags & RENAME_EXCHANGE) {
|
|
error = -ENOENT;
|
|
if (d_is_negative(new_dentry))
|
|
goto exit5;
|
|
|
|
if (!d_is_dir(new_dentry)) {
|
|
error = -ENOTDIR;
|
|
if (new_last.name[new_last.len])
|
|
goto exit5;
|
|
}
|
|
}
|
|
/* unless the source is a directory trailing slashes give -ENOTDIR */
|
|
if (!d_is_dir(old_dentry)) {
|
|
error = -ENOTDIR;
|
|
if (old_last.name[old_last.len])
|
|
goto exit5;
|
|
if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
|
|
goto exit5;
|
|
}
|
|
/* source should not be ancestor of target */
|
|
error = -EINVAL;
|
|
if (old_dentry == trap)
|
|
goto exit5;
|
|
/* target should not be an ancestor of source */
|
|
if (!(flags & RENAME_EXCHANGE))
|
|
error = -ENOTEMPTY;
|
|
if (new_dentry == trap)
|
|
goto exit5;
|
|
|
|
error = security_path_rename(&old_path, old_dentry,
|
|
&new_path, new_dentry, flags);
|
|
if (error)
|
|
goto exit5;
|
|
error = vfs_rename(old_path.dentry->d_inode, old_dentry,
|
|
new_path.dentry->d_inode, new_dentry,
|
|
&delegated_inode, flags);
|
|
exit5:
|
|
dput(new_dentry);
|
|
exit4:
|
|
dput(old_dentry);
|
|
exit3:
|
|
unlock_rename(new_path.dentry, old_path.dentry);
|
|
if (delegated_inode) {
|
|
error = break_deleg_wait(&delegated_inode);
|
|
if (!error)
|
|
goto retry_deleg;
|
|
}
|
|
mnt_drop_write(old_path.mnt);
|
|
exit2:
|
|
if (retry_estale(error, lookup_flags))
|
|
should_retry = true;
|
|
path_put(&new_path);
|
|
putname(to);
|
|
exit1:
|
|
path_put(&old_path);
|
|
putname(from);
|
|
if (should_retry) {
|
|
should_retry = false;
|
|
lookup_flags |= LOOKUP_REVAL;
|
|
goto retry;
|
|
}
|
|
exit:
|
|
return error;
|
|
}
|
|
|
|
SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
|
|
int, newdfd, const char __user *, newname, unsigned int, flags)
|
|
{
|
|
return do_renameat2(olddfd, oldname, newdfd, newname, flags);
|
|
}
|
|
|
|
SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
|
|
int, newdfd, const char __user *, newname)
|
|
{
|
|
return do_renameat2(olddfd, oldname, newdfd, newname, 0);
|
|
}
|
|
|
|
SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
|
|
{
|
|
return do_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
|
|
}
|
|
|
|
int vfs_whiteout(struct inode *dir, struct dentry *dentry)
|
|
{
|
|
int error = may_create(dir, dentry);
|
|
if (error)
|
|
return error;
|
|
|
|
if (!dir->i_op->mknod)
|
|
return -EPERM;
|
|
|
|
return dir->i_op->mknod(dir, dentry,
|
|
S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
|
|
}
|
|
EXPORT_SYMBOL(vfs_whiteout);
|
|
|
|
int readlink_copy(char __user *buffer, int buflen, const char *link)
|
|
{
|
|
int len = PTR_ERR(link);
|
|
if (IS_ERR(link))
|
|
goto out;
|
|
|
|
len = strlen(link);
|
|
if (len > (unsigned) buflen)
|
|
len = buflen;
|
|
if (copy_to_user(buffer, link, len))
|
|
len = -EFAULT;
|
|
out:
|
|
return len;
|
|
}
|
|
|
|
/**
|
|
* vfs_readlink - copy symlink body into userspace buffer
|
|
* @dentry: dentry on which to get symbolic link
|
|
* @buffer: user memory pointer
|
|
* @buflen: size of buffer
|
|
*
|
|
* Does not touch atime. That's up to the caller if necessary
|
|
*
|
|
* Does not call security hook.
|
|
*/
|
|
int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen)
|
|
{
|
|
struct inode *inode = d_inode(dentry);
|
|
DEFINE_DELAYED_CALL(done);
|
|
const char *link;
|
|
int res;
|
|
|
|
if (unlikely(!(inode->i_opflags & IOP_DEFAULT_READLINK))) {
|
|
if (unlikely(inode->i_op->readlink))
|
|
return inode->i_op->readlink(dentry, buffer, buflen);
|
|
|
|
if (!d_is_symlink(dentry))
|
|
return -EINVAL;
|
|
|
|
spin_lock(&inode->i_lock);
|
|
inode->i_opflags |= IOP_DEFAULT_READLINK;
|
|
spin_unlock(&inode->i_lock);
|
|
}
|
|
|
|
link = READ_ONCE(inode->i_link);
|
|
if (!link) {
|
|
link = inode->i_op->get_link(dentry, inode, &done);
|
|
if (IS_ERR(link))
|
|
return PTR_ERR(link);
|
|
}
|
|
res = readlink_copy(buffer, buflen, link);
|
|
do_delayed_call(&done);
|
|
return res;
|
|
}
|
|
EXPORT_SYMBOL(vfs_readlink);
|
|
|
|
/**
|
|
* vfs_get_link - get symlink body
|
|
* @dentry: dentry on which to get symbolic link
|
|
* @done: caller needs to free returned data with this
|
|
*
|
|
* Calls security hook and i_op->get_link() on the supplied inode.
|
|
*
|
|
* It does not touch atime. That's up to the caller if necessary.
|
|
*
|
|
* Does not work on "special" symlinks like /proc/$$/fd/N
|
|
*/
|
|
const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done)
|
|
{
|
|
const char *res = ERR_PTR(-EINVAL);
|
|
struct inode *inode = d_inode(dentry);
|
|
|
|
if (d_is_symlink(dentry)) {
|
|
res = ERR_PTR(security_inode_readlink(dentry));
|
|
if (!res)
|
|
res = inode->i_op->get_link(dentry, inode, done);
|
|
}
|
|
return res;
|
|
}
|
|
EXPORT_SYMBOL(vfs_get_link);
|
|
|
|
/* get the link contents into pagecache */
|
|
const char *page_get_link(struct dentry *dentry, struct inode *inode,
|
|
struct delayed_call *callback)
|
|
{
|
|
char *kaddr;
|
|
struct page *page;
|
|
struct address_space *mapping = inode->i_mapping;
|
|
|
|
if (!dentry) {
|
|
page = find_get_page(mapping, 0);
|
|
if (!page)
|
|
return ERR_PTR(-ECHILD);
|
|
if (!PageUptodate(page)) {
|
|
put_page(page);
|
|
return ERR_PTR(-ECHILD);
|
|
}
|
|
} else {
|
|
page = read_mapping_page(mapping, 0, NULL);
|
|
if (IS_ERR(page))
|
|
return (char*)page;
|
|
}
|
|
set_delayed_call(callback, page_put_link, page);
|
|
BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM);
|
|
kaddr = page_address(page);
|
|
nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1);
|
|
return kaddr;
|
|
}
|
|
|
|
EXPORT_SYMBOL(page_get_link);
|
|
|
|
void page_put_link(void *arg)
|
|
{
|
|
put_page(arg);
|
|
}
|
|
EXPORT_SYMBOL(page_put_link);
|
|
|
|
int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
|
|
{
|
|
DEFINE_DELAYED_CALL(done);
|
|
int res = readlink_copy(buffer, buflen,
|
|
page_get_link(dentry, d_inode(dentry),
|
|
&done));
|
|
do_delayed_call(&done);
|
|
return res;
|
|
}
|
|
EXPORT_SYMBOL(page_readlink);
|
|
|
|
/*
|
|
* The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
|
|
*/
|
|
int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
|
|
{
|
|
struct address_space *mapping = inode->i_mapping;
|
|
struct page *page;
|
|
void *fsdata;
|
|
int err;
|
|
unsigned int flags = 0;
|
|
if (nofs)
|
|
flags |= AOP_FLAG_NOFS;
|
|
|
|
retry:
|
|
err = pagecache_write_begin(NULL, mapping, 0, len-1,
|
|
flags, &page, &fsdata);
|
|
if (err)
|
|
goto fail;
|
|
|
|
memcpy(page_address(page), symname, len-1);
|
|
|
|
err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
|
|
page, fsdata);
|
|
if (err < 0)
|
|
goto fail;
|
|
if (err < len-1)
|
|
goto retry;
|
|
|
|
mark_inode_dirty(inode);
|
|
return 0;
|
|
fail:
|
|
return err;
|
|
}
|
|
EXPORT_SYMBOL(__page_symlink);
|
|
|
|
int page_symlink(struct inode *inode, const char *symname, int len)
|
|
{
|
|
return __page_symlink(inode, symname, len,
|
|
!mapping_gfp_constraint(inode->i_mapping, __GFP_FS));
|
|
}
|
|
EXPORT_SYMBOL(page_symlink);
|
|
|
|
const struct inode_operations page_symlink_inode_operations = {
|
|
.get_link = page_get_link,
|
|
};
|
|
EXPORT_SYMBOL(page_symlink_inode_operations);
|