mirror of
https://github.com/torvalds/linux.git
synced 2024-11-27 14:41:39 +00:00
3e2d94535a
There is no particular reason to not enable TSC page clocksource on 32-bit. mul_u64_u64_shr() is available and despite the increased computational complexity (compared to 64bit) TSC page is still a huge win compared to MSR-based clocksource. In-kernel reads: MSR based clocksource: 3361 cycles TSC page clocksource: 49 cycles Reads from userspace (utilizing vDSO in case of TSC page): MSR based clocksource: 5664 cycles TSC page clocksource: 131 cycles Enabling TSC page on 32bits allows to get rid of CONFIG_HYPERV_TSCPAGE as it is now not any different from CONFIG_HYPERV_TIMER. Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Michael Kelley <mikelley@microsoft.com> Link: https://lkml.kernel.org/r/20190822083630.17059-1-vkuznets@redhat.com
327 lines
8.3 KiB
C
327 lines
8.3 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
|
|
/*
|
|
* Clocksource driver for the synthetic counter and timers
|
|
* provided by the Hyper-V hypervisor to guest VMs, as described
|
|
* in the Hyper-V Top Level Functional Spec (TLFS). This driver
|
|
* is instruction set architecture independent.
|
|
*
|
|
* Copyright (C) 2019, Microsoft, Inc.
|
|
*
|
|
* Author: Michael Kelley <mikelley@microsoft.com>
|
|
*/
|
|
|
|
#include <linux/percpu.h>
|
|
#include <linux/cpumask.h>
|
|
#include <linux/clockchips.h>
|
|
#include <linux/clocksource.h>
|
|
#include <linux/sched_clock.h>
|
|
#include <linux/mm.h>
|
|
#include <clocksource/hyperv_timer.h>
|
|
#include <asm/hyperv-tlfs.h>
|
|
#include <asm/mshyperv.h>
|
|
|
|
static struct clock_event_device __percpu *hv_clock_event;
|
|
static u64 hv_sched_clock_offset __ro_after_init;
|
|
|
|
/*
|
|
* If false, we're using the old mechanism for stimer0 interrupts
|
|
* where it sends a VMbus message when it expires. The old
|
|
* mechanism is used when running on older versions of Hyper-V
|
|
* that don't support Direct Mode. While Hyper-V provides
|
|
* four stimer's per CPU, Linux uses only stimer0.
|
|
*/
|
|
static bool direct_mode_enabled;
|
|
|
|
static int stimer0_irq;
|
|
static int stimer0_vector;
|
|
static int stimer0_message_sint;
|
|
|
|
/*
|
|
* ISR for when stimer0 is operating in Direct Mode. Direct Mode
|
|
* does not use VMbus or any VMbus messages, so process here and not
|
|
* in the VMbus driver code.
|
|
*/
|
|
void hv_stimer0_isr(void)
|
|
{
|
|
struct clock_event_device *ce;
|
|
|
|
ce = this_cpu_ptr(hv_clock_event);
|
|
ce->event_handler(ce);
|
|
}
|
|
EXPORT_SYMBOL_GPL(hv_stimer0_isr);
|
|
|
|
static int hv_ce_set_next_event(unsigned long delta,
|
|
struct clock_event_device *evt)
|
|
{
|
|
u64 current_tick;
|
|
|
|
current_tick = hyperv_cs->read(NULL);
|
|
current_tick += delta;
|
|
hv_init_timer(0, current_tick);
|
|
return 0;
|
|
}
|
|
|
|
static int hv_ce_shutdown(struct clock_event_device *evt)
|
|
{
|
|
hv_init_timer(0, 0);
|
|
hv_init_timer_config(0, 0);
|
|
if (direct_mode_enabled)
|
|
hv_disable_stimer0_percpu_irq(stimer0_irq);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int hv_ce_set_oneshot(struct clock_event_device *evt)
|
|
{
|
|
union hv_stimer_config timer_cfg;
|
|
|
|
timer_cfg.as_uint64 = 0;
|
|
timer_cfg.enable = 1;
|
|
timer_cfg.auto_enable = 1;
|
|
if (direct_mode_enabled) {
|
|
/*
|
|
* When it expires, the timer will directly interrupt
|
|
* on the specified hardware vector/IRQ.
|
|
*/
|
|
timer_cfg.direct_mode = 1;
|
|
timer_cfg.apic_vector = stimer0_vector;
|
|
hv_enable_stimer0_percpu_irq(stimer0_irq);
|
|
} else {
|
|
/*
|
|
* When it expires, the timer will generate a VMbus message,
|
|
* to be handled by the normal VMbus interrupt handler.
|
|
*/
|
|
timer_cfg.direct_mode = 0;
|
|
timer_cfg.sintx = stimer0_message_sint;
|
|
}
|
|
hv_init_timer_config(0, timer_cfg.as_uint64);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* hv_stimer_init - Per-cpu initialization of the clockevent
|
|
*/
|
|
void hv_stimer_init(unsigned int cpu)
|
|
{
|
|
struct clock_event_device *ce;
|
|
|
|
/*
|
|
* Synthetic timers are always available except on old versions of
|
|
* Hyper-V on x86. In that case, just return as Linux will use a
|
|
* clocksource based on emulated PIT or LAPIC timer hardware.
|
|
*/
|
|
if (!(ms_hyperv.features & HV_MSR_SYNTIMER_AVAILABLE))
|
|
return;
|
|
|
|
ce = per_cpu_ptr(hv_clock_event, cpu);
|
|
ce->name = "Hyper-V clockevent";
|
|
ce->features = CLOCK_EVT_FEAT_ONESHOT;
|
|
ce->cpumask = cpumask_of(cpu);
|
|
ce->rating = 1000;
|
|
ce->set_state_shutdown = hv_ce_shutdown;
|
|
ce->set_state_oneshot = hv_ce_set_oneshot;
|
|
ce->set_next_event = hv_ce_set_next_event;
|
|
|
|
clockevents_config_and_register(ce,
|
|
HV_CLOCK_HZ,
|
|
HV_MIN_DELTA_TICKS,
|
|
HV_MAX_MAX_DELTA_TICKS);
|
|
}
|
|
EXPORT_SYMBOL_GPL(hv_stimer_init);
|
|
|
|
/*
|
|
* hv_stimer_cleanup - Per-cpu cleanup of the clockevent
|
|
*/
|
|
void hv_stimer_cleanup(unsigned int cpu)
|
|
{
|
|
struct clock_event_device *ce;
|
|
|
|
/* Turn off clockevent device */
|
|
if (ms_hyperv.features & HV_MSR_SYNTIMER_AVAILABLE) {
|
|
ce = per_cpu_ptr(hv_clock_event, cpu);
|
|
hv_ce_shutdown(ce);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(hv_stimer_cleanup);
|
|
|
|
/* hv_stimer_alloc - Global initialization of the clockevent and stimer0 */
|
|
int hv_stimer_alloc(int sint)
|
|
{
|
|
int ret;
|
|
|
|
hv_clock_event = alloc_percpu(struct clock_event_device);
|
|
if (!hv_clock_event)
|
|
return -ENOMEM;
|
|
|
|
direct_mode_enabled = ms_hyperv.misc_features &
|
|
HV_STIMER_DIRECT_MODE_AVAILABLE;
|
|
if (direct_mode_enabled) {
|
|
ret = hv_setup_stimer0_irq(&stimer0_irq, &stimer0_vector,
|
|
hv_stimer0_isr);
|
|
if (ret) {
|
|
free_percpu(hv_clock_event);
|
|
hv_clock_event = NULL;
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
stimer0_message_sint = sint;
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(hv_stimer_alloc);
|
|
|
|
/* hv_stimer_free - Free global resources allocated by hv_stimer_alloc() */
|
|
void hv_stimer_free(void)
|
|
{
|
|
if (direct_mode_enabled && (stimer0_irq != 0)) {
|
|
hv_remove_stimer0_irq(stimer0_irq);
|
|
stimer0_irq = 0;
|
|
}
|
|
free_percpu(hv_clock_event);
|
|
hv_clock_event = NULL;
|
|
}
|
|
EXPORT_SYMBOL_GPL(hv_stimer_free);
|
|
|
|
/*
|
|
* Do a global cleanup of clockevents for the cases of kexec and
|
|
* vmbus exit
|
|
*/
|
|
void hv_stimer_global_cleanup(void)
|
|
{
|
|
int cpu;
|
|
struct clock_event_device *ce;
|
|
|
|
if (ms_hyperv.features & HV_MSR_SYNTIMER_AVAILABLE) {
|
|
for_each_present_cpu(cpu) {
|
|
ce = per_cpu_ptr(hv_clock_event, cpu);
|
|
clockevents_unbind_device(ce, cpu);
|
|
}
|
|
}
|
|
hv_stimer_free();
|
|
}
|
|
EXPORT_SYMBOL_GPL(hv_stimer_global_cleanup);
|
|
|
|
/*
|
|
* Code and definitions for the Hyper-V clocksources. Two
|
|
* clocksources are defined: one that reads the Hyper-V defined MSR, and
|
|
* the other that uses the TSC reference page feature as defined in the
|
|
* TLFS. The MSR version is for compatibility with old versions of
|
|
* Hyper-V and 32-bit x86. The TSC reference page version is preferred.
|
|
*/
|
|
|
|
struct clocksource *hyperv_cs;
|
|
EXPORT_SYMBOL_GPL(hyperv_cs);
|
|
|
|
static struct ms_hyperv_tsc_page tsc_pg __aligned(PAGE_SIZE);
|
|
|
|
struct ms_hyperv_tsc_page *hv_get_tsc_page(void)
|
|
{
|
|
return &tsc_pg;
|
|
}
|
|
EXPORT_SYMBOL_GPL(hv_get_tsc_page);
|
|
|
|
static u64 notrace read_hv_clock_tsc(struct clocksource *arg)
|
|
{
|
|
u64 current_tick = hv_read_tsc_page(&tsc_pg);
|
|
|
|
if (current_tick == U64_MAX)
|
|
hv_get_time_ref_count(current_tick);
|
|
|
|
return current_tick;
|
|
}
|
|
|
|
static u64 read_hv_sched_clock_tsc(void)
|
|
{
|
|
return read_hv_clock_tsc(NULL) - hv_sched_clock_offset;
|
|
}
|
|
|
|
static struct clocksource hyperv_cs_tsc = {
|
|
.name = "hyperv_clocksource_tsc_page",
|
|
.rating = 400,
|
|
.read = read_hv_clock_tsc,
|
|
.mask = CLOCKSOURCE_MASK(64),
|
|
.flags = CLOCK_SOURCE_IS_CONTINUOUS,
|
|
};
|
|
|
|
static u64 notrace read_hv_clock_msr(struct clocksource *arg)
|
|
{
|
|
u64 current_tick;
|
|
/*
|
|
* Read the partition counter to get the current tick count. This count
|
|
* is set to 0 when the partition is created and is incremented in
|
|
* 100 nanosecond units.
|
|
*/
|
|
hv_get_time_ref_count(current_tick);
|
|
return current_tick;
|
|
}
|
|
|
|
static u64 read_hv_sched_clock_msr(void)
|
|
{
|
|
return read_hv_clock_msr(NULL) - hv_sched_clock_offset;
|
|
}
|
|
|
|
static struct clocksource hyperv_cs_msr = {
|
|
.name = "hyperv_clocksource_msr",
|
|
.rating = 400,
|
|
.read = read_hv_clock_msr,
|
|
.mask = CLOCKSOURCE_MASK(64),
|
|
.flags = CLOCK_SOURCE_IS_CONTINUOUS,
|
|
};
|
|
|
|
static bool __init hv_init_tsc_clocksource(void)
|
|
{
|
|
u64 tsc_msr;
|
|
phys_addr_t phys_addr;
|
|
|
|
if (!(ms_hyperv.features & HV_MSR_REFERENCE_TSC_AVAILABLE))
|
|
return false;
|
|
|
|
hyperv_cs = &hyperv_cs_tsc;
|
|
phys_addr = virt_to_phys(&tsc_pg);
|
|
|
|
/*
|
|
* The Hyper-V TLFS specifies to preserve the value of reserved
|
|
* bits in registers. So read the existing value, preserve the
|
|
* low order 12 bits, and add in the guest physical address
|
|
* (which already has at least the low 12 bits set to zero since
|
|
* it is page aligned). Also set the "enable" bit, which is bit 0.
|
|
*/
|
|
hv_get_reference_tsc(tsc_msr);
|
|
tsc_msr &= GENMASK_ULL(11, 0);
|
|
tsc_msr = tsc_msr | 0x1 | (u64)phys_addr;
|
|
hv_set_reference_tsc(tsc_msr);
|
|
|
|
hv_set_clocksource_vdso(hyperv_cs_tsc);
|
|
clocksource_register_hz(&hyperv_cs_tsc, NSEC_PER_SEC/100);
|
|
|
|
hv_sched_clock_offset = hyperv_cs->read(hyperv_cs);
|
|
hv_setup_sched_clock(read_hv_sched_clock_tsc);
|
|
|
|
return true;
|
|
}
|
|
|
|
void __init hv_init_clocksource(void)
|
|
{
|
|
/*
|
|
* Try to set up the TSC page clocksource. If it succeeds, we're
|
|
* done. Otherwise, set up the MSR clocksoruce. At least one of
|
|
* these will always be available except on very old versions of
|
|
* Hyper-V on x86. In that case we won't have a Hyper-V
|
|
* clocksource, but Linux will still run with a clocksource based
|
|
* on the emulated PIT or LAPIC timer.
|
|
*/
|
|
if (hv_init_tsc_clocksource())
|
|
return;
|
|
|
|
if (!(ms_hyperv.features & HV_MSR_TIME_REF_COUNT_AVAILABLE))
|
|
return;
|
|
|
|
hyperv_cs = &hyperv_cs_msr;
|
|
clocksource_register_hz(&hyperv_cs_msr, NSEC_PER_SEC/100);
|
|
|
|
hv_sched_clock_offset = hyperv_cs->read(hyperv_cs);
|
|
hv_setup_sched_clock(read_hv_sched_clock_msr);
|
|
}
|
|
EXPORT_SYMBOL_GPL(hv_init_clocksource);
|