mirror of
https://github.com/torvalds/linux.git
synced 2024-11-27 22:51:35 +00:00
a24d22b225
Currently <crypto/sha.h> contains declarations for both SHA-1 and SHA-2, and <crypto/sha3.h> contains declarations for SHA-3. This organization is inconsistent, but more importantly SHA-1 is no longer considered to be cryptographically secure. So to the extent possible, SHA-1 shouldn't be grouped together with any of the other SHA versions, and usage of it should be phased out. Therefore, split <crypto/sha.h> into two headers <crypto/sha1.h> and <crypto/sha2.h>, and make everyone explicitly specify whether they want the declarations for SHA-1, SHA-2, or both. This avoids making the SHA-1 declarations visible to files that don't want anything to do with SHA-1. It also prepares for potentially moving sha1.h into a new insecure/ or dangerous/ directory. Signed-off-by: Eric Biggers <ebiggers@google.com> Acked-by: Ard Biesheuvel <ardb@kernel.org> Acked-by: Jason A. Donenfeld <Jason@zx2c4.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
1349 lines
33 KiB
C
1349 lines
33 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* kexec: kexec_file_load system call
|
|
*
|
|
* Copyright (C) 2014 Red Hat Inc.
|
|
* Authors:
|
|
* Vivek Goyal <vgoyal@redhat.com>
|
|
*/
|
|
|
|
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
|
|
|
|
#include <linux/capability.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/file.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/kexec.h>
|
|
#include <linux/memblock.h>
|
|
#include <linux/mutex.h>
|
|
#include <linux/list.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/ima.h>
|
|
#include <crypto/hash.h>
|
|
#include <crypto/sha2.h>
|
|
#include <linux/elf.h>
|
|
#include <linux/elfcore.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/kernel_read_file.h>
|
|
#include <linux/syscalls.h>
|
|
#include <linux/vmalloc.h>
|
|
#include "kexec_internal.h"
|
|
|
|
static int kexec_calculate_store_digests(struct kimage *image);
|
|
|
|
/*
|
|
* Currently this is the only default function that is exported as some
|
|
* architectures need it to do additional handlings.
|
|
* In the future, other default functions may be exported too if required.
|
|
*/
|
|
int kexec_image_probe_default(struct kimage *image, void *buf,
|
|
unsigned long buf_len)
|
|
{
|
|
const struct kexec_file_ops * const *fops;
|
|
int ret = -ENOEXEC;
|
|
|
|
for (fops = &kexec_file_loaders[0]; *fops && (*fops)->probe; ++fops) {
|
|
ret = (*fops)->probe(buf, buf_len);
|
|
if (!ret) {
|
|
image->fops = *fops;
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* Architectures can provide this probe function */
|
|
int __weak arch_kexec_kernel_image_probe(struct kimage *image, void *buf,
|
|
unsigned long buf_len)
|
|
{
|
|
return kexec_image_probe_default(image, buf, buf_len);
|
|
}
|
|
|
|
static void *kexec_image_load_default(struct kimage *image)
|
|
{
|
|
if (!image->fops || !image->fops->load)
|
|
return ERR_PTR(-ENOEXEC);
|
|
|
|
return image->fops->load(image, image->kernel_buf,
|
|
image->kernel_buf_len, image->initrd_buf,
|
|
image->initrd_buf_len, image->cmdline_buf,
|
|
image->cmdline_buf_len);
|
|
}
|
|
|
|
void * __weak arch_kexec_kernel_image_load(struct kimage *image)
|
|
{
|
|
return kexec_image_load_default(image);
|
|
}
|
|
|
|
int kexec_image_post_load_cleanup_default(struct kimage *image)
|
|
{
|
|
if (!image->fops || !image->fops->cleanup)
|
|
return 0;
|
|
|
|
return image->fops->cleanup(image->image_loader_data);
|
|
}
|
|
|
|
int __weak arch_kimage_file_post_load_cleanup(struct kimage *image)
|
|
{
|
|
return kexec_image_post_load_cleanup_default(image);
|
|
}
|
|
|
|
#ifdef CONFIG_KEXEC_SIG
|
|
static int kexec_image_verify_sig_default(struct kimage *image, void *buf,
|
|
unsigned long buf_len)
|
|
{
|
|
if (!image->fops || !image->fops->verify_sig) {
|
|
pr_debug("kernel loader does not support signature verification.\n");
|
|
return -EKEYREJECTED;
|
|
}
|
|
|
|
return image->fops->verify_sig(buf, buf_len);
|
|
}
|
|
|
|
int __weak arch_kexec_kernel_verify_sig(struct kimage *image, void *buf,
|
|
unsigned long buf_len)
|
|
{
|
|
return kexec_image_verify_sig_default(image, buf, buf_len);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* arch_kexec_apply_relocations_add - apply relocations of type RELA
|
|
* @pi: Purgatory to be relocated.
|
|
* @section: Section relocations applying to.
|
|
* @relsec: Section containing RELAs.
|
|
* @symtab: Corresponding symtab.
|
|
*
|
|
* Return: 0 on success, negative errno on error.
|
|
*/
|
|
int __weak
|
|
arch_kexec_apply_relocations_add(struct purgatory_info *pi, Elf_Shdr *section,
|
|
const Elf_Shdr *relsec, const Elf_Shdr *symtab)
|
|
{
|
|
pr_err("RELA relocation unsupported.\n");
|
|
return -ENOEXEC;
|
|
}
|
|
|
|
/*
|
|
* arch_kexec_apply_relocations - apply relocations of type REL
|
|
* @pi: Purgatory to be relocated.
|
|
* @section: Section relocations applying to.
|
|
* @relsec: Section containing RELs.
|
|
* @symtab: Corresponding symtab.
|
|
*
|
|
* Return: 0 on success, negative errno on error.
|
|
*/
|
|
int __weak
|
|
arch_kexec_apply_relocations(struct purgatory_info *pi, Elf_Shdr *section,
|
|
const Elf_Shdr *relsec, const Elf_Shdr *symtab)
|
|
{
|
|
pr_err("REL relocation unsupported.\n");
|
|
return -ENOEXEC;
|
|
}
|
|
|
|
/*
|
|
* Free up memory used by kernel, initrd, and command line. This is temporary
|
|
* memory allocation which is not needed any more after these buffers have
|
|
* been loaded into separate segments and have been copied elsewhere.
|
|
*/
|
|
void kimage_file_post_load_cleanup(struct kimage *image)
|
|
{
|
|
struct purgatory_info *pi = &image->purgatory_info;
|
|
|
|
vfree(image->kernel_buf);
|
|
image->kernel_buf = NULL;
|
|
|
|
vfree(image->initrd_buf);
|
|
image->initrd_buf = NULL;
|
|
|
|
kfree(image->cmdline_buf);
|
|
image->cmdline_buf = NULL;
|
|
|
|
vfree(pi->purgatory_buf);
|
|
pi->purgatory_buf = NULL;
|
|
|
|
vfree(pi->sechdrs);
|
|
pi->sechdrs = NULL;
|
|
|
|
/* See if architecture has anything to cleanup post load */
|
|
arch_kimage_file_post_load_cleanup(image);
|
|
|
|
/*
|
|
* Above call should have called into bootloader to free up
|
|
* any data stored in kimage->image_loader_data. It should
|
|
* be ok now to free it up.
|
|
*/
|
|
kfree(image->image_loader_data);
|
|
image->image_loader_data = NULL;
|
|
}
|
|
|
|
#ifdef CONFIG_KEXEC_SIG
|
|
static int
|
|
kimage_validate_signature(struct kimage *image)
|
|
{
|
|
int ret;
|
|
|
|
ret = arch_kexec_kernel_verify_sig(image, image->kernel_buf,
|
|
image->kernel_buf_len);
|
|
if (ret) {
|
|
|
|
if (IS_ENABLED(CONFIG_KEXEC_SIG_FORCE)) {
|
|
pr_notice("Enforced kernel signature verification failed (%d).\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* If IMA is guaranteed to appraise a signature on the kexec
|
|
* image, permit it even if the kernel is otherwise locked
|
|
* down.
|
|
*/
|
|
if (!ima_appraise_signature(READING_KEXEC_IMAGE) &&
|
|
security_locked_down(LOCKDOWN_KEXEC))
|
|
return -EPERM;
|
|
|
|
pr_debug("kernel signature verification failed (%d).\n", ret);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* In file mode list of segments is prepared by kernel. Copy relevant
|
|
* data from user space, do error checking, prepare segment list
|
|
*/
|
|
static int
|
|
kimage_file_prepare_segments(struct kimage *image, int kernel_fd, int initrd_fd,
|
|
const char __user *cmdline_ptr,
|
|
unsigned long cmdline_len, unsigned flags)
|
|
{
|
|
int ret;
|
|
void *ldata;
|
|
|
|
ret = kernel_read_file_from_fd(kernel_fd, 0, &image->kernel_buf,
|
|
INT_MAX, NULL, READING_KEXEC_IMAGE);
|
|
if (ret < 0)
|
|
return ret;
|
|
image->kernel_buf_len = ret;
|
|
|
|
/* Call arch image probe handlers */
|
|
ret = arch_kexec_kernel_image_probe(image, image->kernel_buf,
|
|
image->kernel_buf_len);
|
|
if (ret)
|
|
goto out;
|
|
|
|
#ifdef CONFIG_KEXEC_SIG
|
|
ret = kimage_validate_signature(image);
|
|
|
|
if (ret)
|
|
goto out;
|
|
#endif
|
|
/* It is possible that there no initramfs is being loaded */
|
|
if (!(flags & KEXEC_FILE_NO_INITRAMFS)) {
|
|
ret = kernel_read_file_from_fd(initrd_fd, 0, &image->initrd_buf,
|
|
INT_MAX, NULL,
|
|
READING_KEXEC_INITRAMFS);
|
|
if (ret < 0)
|
|
goto out;
|
|
image->initrd_buf_len = ret;
|
|
ret = 0;
|
|
}
|
|
|
|
if (cmdline_len) {
|
|
image->cmdline_buf = memdup_user(cmdline_ptr, cmdline_len);
|
|
if (IS_ERR(image->cmdline_buf)) {
|
|
ret = PTR_ERR(image->cmdline_buf);
|
|
image->cmdline_buf = NULL;
|
|
goto out;
|
|
}
|
|
|
|
image->cmdline_buf_len = cmdline_len;
|
|
|
|
/* command line should be a string with last byte null */
|
|
if (image->cmdline_buf[cmdline_len - 1] != '\0') {
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
ima_kexec_cmdline(kernel_fd, image->cmdline_buf,
|
|
image->cmdline_buf_len - 1);
|
|
}
|
|
|
|
/* IMA needs to pass the measurement list to the next kernel. */
|
|
ima_add_kexec_buffer(image);
|
|
|
|
/* Call arch image load handlers */
|
|
ldata = arch_kexec_kernel_image_load(image);
|
|
|
|
if (IS_ERR(ldata)) {
|
|
ret = PTR_ERR(ldata);
|
|
goto out;
|
|
}
|
|
|
|
image->image_loader_data = ldata;
|
|
out:
|
|
/* In case of error, free up all allocated memory in this function */
|
|
if (ret)
|
|
kimage_file_post_load_cleanup(image);
|
|
return ret;
|
|
}
|
|
|
|
static int
|
|
kimage_file_alloc_init(struct kimage **rimage, int kernel_fd,
|
|
int initrd_fd, const char __user *cmdline_ptr,
|
|
unsigned long cmdline_len, unsigned long flags)
|
|
{
|
|
int ret;
|
|
struct kimage *image;
|
|
bool kexec_on_panic = flags & KEXEC_FILE_ON_CRASH;
|
|
|
|
image = do_kimage_alloc_init();
|
|
if (!image)
|
|
return -ENOMEM;
|
|
|
|
image->file_mode = 1;
|
|
|
|
if (kexec_on_panic) {
|
|
/* Enable special crash kernel control page alloc policy. */
|
|
image->control_page = crashk_res.start;
|
|
image->type = KEXEC_TYPE_CRASH;
|
|
}
|
|
|
|
ret = kimage_file_prepare_segments(image, kernel_fd, initrd_fd,
|
|
cmdline_ptr, cmdline_len, flags);
|
|
if (ret)
|
|
goto out_free_image;
|
|
|
|
ret = sanity_check_segment_list(image);
|
|
if (ret)
|
|
goto out_free_post_load_bufs;
|
|
|
|
ret = -ENOMEM;
|
|
image->control_code_page = kimage_alloc_control_pages(image,
|
|
get_order(KEXEC_CONTROL_PAGE_SIZE));
|
|
if (!image->control_code_page) {
|
|
pr_err("Could not allocate control_code_buffer\n");
|
|
goto out_free_post_load_bufs;
|
|
}
|
|
|
|
if (!kexec_on_panic) {
|
|
image->swap_page = kimage_alloc_control_pages(image, 0);
|
|
if (!image->swap_page) {
|
|
pr_err("Could not allocate swap buffer\n");
|
|
goto out_free_control_pages;
|
|
}
|
|
}
|
|
|
|
*rimage = image;
|
|
return 0;
|
|
out_free_control_pages:
|
|
kimage_free_page_list(&image->control_pages);
|
|
out_free_post_load_bufs:
|
|
kimage_file_post_load_cleanup(image);
|
|
out_free_image:
|
|
kfree(image);
|
|
return ret;
|
|
}
|
|
|
|
SYSCALL_DEFINE5(kexec_file_load, int, kernel_fd, int, initrd_fd,
|
|
unsigned long, cmdline_len, const char __user *, cmdline_ptr,
|
|
unsigned long, flags)
|
|
{
|
|
int ret = 0, i;
|
|
struct kimage **dest_image, *image;
|
|
|
|
/* We only trust the superuser with rebooting the system. */
|
|
if (!capable(CAP_SYS_BOOT) || kexec_load_disabled)
|
|
return -EPERM;
|
|
|
|
/* Make sure we have a legal set of flags */
|
|
if (flags != (flags & KEXEC_FILE_FLAGS))
|
|
return -EINVAL;
|
|
|
|
image = NULL;
|
|
|
|
if (!mutex_trylock(&kexec_mutex))
|
|
return -EBUSY;
|
|
|
|
dest_image = &kexec_image;
|
|
if (flags & KEXEC_FILE_ON_CRASH) {
|
|
dest_image = &kexec_crash_image;
|
|
if (kexec_crash_image)
|
|
arch_kexec_unprotect_crashkres();
|
|
}
|
|
|
|
if (flags & KEXEC_FILE_UNLOAD)
|
|
goto exchange;
|
|
|
|
/*
|
|
* In case of crash, new kernel gets loaded in reserved region. It is
|
|
* same memory where old crash kernel might be loaded. Free any
|
|
* current crash dump kernel before we corrupt it.
|
|
*/
|
|
if (flags & KEXEC_FILE_ON_CRASH)
|
|
kimage_free(xchg(&kexec_crash_image, NULL));
|
|
|
|
ret = kimage_file_alloc_init(&image, kernel_fd, initrd_fd, cmdline_ptr,
|
|
cmdline_len, flags);
|
|
if (ret)
|
|
goto out;
|
|
|
|
ret = machine_kexec_prepare(image);
|
|
if (ret)
|
|
goto out;
|
|
|
|
/*
|
|
* Some architecture(like S390) may touch the crash memory before
|
|
* machine_kexec_prepare(), we must copy vmcoreinfo data after it.
|
|
*/
|
|
ret = kimage_crash_copy_vmcoreinfo(image);
|
|
if (ret)
|
|
goto out;
|
|
|
|
ret = kexec_calculate_store_digests(image);
|
|
if (ret)
|
|
goto out;
|
|
|
|
for (i = 0; i < image->nr_segments; i++) {
|
|
struct kexec_segment *ksegment;
|
|
|
|
ksegment = &image->segment[i];
|
|
pr_debug("Loading segment %d: buf=0x%p bufsz=0x%zx mem=0x%lx memsz=0x%zx\n",
|
|
i, ksegment->buf, ksegment->bufsz, ksegment->mem,
|
|
ksegment->memsz);
|
|
|
|
ret = kimage_load_segment(image, &image->segment[i]);
|
|
if (ret)
|
|
goto out;
|
|
}
|
|
|
|
kimage_terminate(image);
|
|
|
|
ret = machine_kexec_post_load(image);
|
|
if (ret)
|
|
goto out;
|
|
|
|
/*
|
|
* Free up any temporary buffers allocated which are not needed
|
|
* after image has been loaded
|
|
*/
|
|
kimage_file_post_load_cleanup(image);
|
|
exchange:
|
|
image = xchg(dest_image, image);
|
|
out:
|
|
if ((flags & KEXEC_FILE_ON_CRASH) && kexec_crash_image)
|
|
arch_kexec_protect_crashkres();
|
|
|
|
mutex_unlock(&kexec_mutex);
|
|
kimage_free(image);
|
|
return ret;
|
|
}
|
|
|
|
static int locate_mem_hole_top_down(unsigned long start, unsigned long end,
|
|
struct kexec_buf *kbuf)
|
|
{
|
|
struct kimage *image = kbuf->image;
|
|
unsigned long temp_start, temp_end;
|
|
|
|
temp_end = min(end, kbuf->buf_max);
|
|
temp_start = temp_end - kbuf->memsz;
|
|
|
|
do {
|
|
/* align down start */
|
|
temp_start = temp_start & (~(kbuf->buf_align - 1));
|
|
|
|
if (temp_start < start || temp_start < kbuf->buf_min)
|
|
return 0;
|
|
|
|
temp_end = temp_start + kbuf->memsz - 1;
|
|
|
|
/*
|
|
* Make sure this does not conflict with any of existing
|
|
* segments
|
|
*/
|
|
if (kimage_is_destination_range(image, temp_start, temp_end)) {
|
|
temp_start = temp_start - PAGE_SIZE;
|
|
continue;
|
|
}
|
|
|
|
/* We found a suitable memory range */
|
|
break;
|
|
} while (1);
|
|
|
|
/* If we are here, we found a suitable memory range */
|
|
kbuf->mem = temp_start;
|
|
|
|
/* Success, stop navigating through remaining System RAM ranges */
|
|
return 1;
|
|
}
|
|
|
|
static int locate_mem_hole_bottom_up(unsigned long start, unsigned long end,
|
|
struct kexec_buf *kbuf)
|
|
{
|
|
struct kimage *image = kbuf->image;
|
|
unsigned long temp_start, temp_end;
|
|
|
|
temp_start = max(start, kbuf->buf_min);
|
|
|
|
do {
|
|
temp_start = ALIGN(temp_start, kbuf->buf_align);
|
|
temp_end = temp_start + kbuf->memsz - 1;
|
|
|
|
if (temp_end > end || temp_end > kbuf->buf_max)
|
|
return 0;
|
|
/*
|
|
* Make sure this does not conflict with any of existing
|
|
* segments
|
|
*/
|
|
if (kimage_is_destination_range(image, temp_start, temp_end)) {
|
|
temp_start = temp_start + PAGE_SIZE;
|
|
continue;
|
|
}
|
|
|
|
/* We found a suitable memory range */
|
|
break;
|
|
} while (1);
|
|
|
|
/* If we are here, we found a suitable memory range */
|
|
kbuf->mem = temp_start;
|
|
|
|
/* Success, stop navigating through remaining System RAM ranges */
|
|
return 1;
|
|
}
|
|
|
|
static int locate_mem_hole_callback(struct resource *res, void *arg)
|
|
{
|
|
struct kexec_buf *kbuf = (struct kexec_buf *)arg;
|
|
u64 start = res->start, end = res->end;
|
|
unsigned long sz = end - start + 1;
|
|
|
|
/* Returning 0 will take to next memory range */
|
|
|
|
/* Don't use memory that will be detected and handled by a driver. */
|
|
if (res->flags & IORESOURCE_SYSRAM_DRIVER_MANAGED)
|
|
return 0;
|
|
|
|
if (sz < kbuf->memsz)
|
|
return 0;
|
|
|
|
if (end < kbuf->buf_min || start > kbuf->buf_max)
|
|
return 0;
|
|
|
|
/*
|
|
* Allocate memory top down with-in ram range. Otherwise bottom up
|
|
* allocation.
|
|
*/
|
|
if (kbuf->top_down)
|
|
return locate_mem_hole_top_down(start, end, kbuf);
|
|
return locate_mem_hole_bottom_up(start, end, kbuf);
|
|
}
|
|
|
|
#ifdef CONFIG_ARCH_KEEP_MEMBLOCK
|
|
static int kexec_walk_memblock(struct kexec_buf *kbuf,
|
|
int (*func)(struct resource *, void *))
|
|
{
|
|
int ret = 0;
|
|
u64 i;
|
|
phys_addr_t mstart, mend;
|
|
struct resource res = { };
|
|
|
|
if (kbuf->image->type == KEXEC_TYPE_CRASH)
|
|
return func(&crashk_res, kbuf);
|
|
|
|
if (kbuf->top_down) {
|
|
for_each_free_mem_range_reverse(i, NUMA_NO_NODE, MEMBLOCK_NONE,
|
|
&mstart, &mend, NULL) {
|
|
/*
|
|
* In memblock, end points to the first byte after the
|
|
* range while in kexec, end points to the last byte
|
|
* in the range.
|
|
*/
|
|
res.start = mstart;
|
|
res.end = mend - 1;
|
|
ret = func(&res, kbuf);
|
|
if (ret)
|
|
break;
|
|
}
|
|
} else {
|
|
for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE,
|
|
&mstart, &mend, NULL) {
|
|
/*
|
|
* In memblock, end points to the first byte after the
|
|
* range while in kexec, end points to the last byte
|
|
* in the range.
|
|
*/
|
|
res.start = mstart;
|
|
res.end = mend - 1;
|
|
ret = func(&res, kbuf);
|
|
if (ret)
|
|
break;
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
#else
|
|
static int kexec_walk_memblock(struct kexec_buf *kbuf,
|
|
int (*func)(struct resource *, void *))
|
|
{
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
/**
|
|
* kexec_walk_resources - call func(data) on free memory regions
|
|
* @kbuf: Context info for the search. Also passed to @func.
|
|
* @func: Function to call for each memory region.
|
|
*
|
|
* Return: The memory walk will stop when func returns a non-zero value
|
|
* and that value will be returned. If all free regions are visited without
|
|
* func returning non-zero, then zero will be returned.
|
|
*/
|
|
static int kexec_walk_resources(struct kexec_buf *kbuf,
|
|
int (*func)(struct resource *, void *))
|
|
{
|
|
if (kbuf->image->type == KEXEC_TYPE_CRASH)
|
|
return walk_iomem_res_desc(crashk_res.desc,
|
|
IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY,
|
|
crashk_res.start, crashk_res.end,
|
|
kbuf, func);
|
|
else
|
|
return walk_system_ram_res(0, ULONG_MAX, kbuf, func);
|
|
}
|
|
|
|
/**
|
|
* kexec_locate_mem_hole - find free memory for the purgatory or the next kernel
|
|
* @kbuf: Parameters for the memory search.
|
|
*
|
|
* On success, kbuf->mem will have the start address of the memory region found.
|
|
*
|
|
* Return: 0 on success, negative errno on error.
|
|
*/
|
|
int kexec_locate_mem_hole(struct kexec_buf *kbuf)
|
|
{
|
|
int ret;
|
|
|
|
/* Arch knows where to place */
|
|
if (kbuf->mem != KEXEC_BUF_MEM_UNKNOWN)
|
|
return 0;
|
|
|
|
if (!IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK))
|
|
ret = kexec_walk_resources(kbuf, locate_mem_hole_callback);
|
|
else
|
|
ret = kexec_walk_memblock(kbuf, locate_mem_hole_callback);
|
|
|
|
return ret == 1 ? 0 : -EADDRNOTAVAIL;
|
|
}
|
|
|
|
/**
|
|
* arch_kexec_locate_mem_hole - Find free memory to place the segments.
|
|
* @kbuf: Parameters for the memory search.
|
|
*
|
|
* On success, kbuf->mem will have the start address of the memory region found.
|
|
*
|
|
* Return: 0 on success, negative errno on error.
|
|
*/
|
|
int __weak arch_kexec_locate_mem_hole(struct kexec_buf *kbuf)
|
|
{
|
|
return kexec_locate_mem_hole(kbuf);
|
|
}
|
|
|
|
/**
|
|
* kexec_add_buffer - place a buffer in a kexec segment
|
|
* @kbuf: Buffer contents and memory parameters.
|
|
*
|
|
* This function assumes that kexec_mutex is held.
|
|
* On successful return, @kbuf->mem will have the physical address of
|
|
* the buffer in memory.
|
|
*
|
|
* Return: 0 on success, negative errno on error.
|
|
*/
|
|
int kexec_add_buffer(struct kexec_buf *kbuf)
|
|
{
|
|
struct kexec_segment *ksegment;
|
|
int ret;
|
|
|
|
/* Currently adding segment this way is allowed only in file mode */
|
|
if (!kbuf->image->file_mode)
|
|
return -EINVAL;
|
|
|
|
if (kbuf->image->nr_segments >= KEXEC_SEGMENT_MAX)
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* Make sure we are not trying to add buffer after allocating
|
|
* control pages. All segments need to be placed first before
|
|
* any control pages are allocated. As control page allocation
|
|
* logic goes through list of segments to make sure there are
|
|
* no destination overlaps.
|
|
*/
|
|
if (!list_empty(&kbuf->image->control_pages)) {
|
|
WARN_ON(1);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Ensure minimum alignment needed for segments. */
|
|
kbuf->memsz = ALIGN(kbuf->memsz, PAGE_SIZE);
|
|
kbuf->buf_align = max(kbuf->buf_align, PAGE_SIZE);
|
|
|
|
/* Walk the RAM ranges and allocate a suitable range for the buffer */
|
|
ret = arch_kexec_locate_mem_hole(kbuf);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Found a suitable memory range */
|
|
ksegment = &kbuf->image->segment[kbuf->image->nr_segments];
|
|
ksegment->kbuf = kbuf->buffer;
|
|
ksegment->bufsz = kbuf->bufsz;
|
|
ksegment->mem = kbuf->mem;
|
|
ksegment->memsz = kbuf->memsz;
|
|
kbuf->image->nr_segments++;
|
|
return 0;
|
|
}
|
|
|
|
/* Calculate and store the digest of segments */
|
|
static int kexec_calculate_store_digests(struct kimage *image)
|
|
{
|
|
struct crypto_shash *tfm;
|
|
struct shash_desc *desc;
|
|
int ret = 0, i, j, zero_buf_sz, sha_region_sz;
|
|
size_t desc_size, nullsz;
|
|
char *digest;
|
|
void *zero_buf;
|
|
struct kexec_sha_region *sha_regions;
|
|
struct purgatory_info *pi = &image->purgatory_info;
|
|
|
|
if (!IS_ENABLED(CONFIG_ARCH_HAS_KEXEC_PURGATORY))
|
|
return 0;
|
|
|
|
zero_buf = __va(page_to_pfn(ZERO_PAGE(0)) << PAGE_SHIFT);
|
|
zero_buf_sz = PAGE_SIZE;
|
|
|
|
tfm = crypto_alloc_shash("sha256", 0, 0);
|
|
if (IS_ERR(tfm)) {
|
|
ret = PTR_ERR(tfm);
|
|
goto out;
|
|
}
|
|
|
|
desc_size = crypto_shash_descsize(tfm) + sizeof(*desc);
|
|
desc = kzalloc(desc_size, GFP_KERNEL);
|
|
if (!desc) {
|
|
ret = -ENOMEM;
|
|
goto out_free_tfm;
|
|
}
|
|
|
|
sha_region_sz = KEXEC_SEGMENT_MAX * sizeof(struct kexec_sha_region);
|
|
sha_regions = vzalloc(sha_region_sz);
|
|
if (!sha_regions)
|
|
goto out_free_desc;
|
|
|
|
desc->tfm = tfm;
|
|
|
|
ret = crypto_shash_init(desc);
|
|
if (ret < 0)
|
|
goto out_free_sha_regions;
|
|
|
|
digest = kzalloc(SHA256_DIGEST_SIZE, GFP_KERNEL);
|
|
if (!digest) {
|
|
ret = -ENOMEM;
|
|
goto out_free_sha_regions;
|
|
}
|
|
|
|
for (j = i = 0; i < image->nr_segments; i++) {
|
|
struct kexec_segment *ksegment;
|
|
|
|
ksegment = &image->segment[i];
|
|
/*
|
|
* Skip purgatory as it will be modified once we put digest
|
|
* info in purgatory.
|
|
*/
|
|
if (ksegment->kbuf == pi->purgatory_buf)
|
|
continue;
|
|
|
|
ret = crypto_shash_update(desc, ksegment->kbuf,
|
|
ksegment->bufsz);
|
|
if (ret)
|
|
break;
|
|
|
|
/*
|
|
* Assume rest of the buffer is filled with zero and
|
|
* update digest accordingly.
|
|
*/
|
|
nullsz = ksegment->memsz - ksegment->bufsz;
|
|
while (nullsz) {
|
|
unsigned long bytes = nullsz;
|
|
|
|
if (bytes > zero_buf_sz)
|
|
bytes = zero_buf_sz;
|
|
ret = crypto_shash_update(desc, zero_buf, bytes);
|
|
if (ret)
|
|
break;
|
|
nullsz -= bytes;
|
|
}
|
|
|
|
if (ret)
|
|
break;
|
|
|
|
sha_regions[j].start = ksegment->mem;
|
|
sha_regions[j].len = ksegment->memsz;
|
|
j++;
|
|
}
|
|
|
|
if (!ret) {
|
|
ret = crypto_shash_final(desc, digest);
|
|
if (ret)
|
|
goto out_free_digest;
|
|
ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha_regions",
|
|
sha_regions, sha_region_sz, 0);
|
|
if (ret)
|
|
goto out_free_digest;
|
|
|
|
ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha256_digest",
|
|
digest, SHA256_DIGEST_SIZE, 0);
|
|
if (ret)
|
|
goto out_free_digest;
|
|
}
|
|
|
|
out_free_digest:
|
|
kfree(digest);
|
|
out_free_sha_regions:
|
|
vfree(sha_regions);
|
|
out_free_desc:
|
|
kfree(desc);
|
|
out_free_tfm:
|
|
kfree(tfm);
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
#ifdef CONFIG_ARCH_HAS_KEXEC_PURGATORY
|
|
/*
|
|
* kexec_purgatory_setup_kbuf - prepare buffer to load purgatory.
|
|
* @pi: Purgatory to be loaded.
|
|
* @kbuf: Buffer to setup.
|
|
*
|
|
* Allocates the memory needed for the buffer. Caller is responsible to free
|
|
* the memory after use.
|
|
*
|
|
* Return: 0 on success, negative errno on error.
|
|
*/
|
|
static int kexec_purgatory_setup_kbuf(struct purgatory_info *pi,
|
|
struct kexec_buf *kbuf)
|
|
{
|
|
const Elf_Shdr *sechdrs;
|
|
unsigned long bss_align;
|
|
unsigned long bss_sz;
|
|
unsigned long align;
|
|
int i, ret;
|
|
|
|
sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
|
|
kbuf->buf_align = bss_align = 1;
|
|
kbuf->bufsz = bss_sz = 0;
|
|
|
|
for (i = 0; i < pi->ehdr->e_shnum; i++) {
|
|
if (!(sechdrs[i].sh_flags & SHF_ALLOC))
|
|
continue;
|
|
|
|
align = sechdrs[i].sh_addralign;
|
|
if (sechdrs[i].sh_type != SHT_NOBITS) {
|
|
if (kbuf->buf_align < align)
|
|
kbuf->buf_align = align;
|
|
kbuf->bufsz = ALIGN(kbuf->bufsz, align);
|
|
kbuf->bufsz += sechdrs[i].sh_size;
|
|
} else {
|
|
if (bss_align < align)
|
|
bss_align = align;
|
|
bss_sz = ALIGN(bss_sz, align);
|
|
bss_sz += sechdrs[i].sh_size;
|
|
}
|
|
}
|
|
kbuf->bufsz = ALIGN(kbuf->bufsz, bss_align);
|
|
kbuf->memsz = kbuf->bufsz + bss_sz;
|
|
if (kbuf->buf_align < bss_align)
|
|
kbuf->buf_align = bss_align;
|
|
|
|
kbuf->buffer = vzalloc(kbuf->bufsz);
|
|
if (!kbuf->buffer)
|
|
return -ENOMEM;
|
|
pi->purgatory_buf = kbuf->buffer;
|
|
|
|
ret = kexec_add_buffer(kbuf);
|
|
if (ret)
|
|
goto out;
|
|
|
|
return 0;
|
|
out:
|
|
vfree(pi->purgatory_buf);
|
|
pi->purgatory_buf = NULL;
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* kexec_purgatory_setup_sechdrs - prepares the pi->sechdrs buffer.
|
|
* @pi: Purgatory to be loaded.
|
|
* @kbuf: Buffer prepared to store purgatory.
|
|
*
|
|
* Allocates the memory needed for the buffer. Caller is responsible to free
|
|
* the memory after use.
|
|
*
|
|
* Return: 0 on success, negative errno on error.
|
|
*/
|
|
static int kexec_purgatory_setup_sechdrs(struct purgatory_info *pi,
|
|
struct kexec_buf *kbuf)
|
|
{
|
|
unsigned long bss_addr;
|
|
unsigned long offset;
|
|
Elf_Shdr *sechdrs;
|
|
int i;
|
|
|
|
/*
|
|
* The section headers in kexec_purgatory are read-only. In order to
|
|
* have them modifiable make a temporary copy.
|
|
*/
|
|
sechdrs = vzalloc(array_size(sizeof(Elf_Shdr), pi->ehdr->e_shnum));
|
|
if (!sechdrs)
|
|
return -ENOMEM;
|
|
memcpy(sechdrs, (void *)pi->ehdr + pi->ehdr->e_shoff,
|
|
pi->ehdr->e_shnum * sizeof(Elf_Shdr));
|
|
pi->sechdrs = sechdrs;
|
|
|
|
offset = 0;
|
|
bss_addr = kbuf->mem + kbuf->bufsz;
|
|
kbuf->image->start = pi->ehdr->e_entry;
|
|
|
|
for (i = 0; i < pi->ehdr->e_shnum; i++) {
|
|
unsigned long align;
|
|
void *src, *dst;
|
|
|
|
if (!(sechdrs[i].sh_flags & SHF_ALLOC))
|
|
continue;
|
|
|
|
align = sechdrs[i].sh_addralign;
|
|
if (sechdrs[i].sh_type == SHT_NOBITS) {
|
|
bss_addr = ALIGN(bss_addr, align);
|
|
sechdrs[i].sh_addr = bss_addr;
|
|
bss_addr += sechdrs[i].sh_size;
|
|
continue;
|
|
}
|
|
|
|
offset = ALIGN(offset, align);
|
|
if (sechdrs[i].sh_flags & SHF_EXECINSTR &&
|
|
pi->ehdr->e_entry >= sechdrs[i].sh_addr &&
|
|
pi->ehdr->e_entry < (sechdrs[i].sh_addr
|
|
+ sechdrs[i].sh_size)) {
|
|
kbuf->image->start -= sechdrs[i].sh_addr;
|
|
kbuf->image->start += kbuf->mem + offset;
|
|
}
|
|
|
|
src = (void *)pi->ehdr + sechdrs[i].sh_offset;
|
|
dst = pi->purgatory_buf + offset;
|
|
memcpy(dst, src, sechdrs[i].sh_size);
|
|
|
|
sechdrs[i].sh_addr = kbuf->mem + offset;
|
|
sechdrs[i].sh_offset = offset;
|
|
offset += sechdrs[i].sh_size;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int kexec_apply_relocations(struct kimage *image)
|
|
{
|
|
int i, ret;
|
|
struct purgatory_info *pi = &image->purgatory_info;
|
|
const Elf_Shdr *sechdrs;
|
|
|
|
sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
|
|
|
|
for (i = 0; i < pi->ehdr->e_shnum; i++) {
|
|
const Elf_Shdr *relsec;
|
|
const Elf_Shdr *symtab;
|
|
Elf_Shdr *section;
|
|
|
|
relsec = sechdrs + i;
|
|
|
|
if (relsec->sh_type != SHT_RELA &&
|
|
relsec->sh_type != SHT_REL)
|
|
continue;
|
|
|
|
/*
|
|
* For section of type SHT_RELA/SHT_REL,
|
|
* ->sh_link contains section header index of associated
|
|
* symbol table. And ->sh_info contains section header
|
|
* index of section to which relocations apply.
|
|
*/
|
|
if (relsec->sh_info >= pi->ehdr->e_shnum ||
|
|
relsec->sh_link >= pi->ehdr->e_shnum)
|
|
return -ENOEXEC;
|
|
|
|
section = pi->sechdrs + relsec->sh_info;
|
|
symtab = sechdrs + relsec->sh_link;
|
|
|
|
if (!(section->sh_flags & SHF_ALLOC))
|
|
continue;
|
|
|
|
/*
|
|
* symtab->sh_link contain section header index of associated
|
|
* string table.
|
|
*/
|
|
if (symtab->sh_link >= pi->ehdr->e_shnum)
|
|
/* Invalid section number? */
|
|
continue;
|
|
|
|
/*
|
|
* Respective architecture needs to provide support for applying
|
|
* relocations of type SHT_RELA/SHT_REL.
|
|
*/
|
|
if (relsec->sh_type == SHT_RELA)
|
|
ret = arch_kexec_apply_relocations_add(pi, section,
|
|
relsec, symtab);
|
|
else if (relsec->sh_type == SHT_REL)
|
|
ret = arch_kexec_apply_relocations(pi, section,
|
|
relsec, symtab);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* kexec_load_purgatory - Load and relocate the purgatory object.
|
|
* @image: Image to add the purgatory to.
|
|
* @kbuf: Memory parameters to use.
|
|
*
|
|
* Allocates the memory needed for image->purgatory_info.sechdrs and
|
|
* image->purgatory_info.purgatory_buf/kbuf->buffer. Caller is responsible
|
|
* to free the memory after use.
|
|
*
|
|
* Return: 0 on success, negative errno on error.
|
|
*/
|
|
int kexec_load_purgatory(struct kimage *image, struct kexec_buf *kbuf)
|
|
{
|
|
struct purgatory_info *pi = &image->purgatory_info;
|
|
int ret;
|
|
|
|
if (kexec_purgatory_size <= 0)
|
|
return -EINVAL;
|
|
|
|
pi->ehdr = (const Elf_Ehdr *)kexec_purgatory;
|
|
|
|
ret = kexec_purgatory_setup_kbuf(pi, kbuf);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = kexec_purgatory_setup_sechdrs(pi, kbuf);
|
|
if (ret)
|
|
goto out_free_kbuf;
|
|
|
|
ret = kexec_apply_relocations(image);
|
|
if (ret)
|
|
goto out;
|
|
|
|
return 0;
|
|
out:
|
|
vfree(pi->sechdrs);
|
|
pi->sechdrs = NULL;
|
|
out_free_kbuf:
|
|
vfree(pi->purgatory_buf);
|
|
pi->purgatory_buf = NULL;
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* kexec_purgatory_find_symbol - find a symbol in the purgatory
|
|
* @pi: Purgatory to search in.
|
|
* @name: Name of the symbol.
|
|
*
|
|
* Return: pointer to symbol in read-only symtab on success, NULL on error.
|
|
*/
|
|
static const Elf_Sym *kexec_purgatory_find_symbol(struct purgatory_info *pi,
|
|
const char *name)
|
|
{
|
|
const Elf_Shdr *sechdrs;
|
|
const Elf_Ehdr *ehdr;
|
|
const Elf_Sym *syms;
|
|
const char *strtab;
|
|
int i, k;
|
|
|
|
if (!pi->ehdr)
|
|
return NULL;
|
|
|
|
ehdr = pi->ehdr;
|
|
sechdrs = (void *)ehdr + ehdr->e_shoff;
|
|
|
|
for (i = 0; i < ehdr->e_shnum; i++) {
|
|
if (sechdrs[i].sh_type != SHT_SYMTAB)
|
|
continue;
|
|
|
|
if (sechdrs[i].sh_link >= ehdr->e_shnum)
|
|
/* Invalid strtab section number */
|
|
continue;
|
|
strtab = (void *)ehdr + sechdrs[sechdrs[i].sh_link].sh_offset;
|
|
syms = (void *)ehdr + sechdrs[i].sh_offset;
|
|
|
|
/* Go through symbols for a match */
|
|
for (k = 0; k < sechdrs[i].sh_size/sizeof(Elf_Sym); k++) {
|
|
if (ELF_ST_BIND(syms[k].st_info) != STB_GLOBAL)
|
|
continue;
|
|
|
|
if (strcmp(strtab + syms[k].st_name, name) != 0)
|
|
continue;
|
|
|
|
if (syms[k].st_shndx == SHN_UNDEF ||
|
|
syms[k].st_shndx >= ehdr->e_shnum) {
|
|
pr_debug("Symbol: %s has bad section index %d.\n",
|
|
name, syms[k].st_shndx);
|
|
return NULL;
|
|
}
|
|
|
|
/* Found the symbol we are looking for */
|
|
return &syms[k];
|
|
}
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
void *kexec_purgatory_get_symbol_addr(struct kimage *image, const char *name)
|
|
{
|
|
struct purgatory_info *pi = &image->purgatory_info;
|
|
const Elf_Sym *sym;
|
|
Elf_Shdr *sechdr;
|
|
|
|
sym = kexec_purgatory_find_symbol(pi, name);
|
|
if (!sym)
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
sechdr = &pi->sechdrs[sym->st_shndx];
|
|
|
|
/*
|
|
* Returns the address where symbol will finally be loaded after
|
|
* kexec_load_segment()
|
|
*/
|
|
return (void *)(sechdr->sh_addr + sym->st_value);
|
|
}
|
|
|
|
/*
|
|
* Get or set value of a symbol. If "get_value" is true, symbol value is
|
|
* returned in buf otherwise symbol value is set based on value in buf.
|
|
*/
|
|
int kexec_purgatory_get_set_symbol(struct kimage *image, const char *name,
|
|
void *buf, unsigned int size, bool get_value)
|
|
{
|
|
struct purgatory_info *pi = &image->purgatory_info;
|
|
const Elf_Sym *sym;
|
|
Elf_Shdr *sec;
|
|
char *sym_buf;
|
|
|
|
sym = kexec_purgatory_find_symbol(pi, name);
|
|
if (!sym)
|
|
return -EINVAL;
|
|
|
|
if (sym->st_size != size) {
|
|
pr_err("symbol %s size mismatch: expected %lu actual %u\n",
|
|
name, (unsigned long)sym->st_size, size);
|
|
return -EINVAL;
|
|
}
|
|
|
|
sec = pi->sechdrs + sym->st_shndx;
|
|
|
|
if (sec->sh_type == SHT_NOBITS) {
|
|
pr_err("symbol %s is in a bss section. Cannot %s\n", name,
|
|
get_value ? "get" : "set");
|
|
return -EINVAL;
|
|
}
|
|
|
|
sym_buf = (char *)pi->purgatory_buf + sec->sh_offset + sym->st_value;
|
|
|
|
if (get_value)
|
|
memcpy((void *)buf, sym_buf, size);
|
|
else
|
|
memcpy((void *)sym_buf, buf, size);
|
|
|
|
return 0;
|
|
}
|
|
#endif /* CONFIG_ARCH_HAS_KEXEC_PURGATORY */
|
|
|
|
int crash_exclude_mem_range(struct crash_mem *mem,
|
|
unsigned long long mstart, unsigned long long mend)
|
|
{
|
|
int i, j;
|
|
unsigned long long start, end, p_start, p_end;
|
|
struct crash_mem_range temp_range = {0, 0};
|
|
|
|
for (i = 0; i < mem->nr_ranges; i++) {
|
|
start = mem->ranges[i].start;
|
|
end = mem->ranges[i].end;
|
|
p_start = mstart;
|
|
p_end = mend;
|
|
|
|
if (mstart > end || mend < start)
|
|
continue;
|
|
|
|
/* Truncate any area outside of range */
|
|
if (mstart < start)
|
|
p_start = start;
|
|
if (mend > end)
|
|
p_end = end;
|
|
|
|
/* Found completely overlapping range */
|
|
if (p_start == start && p_end == end) {
|
|
mem->ranges[i].start = 0;
|
|
mem->ranges[i].end = 0;
|
|
if (i < mem->nr_ranges - 1) {
|
|
/* Shift rest of the ranges to left */
|
|
for (j = i; j < mem->nr_ranges - 1; j++) {
|
|
mem->ranges[j].start =
|
|
mem->ranges[j+1].start;
|
|
mem->ranges[j].end =
|
|
mem->ranges[j+1].end;
|
|
}
|
|
|
|
/*
|
|
* Continue to check if there are another overlapping ranges
|
|
* from the current position because of shifting the above
|
|
* mem ranges.
|
|
*/
|
|
i--;
|
|
mem->nr_ranges--;
|
|
continue;
|
|
}
|
|
mem->nr_ranges--;
|
|
return 0;
|
|
}
|
|
|
|
if (p_start > start && p_end < end) {
|
|
/* Split original range */
|
|
mem->ranges[i].end = p_start - 1;
|
|
temp_range.start = p_end + 1;
|
|
temp_range.end = end;
|
|
} else if (p_start != start)
|
|
mem->ranges[i].end = p_start - 1;
|
|
else
|
|
mem->ranges[i].start = p_end + 1;
|
|
break;
|
|
}
|
|
|
|
/* If a split happened, add the split to array */
|
|
if (!temp_range.end)
|
|
return 0;
|
|
|
|
/* Split happened */
|
|
if (i == mem->max_nr_ranges - 1)
|
|
return -ENOMEM;
|
|
|
|
/* Location where new range should go */
|
|
j = i + 1;
|
|
if (j < mem->nr_ranges) {
|
|
/* Move over all ranges one slot towards the end */
|
|
for (i = mem->nr_ranges - 1; i >= j; i--)
|
|
mem->ranges[i + 1] = mem->ranges[i];
|
|
}
|
|
|
|
mem->ranges[j].start = temp_range.start;
|
|
mem->ranges[j].end = temp_range.end;
|
|
mem->nr_ranges++;
|
|
return 0;
|
|
}
|
|
|
|
int crash_prepare_elf64_headers(struct crash_mem *mem, int kernel_map,
|
|
void **addr, unsigned long *sz)
|
|
{
|
|
Elf64_Ehdr *ehdr;
|
|
Elf64_Phdr *phdr;
|
|
unsigned long nr_cpus = num_possible_cpus(), nr_phdr, elf_sz;
|
|
unsigned char *buf;
|
|
unsigned int cpu, i;
|
|
unsigned long long notes_addr;
|
|
unsigned long mstart, mend;
|
|
|
|
/* extra phdr for vmcoreinfo ELF note */
|
|
nr_phdr = nr_cpus + 1;
|
|
nr_phdr += mem->nr_ranges;
|
|
|
|
/*
|
|
* kexec-tools creates an extra PT_LOAD phdr for kernel text mapping
|
|
* area (for example, ffffffff80000000 - ffffffffa0000000 on x86_64).
|
|
* I think this is required by tools like gdb. So same physical
|
|
* memory will be mapped in two ELF headers. One will contain kernel
|
|
* text virtual addresses and other will have __va(physical) addresses.
|
|
*/
|
|
|
|
nr_phdr++;
|
|
elf_sz = sizeof(Elf64_Ehdr) + nr_phdr * sizeof(Elf64_Phdr);
|
|
elf_sz = ALIGN(elf_sz, ELF_CORE_HEADER_ALIGN);
|
|
|
|
buf = vzalloc(elf_sz);
|
|
if (!buf)
|
|
return -ENOMEM;
|
|
|
|
ehdr = (Elf64_Ehdr *)buf;
|
|
phdr = (Elf64_Phdr *)(ehdr + 1);
|
|
memcpy(ehdr->e_ident, ELFMAG, SELFMAG);
|
|
ehdr->e_ident[EI_CLASS] = ELFCLASS64;
|
|
ehdr->e_ident[EI_DATA] = ELFDATA2LSB;
|
|
ehdr->e_ident[EI_VERSION] = EV_CURRENT;
|
|
ehdr->e_ident[EI_OSABI] = ELF_OSABI;
|
|
memset(ehdr->e_ident + EI_PAD, 0, EI_NIDENT - EI_PAD);
|
|
ehdr->e_type = ET_CORE;
|
|
ehdr->e_machine = ELF_ARCH;
|
|
ehdr->e_version = EV_CURRENT;
|
|
ehdr->e_phoff = sizeof(Elf64_Ehdr);
|
|
ehdr->e_ehsize = sizeof(Elf64_Ehdr);
|
|
ehdr->e_phentsize = sizeof(Elf64_Phdr);
|
|
|
|
/* Prepare one phdr of type PT_NOTE for each present CPU */
|
|
for_each_present_cpu(cpu) {
|
|
phdr->p_type = PT_NOTE;
|
|
notes_addr = per_cpu_ptr_to_phys(per_cpu_ptr(crash_notes, cpu));
|
|
phdr->p_offset = phdr->p_paddr = notes_addr;
|
|
phdr->p_filesz = phdr->p_memsz = sizeof(note_buf_t);
|
|
(ehdr->e_phnum)++;
|
|
phdr++;
|
|
}
|
|
|
|
/* Prepare one PT_NOTE header for vmcoreinfo */
|
|
phdr->p_type = PT_NOTE;
|
|
phdr->p_offset = phdr->p_paddr = paddr_vmcoreinfo_note();
|
|
phdr->p_filesz = phdr->p_memsz = VMCOREINFO_NOTE_SIZE;
|
|
(ehdr->e_phnum)++;
|
|
phdr++;
|
|
|
|
/* Prepare PT_LOAD type program header for kernel text region */
|
|
if (kernel_map) {
|
|
phdr->p_type = PT_LOAD;
|
|
phdr->p_flags = PF_R|PF_W|PF_X;
|
|
phdr->p_vaddr = (unsigned long) _text;
|
|
phdr->p_filesz = phdr->p_memsz = _end - _text;
|
|
phdr->p_offset = phdr->p_paddr = __pa_symbol(_text);
|
|
ehdr->e_phnum++;
|
|
phdr++;
|
|
}
|
|
|
|
/* Go through all the ranges in mem->ranges[] and prepare phdr */
|
|
for (i = 0; i < mem->nr_ranges; i++) {
|
|
mstart = mem->ranges[i].start;
|
|
mend = mem->ranges[i].end;
|
|
|
|
phdr->p_type = PT_LOAD;
|
|
phdr->p_flags = PF_R|PF_W|PF_X;
|
|
phdr->p_offset = mstart;
|
|
|
|
phdr->p_paddr = mstart;
|
|
phdr->p_vaddr = (unsigned long) __va(mstart);
|
|
phdr->p_filesz = phdr->p_memsz = mend - mstart + 1;
|
|
phdr->p_align = 0;
|
|
ehdr->e_phnum++;
|
|
pr_debug("Crash PT_LOAD ELF header. phdr=%p vaddr=0x%llx, paddr=0x%llx, sz=0x%llx e_phnum=%d p_offset=0x%llx\n",
|
|
phdr, phdr->p_vaddr, phdr->p_paddr, phdr->p_filesz,
|
|
ehdr->e_phnum, phdr->p_offset);
|
|
phdr++;
|
|
}
|
|
|
|
*addr = buf;
|
|
*sz = elf_sz;
|
|
return 0;
|
|
}
|