linux/sound/pci/fm801.c
Takashi Iwai 247ed10204 ALSA: fm801: Use managed buffer allocation
Clean up the driver with the new managed buffer allocation API.
The hw_params and hw_free callbacks became superfluous and got
dropped.

Link: https://lore.kernel.org/r/20191209094943.14984-40-tiwai@suse.de
Signed-off-by: Takashi Iwai <tiwai@suse.de>
2019-12-11 07:25:11 +01:00

1437 lines
40 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* The driver for the ForteMedia FM801 based soundcards
* Copyright (c) by Jaroslav Kysela <perex@perex.cz>
*/
#include <linux/delay.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/pci.h>
#include <linux/slab.h>
#include <linux/module.h>
#include <sound/core.h>
#include <sound/pcm.h>
#include <sound/tlv.h>
#include <sound/ac97_codec.h>
#include <sound/mpu401.h>
#include <sound/opl3.h>
#include <sound/initval.h>
#ifdef CONFIG_SND_FM801_TEA575X_BOOL
#include <media/drv-intf/tea575x.h>
#endif
MODULE_AUTHOR("Jaroslav Kysela <perex@perex.cz>");
MODULE_DESCRIPTION("ForteMedia FM801");
MODULE_LICENSE("GPL");
MODULE_SUPPORTED_DEVICE("{{ForteMedia,FM801},"
"{Genius,SoundMaker Live 5.1}}");
static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX; /* Index 0-MAX */
static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR; /* ID for this card */
static bool enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP; /* Enable this card */
/*
* Enable TEA575x tuner
* 1 = MediaForte 256-PCS
* 2 = MediaForte 256-PCP
* 3 = MediaForte 64-PCR
* 16 = setup tuner only (this is additional bit), i.e. SF64-PCR FM card
* High 16-bits are video (radio) device number + 1
*/
static int tea575x_tuner[SNDRV_CARDS];
static int radio_nr[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS - 1)] = -1};
module_param_array(index, int, NULL, 0444);
MODULE_PARM_DESC(index, "Index value for the FM801 soundcard.");
module_param_array(id, charp, NULL, 0444);
MODULE_PARM_DESC(id, "ID string for the FM801 soundcard.");
module_param_array(enable, bool, NULL, 0444);
MODULE_PARM_DESC(enable, "Enable FM801 soundcard.");
module_param_array(tea575x_tuner, int, NULL, 0444);
MODULE_PARM_DESC(tea575x_tuner, "TEA575x tuner access method (0 = auto, 1 = SF256-PCS, 2=SF256-PCP, 3=SF64-PCR, 8=disable, +16=tuner-only).");
module_param_array(radio_nr, int, NULL, 0444);
MODULE_PARM_DESC(radio_nr, "Radio device numbers");
#define TUNER_DISABLED (1<<3)
#define TUNER_ONLY (1<<4)
#define TUNER_TYPE_MASK (~TUNER_ONLY & 0xFFFF)
/*
* Direct registers
*/
#define fm801_writew(chip,reg,value) outw((value), chip->port + FM801_##reg)
#define fm801_readw(chip,reg) inw(chip->port + FM801_##reg)
#define fm801_writel(chip,reg,value) outl((value), chip->port + FM801_##reg)
#define FM801_PCM_VOL 0x00 /* PCM Output Volume */
#define FM801_FM_VOL 0x02 /* FM Output Volume */
#define FM801_I2S_VOL 0x04 /* I2S Volume */
#define FM801_REC_SRC 0x06 /* Record Source */
#define FM801_PLY_CTRL 0x08 /* Playback Control */
#define FM801_PLY_COUNT 0x0a /* Playback Count */
#define FM801_PLY_BUF1 0x0c /* Playback Bufer I */
#define FM801_PLY_BUF2 0x10 /* Playback Buffer II */
#define FM801_CAP_CTRL 0x14 /* Capture Control */
#define FM801_CAP_COUNT 0x16 /* Capture Count */
#define FM801_CAP_BUF1 0x18 /* Capture Buffer I */
#define FM801_CAP_BUF2 0x1c /* Capture Buffer II */
#define FM801_CODEC_CTRL 0x22 /* Codec Control */
#define FM801_I2S_MODE 0x24 /* I2S Mode Control */
#define FM801_VOLUME 0x26 /* Volume Up/Down/Mute Status */
#define FM801_I2C_CTRL 0x29 /* I2C Control */
#define FM801_AC97_CMD 0x2a /* AC'97 Command */
#define FM801_AC97_DATA 0x2c /* AC'97 Data */
#define FM801_MPU401_DATA 0x30 /* MPU401 Data */
#define FM801_MPU401_CMD 0x31 /* MPU401 Command */
#define FM801_GPIO_CTRL 0x52 /* General Purpose I/O Control */
#define FM801_GEN_CTRL 0x54 /* General Control */
#define FM801_IRQ_MASK 0x56 /* Interrupt Mask */
#define FM801_IRQ_STATUS 0x5a /* Interrupt Status */
#define FM801_OPL3_BANK0 0x68 /* OPL3 Status Read / Bank 0 Write */
#define FM801_OPL3_DATA0 0x69 /* OPL3 Data 0 Write */
#define FM801_OPL3_BANK1 0x6a /* OPL3 Bank 1 Write */
#define FM801_OPL3_DATA1 0x6b /* OPL3 Bank 1 Write */
#define FM801_POWERDOWN 0x70 /* Blocks Power Down Control */
/* codec access */
#define FM801_AC97_READ (1<<7) /* read=1, write=0 */
#define FM801_AC97_VALID (1<<8) /* port valid=1 */
#define FM801_AC97_BUSY (1<<9) /* busy=1 */
#define FM801_AC97_ADDR_SHIFT 10 /* codec id (2bit) */
/* playback and record control register bits */
#define FM801_BUF1_LAST (1<<1)
#define FM801_BUF2_LAST (1<<2)
#define FM801_START (1<<5)
#define FM801_PAUSE (1<<6)
#define FM801_IMMED_STOP (1<<7)
#define FM801_RATE_SHIFT 8
#define FM801_RATE_MASK (15 << FM801_RATE_SHIFT)
#define FM801_CHANNELS_4 (1<<12) /* playback only */
#define FM801_CHANNELS_6 (2<<12) /* playback only */
#define FM801_CHANNELS_6MS (3<<12) /* playback only */
#define FM801_CHANNELS_MASK (3<<12)
#define FM801_16BIT (1<<14)
#define FM801_STEREO (1<<15)
/* IRQ status bits */
#define FM801_IRQ_PLAYBACK (1<<8)
#define FM801_IRQ_CAPTURE (1<<9)
#define FM801_IRQ_VOLUME (1<<14)
#define FM801_IRQ_MPU (1<<15)
/* GPIO control register */
#define FM801_GPIO_GP0 (1<<0) /* read/write */
#define FM801_GPIO_GP1 (1<<1)
#define FM801_GPIO_GP2 (1<<2)
#define FM801_GPIO_GP3 (1<<3)
#define FM801_GPIO_GP(x) (1<<(0+(x)))
#define FM801_GPIO_GD0 (1<<8) /* directions: 1 = input, 0 = output*/
#define FM801_GPIO_GD1 (1<<9)
#define FM801_GPIO_GD2 (1<<10)
#define FM801_GPIO_GD3 (1<<11)
#define FM801_GPIO_GD(x) (1<<(8+(x)))
#define FM801_GPIO_GS0 (1<<12) /* function select: */
#define FM801_GPIO_GS1 (1<<13) /* 1 = GPIO */
#define FM801_GPIO_GS2 (1<<14) /* 0 = other (S/PDIF, VOL) */
#define FM801_GPIO_GS3 (1<<15)
#define FM801_GPIO_GS(x) (1<<(12+(x)))
/**
* struct fm801 - describes FM801 chip
* @port: I/O port number
* @multichannel: multichannel support
* @secondary: secondary codec
* @secondary_addr: address of the secondary codec
* @tea575x_tuner: tuner access method & flags
* @ply_ctrl: playback control
* @cap_ctrl: capture control
*/
struct fm801 {
struct device *dev;
int irq;
unsigned long port;
unsigned int multichannel: 1,
secondary: 1;
unsigned char secondary_addr;
unsigned int tea575x_tuner;
unsigned short ply_ctrl;
unsigned short cap_ctrl;
unsigned long ply_buffer;
unsigned int ply_buf;
unsigned int ply_count;
unsigned int ply_size;
unsigned int ply_pos;
unsigned long cap_buffer;
unsigned int cap_buf;
unsigned int cap_count;
unsigned int cap_size;
unsigned int cap_pos;
struct snd_ac97_bus *ac97_bus;
struct snd_ac97 *ac97;
struct snd_ac97 *ac97_sec;
struct snd_card *card;
struct snd_pcm *pcm;
struct snd_rawmidi *rmidi;
struct snd_pcm_substream *playback_substream;
struct snd_pcm_substream *capture_substream;
unsigned int p_dma_size;
unsigned int c_dma_size;
spinlock_t reg_lock;
struct snd_info_entry *proc_entry;
#ifdef CONFIG_SND_FM801_TEA575X_BOOL
struct v4l2_device v4l2_dev;
struct snd_tea575x tea;
#endif
#ifdef CONFIG_PM_SLEEP
u16 saved_regs[0x20];
#endif
};
/*
* IO accessors
*/
static inline void fm801_iowrite16(struct fm801 *chip, unsigned short offset, u16 value)
{
outw(value, chip->port + offset);
}
static inline u16 fm801_ioread16(struct fm801 *chip, unsigned short offset)
{
return inw(chip->port + offset);
}
static const struct pci_device_id snd_fm801_ids[] = {
{ 0x1319, 0x0801, PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_MULTIMEDIA_AUDIO << 8, 0xffff00, 0, }, /* FM801 */
{ 0x5213, 0x0510, PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_MULTIMEDIA_AUDIO << 8, 0xffff00, 0, }, /* Gallant Odyssey Sound 4 */
{ 0, }
};
MODULE_DEVICE_TABLE(pci, snd_fm801_ids);
/*
* common I/O routines
*/
static bool fm801_ac97_is_ready(struct fm801 *chip, unsigned int iterations)
{
unsigned int idx;
for (idx = 0; idx < iterations; idx++) {
if (!(fm801_readw(chip, AC97_CMD) & FM801_AC97_BUSY))
return true;
udelay(10);
}
return false;
}
static bool fm801_ac97_is_valid(struct fm801 *chip, unsigned int iterations)
{
unsigned int idx;
for (idx = 0; idx < iterations; idx++) {
if (fm801_readw(chip, AC97_CMD) & FM801_AC97_VALID)
return true;
udelay(10);
}
return false;
}
static int snd_fm801_update_bits(struct fm801 *chip, unsigned short reg,
unsigned short mask, unsigned short value)
{
int change;
unsigned long flags;
unsigned short old, new;
spin_lock_irqsave(&chip->reg_lock, flags);
old = fm801_ioread16(chip, reg);
new = (old & ~mask) | value;
change = old != new;
if (change)
fm801_iowrite16(chip, reg, new);
spin_unlock_irqrestore(&chip->reg_lock, flags);
return change;
}
static void snd_fm801_codec_write(struct snd_ac97 *ac97,
unsigned short reg,
unsigned short val)
{
struct fm801 *chip = ac97->private_data;
/*
* Wait until the codec interface is not ready..
*/
if (!fm801_ac97_is_ready(chip, 100)) {
dev_err(chip->card->dev, "AC'97 interface is busy (1)\n");
return;
}
/* write data and address */
fm801_writew(chip, AC97_DATA, val);
fm801_writew(chip, AC97_CMD, reg | (ac97->addr << FM801_AC97_ADDR_SHIFT));
/*
* Wait until the write command is not completed..
*/
if (!fm801_ac97_is_ready(chip, 1000))
dev_err(chip->card->dev, "AC'97 interface #%d is busy (2)\n",
ac97->num);
}
static unsigned short snd_fm801_codec_read(struct snd_ac97 *ac97, unsigned short reg)
{
struct fm801 *chip = ac97->private_data;
/*
* Wait until the codec interface is not ready..
*/
if (!fm801_ac97_is_ready(chip, 100)) {
dev_err(chip->card->dev, "AC'97 interface is busy (1)\n");
return 0;
}
/* read command */
fm801_writew(chip, AC97_CMD,
reg | (ac97->addr << FM801_AC97_ADDR_SHIFT) | FM801_AC97_READ);
if (!fm801_ac97_is_ready(chip, 100)) {
dev_err(chip->card->dev, "AC'97 interface #%d is busy (2)\n",
ac97->num);
return 0;
}
if (!fm801_ac97_is_valid(chip, 1000)) {
dev_err(chip->card->dev,
"AC'97 interface #%d is not valid (2)\n", ac97->num);
return 0;
}
return fm801_readw(chip, AC97_DATA);
}
static const unsigned int rates[] = {
5500, 8000, 9600, 11025,
16000, 19200, 22050, 32000,
38400, 44100, 48000
};
static const struct snd_pcm_hw_constraint_list hw_constraints_rates = {
.count = ARRAY_SIZE(rates),
.list = rates,
.mask = 0,
};
static const unsigned int channels[] = {
2, 4, 6
};
static const struct snd_pcm_hw_constraint_list hw_constraints_channels = {
.count = ARRAY_SIZE(channels),
.list = channels,
.mask = 0,
};
/*
* Sample rate routines
*/
static unsigned short snd_fm801_rate_bits(unsigned int rate)
{
unsigned int idx;
for (idx = 0; idx < ARRAY_SIZE(rates); idx++)
if (rates[idx] == rate)
return idx;
snd_BUG();
return ARRAY_SIZE(rates) - 1;
}
/*
* PCM part
*/
static int snd_fm801_playback_trigger(struct snd_pcm_substream *substream,
int cmd)
{
struct fm801 *chip = snd_pcm_substream_chip(substream);
spin_lock(&chip->reg_lock);
switch (cmd) {
case SNDRV_PCM_TRIGGER_START:
chip->ply_ctrl &= ~(FM801_BUF1_LAST |
FM801_BUF2_LAST |
FM801_PAUSE);
chip->ply_ctrl |= FM801_START |
FM801_IMMED_STOP;
break;
case SNDRV_PCM_TRIGGER_STOP:
chip->ply_ctrl &= ~(FM801_START | FM801_PAUSE);
break;
case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
case SNDRV_PCM_TRIGGER_SUSPEND:
chip->ply_ctrl |= FM801_PAUSE;
break;
case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
case SNDRV_PCM_TRIGGER_RESUME:
chip->ply_ctrl &= ~FM801_PAUSE;
break;
default:
spin_unlock(&chip->reg_lock);
snd_BUG();
return -EINVAL;
}
fm801_writew(chip, PLY_CTRL, chip->ply_ctrl);
spin_unlock(&chip->reg_lock);
return 0;
}
static int snd_fm801_capture_trigger(struct snd_pcm_substream *substream,
int cmd)
{
struct fm801 *chip = snd_pcm_substream_chip(substream);
spin_lock(&chip->reg_lock);
switch (cmd) {
case SNDRV_PCM_TRIGGER_START:
chip->cap_ctrl &= ~(FM801_BUF1_LAST |
FM801_BUF2_LAST |
FM801_PAUSE);
chip->cap_ctrl |= FM801_START |
FM801_IMMED_STOP;
break;
case SNDRV_PCM_TRIGGER_STOP:
chip->cap_ctrl &= ~(FM801_START | FM801_PAUSE);
break;
case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
case SNDRV_PCM_TRIGGER_SUSPEND:
chip->cap_ctrl |= FM801_PAUSE;
break;
case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
case SNDRV_PCM_TRIGGER_RESUME:
chip->cap_ctrl &= ~FM801_PAUSE;
break;
default:
spin_unlock(&chip->reg_lock);
snd_BUG();
return -EINVAL;
}
fm801_writew(chip, CAP_CTRL, chip->cap_ctrl);
spin_unlock(&chip->reg_lock);
return 0;
}
static int snd_fm801_playback_prepare(struct snd_pcm_substream *substream)
{
struct fm801 *chip = snd_pcm_substream_chip(substream);
struct snd_pcm_runtime *runtime = substream->runtime;
chip->ply_size = snd_pcm_lib_buffer_bytes(substream);
chip->ply_count = snd_pcm_lib_period_bytes(substream);
spin_lock_irq(&chip->reg_lock);
chip->ply_ctrl &= ~(FM801_START | FM801_16BIT |
FM801_STEREO | FM801_RATE_MASK |
FM801_CHANNELS_MASK);
if (snd_pcm_format_width(runtime->format) == 16)
chip->ply_ctrl |= FM801_16BIT;
if (runtime->channels > 1) {
chip->ply_ctrl |= FM801_STEREO;
if (runtime->channels == 4)
chip->ply_ctrl |= FM801_CHANNELS_4;
else if (runtime->channels == 6)
chip->ply_ctrl |= FM801_CHANNELS_6;
}
chip->ply_ctrl |= snd_fm801_rate_bits(runtime->rate) << FM801_RATE_SHIFT;
chip->ply_buf = 0;
fm801_writew(chip, PLY_CTRL, chip->ply_ctrl);
fm801_writew(chip, PLY_COUNT, chip->ply_count - 1);
chip->ply_buffer = runtime->dma_addr;
chip->ply_pos = 0;
fm801_writel(chip, PLY_BUF1, chip->ply_buffer);
fm801_writel(chip, PLY_BUF2,
chip->ply_buffer + (chip->ply_count % chip->ply_size));
spin_unlock_irq(&chip->reg_lock);
return 0;
}
static int snd_fm801_capture_prepare(struct snd_pcm_substream *substream)
{
struct fm801 *chip = snd_pcm_substream_chip(substream);
struct snd_pcm_runtime *runtime = substream->runtime;
chip->cap_size = snd_pcm_lib_buffer_bytes(substream);
chip->cap_count = snd_pcm_lib_period_bytes(substream);
spin_lock_irq(&chip->reg_lock);
chip->cap_ctrl &= ~(FM801_START | FM801_16BIT |
FM801_STEREO | FM801_RATE_MASK);
if (snd_pcm_format_width(runtime->format) == 16)
chip->cap_ctrl |= FM801_16BIT;
if (runtime->channels > 1)
chip->cap_ctrl |= FM801_STEREO;
chip->cap_ctrl |= snd_fm801_rate_bits(runtime->rate) << FM801_RATE_SHIFT;
chip->cap_buf = 0;
fm801_writew(chip, CAP_CTRL, chip->cap_ctrl);
fm801_writew(chip, CAP_COUNT, chip->cap_count - 1);
chip->cap_buffer = runtime->dma_addr;
chip->cap_pos = 0;
fm801_writel(chip, CAP_BUF1, chip->cap_buffer);
fm801_writel(chip, CAP_BUF2,
chip->cap_buffer + (chip->cap_count % chip->cap_size));
spin_unlock_irq(&chip->reg_lock);
return 0;
}
static snd_pcm_uframes_t snd_fm801_playback_pointer(struct snd_pcm_substream *substream)
{
struct fm801 *chip = snd_pcm_substream_chip(substream);
size_t ptr;
if (!(chip->ply_ctrl & FM801_START))
return 0;
spin_lock(&chip->reg_lock);
ptr = chip->ply_pos + (chip->ply_count - 1) - fm801_readw(chip, PLY_COUNT);
if (fm801_readw(chip, IRQ_STATUS) & FM801_IRQ_PLAYBACK) {
ptr += chip->ply_count;
ptr %= chip->ply_size;
}
spin_unlock(&chip->reg_lock);
return bytes_to_frames(substream->runtime, ptr);
}
static snd_pcm_uframes_t snd_fm801_capture_pointer(struct snd_pcm_substream *substream)
{
struct fm801 *chip = snd_pcm_substream_chip(substream);
size_t ptr;
if (!(chip->cap_ctrl & FM801_START))
return 0;
spin_lock(&chip->reg_lock);
ptr = chip->cap_pos + (chip->cap_count - 1) - fm801_readw(chip, CAP_COUNT);
if (fm801_readw(chip, IRQ_STATUS) & FM801_IRQ_CAPTURE) {
ptr += chip->cap_count;
ptr %= chip->cap_size;
}
spin_unlock(&chip->reg_lock);
return bytes_to_frames(substream->runtime, ptr);
}
static irqreturn_t snd_fm801_interrupt(int irq, void *dev_id)
{
struct fm801 *chip = dev_id;
unsigned short status;
unsigned int tmp;
status = fm801_readw(chip, IRQ_STATUS);
status &= FM801_IRQ_PLAYBACK|FM801_IRQ_CAPTURE|FM801_IRQ_MPU|FM801_IRQ_VOLUME;
if (! status)
return IRQ_NONE;
/* ack first */
fm801_writew(chip, IRQ_STATUS, status);
if (chip->pcm && (status & FM801_IRQ_PLAYBACK) && chip->playback_substream) {
spin_lock(&chip->reg_lock);
chip->ply_buf++;
chip->ply_pos += chip->ply_count;
chip->ply_pos %= chip->ply_size;
tmp = chip->ply_pos + chip->ply_count;
tmp %= chip->ply_size;
if (chip->ply_buf & 1)
fm801_writel(chip, PLY_BUF1, chip->ply_buffer + tmp);
else
fm801_writel(chip, PLY_BUF2, chip->ply_buffer + tmp);
spin_unlock(&chip->reg_lock);
snd_pcm_period_elapsed(chip->playback_substream);
}
if (chip->pcm && (status & FM801_IRQ_CAPTURE) && chip->capture_substream) {
spin_lock(&chip->reg_lock);
chip->cap_buf++;
chip->cap_pos += chip->cap_count;
chip->cap_pos %= chip->cap_size;
tmp = chip->cap_pos + chip->cap_count;
tmp %= chip->cap_size;
if (chip->cap_buf & 1)
fm801_writel(chip, CAP_BUF1, chip->cap_buffer + tmp);
else
fm801_writel(chip, CAP_BUF2, chip->cap_buffer + tmp);
spin_unlock(&chip->reg_lock);
snd_pcm_period_elapsed(chip->capture_substream);
}
if (chip->rmidi && (status & FM801_IRQ_MPU))
snd_mpu401_uart_interrupt(irq, chip->rmidi->private_data);
if (status & FM801_IRQ_VOLUME) {
/* TODO */
}
return IRQ_HANDLED;
}
static const struct snd_pcm_hardware snd_fm801_playback =
{
.info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
SNDRV_PCM_INFO_BLOCK_TRANSFER |
SNDRV_PCM_INFO_PAUSE | SNDRV_PCM_INFO_RESUME |
SNDRV_PCM_INFO_MMAP_VALID),
.formats = SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
.rates = SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_8000_48000,
.rate_min = 5500,
.rate_max = 48000,
.channels_min = 1,
.channels_max = 2,
.buffer_bytes_max = (128*1024),
.period_bytes_min = 64,
.period_bytes_max = (128*1024),
.periods_min = 1,
.periods_max = 1024,
.fifo_size = 0,
};
static const struct snd_pcm_hardware snd_fm801_capture =
{
.info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
SNDRV_PCM_INFO_BLOCK_TRANSFER |
SNDRV_PCM_INFO_PAUSE | SNDRV_PCM_INFO_RESUME |
SNDRV_PCM_INFO_MMAP_VALID),
.formats = SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
.rates = SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_8000_48000,
.rate_min = 5500,
.rate_max = 48000,
.channels_min = 1,
.channels_max = 2,
.buffer_bytes_max = (128*1024),
.period_bytes_min = 64,
.period_bytes_max = (128*1024),
.periods_min = 1,
.periods_max = 1024,
.fifo_size = 0,
};
static int snd_fm801_playback_open(struct snd_pcm_substream *substream)
{
struct fm801 *chip = snd_pcm_substream_chip(substream);
struct snd_pcm_runtime *runtime = substream->runtime;
int err;
chip->playback_substream = substream;
runtime->hw = snd_fm801_playback;
snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_RATE,
&hw_constraints_rates);
if (chip->multichannel) {
runtime->hw.channels_max = 6;
snd_pcm_hw_constraint_list(runtime, 0,
SNDRV_PCM_HW_PARAM_CHANNELS,
&hw_constraints_channels);
}
if ((err = snd_pcm_hw_constraint_integer(runtime, SNDRV_PCM_HW_PARAM_PERIODS)) < 0)
return err;
return 0;
}
static int snd_fm801_capture_open(struct snd_pcm_substream *substream)
{
struct fm801 *chip = snd_pcm_substream_chip(substream);
struct snd_pcm_runtime *runtime = substream->runtime;
int err;
chip->capture_substream = substream;
runtime->hw = snd_fm801_capture;
snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_RATE,
&hw_constraints_rates);
if ((err = snd_pcm_hw_constraint_integer(runtime, SNDRV_PCM_HW_PARAM_PERIODS)) < 0)
return err;
return 0;
}
static int snd_fm801_playback_close(struct snd_pcm_substream *substream)
{
struct fm801 *chip = snd_pcm_substream_chip(substream);
chip->playback_substream = NULL;
return 0;
}
static int snd_fm801_capture_close(struct snd_pcm_substream *substream)
{
struct fm801 *chip = snd_pcm_substream_chip(substream);
chip->capture_substream = NULL;
return 0;
}
static const struct snd_pcm_ops snd_fm801_playback_ops = {
.open = snd_fm801_playback_open,
.close = snd_fm801_playback_close,
.ioctl = snd_pcm_lib_ioctl,
.prepare = snd_fm801_playback_prepare,
.trigger = snd_fm801_playback_trigger,
.pointer = snd_fm801_playback_pointer,
};
static const struct snd_pcm_ops snd_fm801_capture_ops = {
.open = snd_fm801_capture_open,
.close = snd_fm801_capture_close,
.ioctl = snd_pcm_lib_ioctl,
.prepare = snd_fm801_capture_prepare,
.trigger = snd_fm801_capture_trigger,
.pointer = snd_fm801_capture_pointer,
};
static int snd_fm801_pcm(struct fm801 *chip, int device)
{
struct pci_dev *pdev = to_pci_dev(chip->dev);
struct snd_pcm *pcm;
int err;
if ((err = snd_pcm_new(chip->card, "FM801", device, 1, 1, &pcm)) < 0)
return err;
snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_fm801_playback_ops);
snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_fm801_capture_ops);
pcm->private_data = chip;
pcm->info_flags = 0;
strcpy(pcm->name, "FM801");
chip->pcm = pcm;
snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV, &pdev->dev,
chip->multichannel ? 128*1024 : 64*1024, 128*1024);
return snd_pcm_add_chmap_ctls(pcm, SNDRV_PCM_STREAM_PLAYBACK,
snd_pcm_alt_chmaps,
chip->multichannel ? 6 : 2, 0,
NULL);
}
/*
* TEA5757 radio
*/
#ifdef CONFIG_SND_FM801_TEA575X_BOOL
/* GPIO to TEA575x maps */
struct snd_fm801_tea575x_gpio {
u8 data, clk, wren, most;
char *name;
};
static struct snd_fm801_tea575x_gpio snd_fm801_tea575x_gpios[] = {
{ .data = 1, .clk = 3, .wren = 2, .most = 0, .name = "SF256-PCS" },
{ .data = 1, .clk = 0, .wren = 2, .most = 3, .name = "SF256-PCP" },
{ .data = 2, .clk = 0, .wren = 1, .most = 3, .name = "SF64-PCR" },
};
#define get_tea575x_gpio(chip) \
(&snd_fm801_tea575x_gpios[((chip)->tea575x_tuner & TUNER_TYPE_MASK) - 1])
static void snd_fm801_tea575x_set_pins(struct snd_tea575x *tea, u8 pins)
{
struct fm801 *chip = tea->private_data;
unsigned short reg = fm801_readw(chip, GPIO_CTRL);
struct snd_fm801_tea575x_gpio gpio = *get_tea575x_gpio(chip);
reg &= ~(FM801_GPIO_GP(gpio.data) |
FM801_GPIO_GP(gpio.clk) |
FM801_GPIO_GP(gpio.wren));
reg |= (pins & TEA575X_DATA) ? FM801_GPIO_GP(gpio.data) : 0;
reg |= (pins & TEA575X_CLK) ? FM801_GPIO_GP(gpio.clk) : 0;
/* WRITE_ENABLE is inverted */
reg |= (pins & TEA575X_WREN) ? 0 : FM801_GPIO_GP(gpio.wren);
fm801_writew(chip, GPIO_CTRL, reg);
}
static u8 snd_fm801_tea575x_get_pins(struct snd_tea575x *tea)
{
struct fm801 *chip = tea->private_data;
unsigned short reg = fm801_readw(chip, GPIO_CTRL);
struct snd_fm801_tea575x_gpio gpio = *get_tea575x_gpio(chip);
u8 ret;
ret = 0;
if (reg & FM801_GPIO_GP(gpio.data))
ret |= TEA575X_DATA;
if (reg & FM801_GPIO_GP(gpio.most))
ret |= TEA575X_MOST;
return ret;
}
static void snd_fm801_tea575x_set_direction(struct snd_tea575x *tea, bool output)
{
struct fm801 *chip = tea->private_data;
unsigned short reg = fm801_readw(chip, GPIO_CTRL);
struct snd_fm801_tea575x_gpio gpio = *get_tea575x_gpio(chip);
/* use GPIO lines and set write enable bit */
reg |= FM801_GPIO_GS(gpio.data) |
FM801_GPIO_GS(gpio.wren) |
FM801_GPIO_GS(gpio.clk) |
FM801_GPIO_GS(gpio.most);
if (output) {
/* all of lines are in the write direction */
/* clear data and clock lines */
reg &= ~(FM801_GPIO_GD(gpio.data) |
FM801_GPIO_GD(gpio.wren) |
FM801_GPIO_GD(gpio.clk) |
FM801_GPIO_GP(gpio.data) |
FM801_GPIO_GP(gpio.clk) |
FM801_GPIO_GP(gpio.wren));
} else {
/* use GPIO lines, set data direction to input */
reg |= FM801_GPIO_GD(gpio.data) |
FM801_GPIO_GD(gpio.most) |
FM801_GPIO_GP(gpio.data) |
FM801_GPIO_GP(gpio.most) |
FM801_GPIO_GP(gpio.wren);
/* all of lines are in the write direction, except data */
/* clear data, write enable and clock lines */
reg &= ~(FM801_GPIO_GD(gpio.wren) |
FM801_GPIO_GD(gpio.clk) |
FM801_GPIO_GP(gpio.clk));
}
fm801_writew(chip, GPIO_CTRL, reg);
}
static const struct snd_tea575x_ops snd_fm801_tea_ops = {
.set_pins = snd_fm801_tea575x_set_pins,
.get_pins = snd_fm801_tea575x_get_pins,
.set_direction = snd_fm801_tea575x_set_direction,
};
#endif
/*
* Mixer routines
*/
#define FM801_SINGLE(xname, reg, shift, mask, invert) \
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .info = snd_fm801_info_single, \
.get = snd_fm801_get_single, .put = snd_fm801_put_single, \
.private_value = reg | (shift << 8) | (mask << 16) | (invert << 24) }
static int snd_fm801_info_single(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
int mask = (kcontrol->private_value >> 16) & 0xff;
uinfo->type = mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
uinfo->count = 1;
uinfo->value.integer.min = 0;
uinfo->value.integer.max = mask;
return 0;
}
static int snd_fm801_get_single(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct fm801 *chip = snd_kcontrol_chip(kcontrol);
int reg = kcontrol->private_value & 0xff;
int shift = (kcontrol->private_value >> 8) & 0xff;
int mask = (kcontrol->private_value >> 16) & 0xff;
int invert = (kcontrol->private_value >> 24) & 0xff;
long *value = ucontrol->value.integer.value;
value[0] = (fm801_ioread16(chip, reg) >> shift) & mask;
if (invert)
value[0] = mask - value[0];
return 0;
}
static int snd_fm801_put_single(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct fm801 *chip = snd_kcontrol_chip(kcontrol);
int reg = kcontrol->private_value & 0xff;
int shift = (kcontrol->private_value >> 8) & 0xff;
int mask = (kcontrol->private_value >> 16) & 0xff;
int invert = (kcontrol->private_value >> 24) & 0xff;
unsigned short val;
val = (ucontrol->value.integer.value[0] & mask);
if (invert)
val = mask - val;
return snd_fm801_update_bits(chip, reg, mask << shift, val << shift);
}
#define FM801_DOUBLE(xname, reg, shift_left, shift_right, mask, invert) \
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .info = snd_fm801_info_double, \
.get = snd_fm801_get_double, .put = snd_fm801_put_double, \
.private_value = reg | (shift_left << 8) | (shift_right << 12) | (mask << 16) | (invert << 24) }
#define FM801_DOUBLE_TLV(xname, reg, shift_left, shift_right, mask, invert, xtlv) \
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
.access = SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_TLV_READ, \
.name = xname, .info = snd_fm801_info_double, \
.get = snd_fm801_get_double, .put = snd_fm801_put_double, \
.private_value = reg | (shift_left << 8) | (shift_right << 12) | (mask << 16) | (invert << 24), \
.tlv = { .p = (xtlv) } }
static int snd_fm801_info_double(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
int mask = (kcontrol->private_value >> 16) & 0xff;
uinfo->type = mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
uinfo->count = 2;
uinfo->value.integer.min = 0;
uinfo->value.integer.max = mask;
return 0;
}
static int snd_fm801_get_double(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct fm801 *chip = snd_kcontrol_chip(kcontrol);
int reg = kcontrol->private_value & 0xff;
int shift_left = (kcontrol->private_value >> 8) & 0x0f;
int shift_right = (kcontrol->private_value >> 12) & 0x0f;
int mask = (kcontrol->private_value >> 16) & 0xff;
int invert = (kcontrol->private_value >> 24) & 0xff;
long *value = ucontrol->value.integer.value;
spin_lock_irq(&chip->reg_lock);
value[0] = (fm801_ioread16(chip, reg) >> shift_left) & mask;
value[1] = (fm801_ioread16(chip, reg) >> shift_right) & mask;
spin_unlock_irq(&chip->reg_lock);
if (invert) {
value[0] = mask - value[0];
value[1] = mask - value[1];
}
return 0;
}
static int snd_fm801_put_double(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct fm801 *chip = snd_kcontrol_chip(kcontrol);
int reg = kcontrol->private_value & 0xff;
int shift_left = (kcontrol->private_value >> 8) & 0x0f;
int shift_right = (kcontrol->private_value >> 12) & 0x0f;
int mask = (kcontrol->private_value >> 16) & 0xff;
int invert = (kcontrol->private_value >> 24) & 0xff;
unsigned short val1, val2;
val1 = ucontrol->value.integer.value[0] & mask;
val2 = ucontrol->value.integer.value[1] & mask;
if (invert) {
val1 = mask - val1;
val2 = mask - val2;
}
return snd_fm801_update_bits(chip, reg,
(mask << shift_left) | (mask << shift_right),
(val1 << shift_left ) | (val2 << shift_right));
}
static int snd_fm801_info_mux(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
static const char * const texts[5] = {
"AC97 Primary", "FM", "I2S", "PCM", "AC97 Secondary"
};
return snd_ctl_enum_info(uinfo, 1, 5, texts);
}
static int snd_fm801_get_mux(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct fm801 *chip = snd_kcontrol_chip(kcontrol);
unsigned short val;
val = fm801_readw(chip, REC_SRC) & 7;
if (val > 4)
val = 4;
ucontrol->value.enumerated.item[0] = val;
return 0;
}
static int snd_fm801_put_mux(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct fm801 *chip = snd_kcontrol_chip(kcontrol);
unsigned short val;
if ((val = ucontrol->value.enumerated.item[0]) > 4)
return -EINVAL;
return snd_fm801_update_bits(chip, FM801_REC_SRC, 7, val);
}
static const DECLARE_TLV_DB_SCALE(db_scale_dsp, -3450, 150, 0);
#define FM801_CONTROLS ARRAY_SIZE(snd_fm801_controls)
static struct snd_kcontrol_new snd_fm801_controls[] = {
FM801_DOUBLE_TLV("Wave Playback Volume", FM801_PCM_VOL, 0, 8, 31, 1,
db_scale_dsp),
FM801_SINGLE("Wave Playback Switch", FM801_PCM_VOL, 15, 1, 1),
FM801_DOUBLE_TLV("I2S Playback Volume", FM801_I2S_VOL, 0, 8, 31, 1,
db_scale_dsp),
FM801_SINGLE("I2S Playback Switch", FM801_I2S_VOL, 15, 1, 1),
FM801_DOUBLE_TLV("FM Playback Volume", FM801_FM_VOL, 0, 8, 31, 1,
db_scale_dsp),
FM801_SINGLE("FM Playback Switch", FM801_FM_VOL, 15, 1, 1),
{
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "Digital Capture Source",
.info = snd_fm801_info_mux,
.get = snd_fm801_get_mux,
.put = snd_fm801_put_mux,
}
};
#define FM801_CONTROLS_MULTI ARRAY_SIZE(snd_fm801_controls_multi)
static struct snd_kcontrol_new snd_fm801_controls_multi[] = {
FM801_SINGLE("AC97 2ch->4ch Copy Switch", FM801_CODEC_CTRL, 7, 1, 0),
FM801_SINGLE("AC97 18-bit Switch", FM801_CODEC_CTRL, 10, 1, 0),
FM801_SINGLE(SNDRV_CTL_NAME_IEC958("",CAPTURE,SWITCH), FM801_I2S_MODE, 8, 1, 0),
FM801_SINGLE(SNDRV_CTL_NAME_IEC958("Raw Data ",PLAYBACK,SWITCH), FM801_I2S_MODE, 9, 1, 0),
FM801_SINGLE(SNDRV_CTL_NAME_IEC958("Raw Data ",CAPTURE,SWITCH), FM801_I2S_MODE, 10, 1, 0),
FM801_SINGLE(SNDRV_CTL_NAME_IEC958("",PLAYBACK,SWITCH), FM801_GEN_CTRL, 2, 1, 0),
};
static void snd_fm801_mixer_free_ac97_bus(struct snd_ac97_bus *bus)
{
struct fm801 *chip = bus->private_data;
chip->ac97_bus = NULL;
}
static void snd_fm801_mixer_free_ac97(struct snd_ac97 *ac97)
{
struct fm801 *chip = ac97->private_data;
if (ac97->num == 0) {
chip->ac97 = NULL;
} else {
chip->ac97_sec = NULL;
}
}
static int snd_fm801_mixer(struct fm801 *chip)
{
struct snd_ac97_template ac97;
unsigned int i;
int err;
static struct snd_ac97_bus_ops ops = {
.write = snd_fm801_codec_write,
.read = snd_fm801_codec_read,
};
if ((err = snd_ac97_bus(chip->card, 0, &ops, chip, &chip->ac97_bus)) < 0)
return err;
chip->ac97_bus->private_free = snd_fm801_mixer_free_ac97_bus;
memset(&ac97, 0, sizeof(ac97));
ac97.private_data = chip;
ac97.private_free = snd_fm801_mixer_free_ac97;
if ((err = snd_ac97_mixer(chip->ac97_bus, &ac97, &chip->ac97)) < 0)
return err;
if (chip->secondary) {
ac97.num = 1;
ac97.addr = chip->secondary_addr;
if ((err = snd_ac97_mixer(chip->ac97_bus, &ac97, &chip->ac97_sec)) < 0)
return err;
}
for (i = 0; i < FM801_CONTROLS; i++) {
err = snd_ctl_add(chip->card,
snd_ctl_new1(&snd_fm801_controls[i], chip));
if (err < 0)
return err;
}
if (chip->multichannel) {
for (i = 0; i < FM801_CONTROLS_MULTI; i++) {
err = snd_ctl_add(chip->card,
snd_ctl_new1(&snd_fm801_controls_multi[i], chip));
if (err < 0)
return err;
}
}
return 0;
}
/*
* initialization routines
*/
static int wait_for_codec(struct fm801 *chip, unsigned int codec_id,
unsigned short reg, unsigned long waits)
{
unsigned long timeout = jiffies + waits;
fm801_writew(chip, AC97_CMD,
reg | (codec_id << FM801_AC97_ADDR_SHIFT) | FM801_AC97_READ);
udelay(5);
do {
if ((fm801_readw(chip, AC97_CMD) &
(FM801_AC97_VALID | FM801_AC97_BUSY)) == FM801_AC97_VALID)
return 0;
schedule_timeout_uninterruptible(1);
} while (time_after(timeout, jiffies));
return -EIO;
}
static int reset_codec(struct fm801 *chip)
{
/* codec cold reset + AC'97 warm reset */
fm801_writew(chip, CODEC_CTRL, (1 << 5) | (1 << 6));
fm801_readw(chip, CODEC_CTRL); /* flush posting data */
udelay(100);
fm801_writew(chip, CODEC_CTRL, 0);
return wait_for_codec(chip, 0, AC97_RESET, msecs_to_jiffies(750));
}
static void snd_fm801_chip_multichannel_init(struct fm801 *chip)
{
unsigned short cmdw;
if (chip->multichannel) {
if (chip->secondary_addr) {
wait_for_codec(chip, chip->secondary_addr,
AC97_VENDOR_ID1, msecs_to_jiffies(50));
} else {
/* my card has the secondary codec */
/* at address #3, so the loop is inverted */
int i;
for (i = 3; i > 0; i--) {
if (!wait_for_codec(chip, i, AC97_VENDOR_ID1,
msecs_to_jiffies(50))) {
cmdw = fm801_readw(chip, AC97_DATA);
if (cmdw != 0xffff && cmdw != 0) {
chip->secondary = 1;
chip->secondary_addr = i;
break;
}
}
}
}
/* the recovery phase, it seems that probing for non-existing codec might */
/* cause timeout problems */
wait_for_codec(chip, 0, AC97_VENDOR_ID1, msecs_to_jiffies(750));
}
}
static void snd_fm801_chip_init(struct fm801 *chip)
{
unsigned short cmdw;
/* init volume */
fm801_writew(chip, PCM_VOL, 0x0808);
fm801_writew(chip, FM_VOL, 0x9f1f);
fm801_writew(chip, I2S_VOL, 0x8808);
/* I2S control - I2S mode */
fm801_writew(chip, I2S_MODE, 0x0003);
/* interrupt setup */
cmdw = fm801_readw(chip, IRQ_MASK);
if (chip->irq < 0)
cmdw |= 0x00c3; /* mask everything, no PCM nor MPU */
else
cmdw &= ~0x0083; /* unmask MPU, PLAYBACK & CAPTURE */
fm801_writew(chip, IRQ_MASK, cmdw);
/* interrupt clear */
fm801_writew(chip, IRQ_STATUS,
FM801_IRQ_PLAYBACK | FM801_IRQ_CAPTURE | FM801_IRQ_MPU);
}
static int snd_fm801_free(struct fm801 *chip)
{
unsigned short cmdw;
if (chip->irq < 0)
goto __end_hw;
/* interrupt setup - mask everything */
cmdw = fm801_readw(chip, IRQ_MASK);
cmdw |= 0x00c3;
fm801_writew(chip, IRQ_MASK, cmdw);
devm_free_irq(chip->dev, chip->irq, chip);
__end_hw:
#ifdef CONFIG_SND_FM801_TEA575X_BOOL
if (!(chip->tea575x_tuner & TUNER_DISABLED)) {
snd_tea575x_exit(&chip->tea);
v4l2_device_unregister(&chip->v4l2_dev);
}
#endif
return 0;
}
static int snd_fm801_dev_free(struct snd_device *device)
{
struct fm801 *chip = device->device_data;
return snd_fm801_free(chip);
}
static int snd_fm801_create(struct snd_card *card,
struct pci_dev *pci,
int tea575x_tuner,
int radio_nr,
struct fm801 **rchip)
{
struct fm801 *chip;
int err;
static struct snd_device_ops ops = {
.dev_free = snd_fm801_dev_free,
};
*rchip = NULL;
if ((err = pcim_enable_device(pci)) < 0)
return err;
chip = devm_kzalloc(&pci->dev, sizeof(*chip), GFP_KERNEL);
if (chip == NULL)
return -ENOMEM;
spin_lock_init(&chip->reg_lock);
chip->card = card;
chip->dev = &pci->dev;
chip->irq = -1;
chip->tea575x_tuner = tea575x_tuner;
if ((err = pci_request_regions(pci, "FM801")) < 0)
return err;
chip->port = pci_resource_start(pci, 0);
if (pci->revision >= 0xb1) /* FM801-AU */
chip->multichannel = 1;
if (!(chip->tea575x_tuner & TUNER_ONLY)) {
if (reset_codec(chip) < 0) {
dev_info(chip->card->dev,
"Primary AC'97 codec not found, assume SF64-PCR (tuner-only)\n");
chip->tea575x_tuner = 3 | TUNER_ONLY;
} else {
snd_fm801_chip_multichannel_init(chip);
}
}
if ((chip->tea575x_tuner & TUNER_ONLY) == 0) {
if (devm_request_irq(&pci->dev, pci->irq, snd_fm801_interrupt,
IRQF_SHARED, KBUILD_MODNAME, chip)) {
dev_err(card->dev, "unable to grab IRQ %d\n", pci->irq);
snd_fm801_free(chip);
return -EBUSY;
}
chip->irq = pci->irq;
pci_set_master(pci);
}
snd_fm801_chip_init(chip);
if ((err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops)) < 0) {
snd_fm801_free(chip);
return err;
}
#ifdef CONFIG_SND_FM801_TEA575X_BOOL
err = v4l2_device_register(&pci->dev, &chip->v4l2_dev);
if (err < 0) {
snd_fm801_free(chip);
return err;
}
chip->tea.v4l2_dev = &chip->v4l2_dev;
chip->tea.radio_nr = radio_nr;
chip->tea.private_data = chip;
chip->tea.ops = &snd_fm801_tea_ops;
sprintf(chip->tea.bus_info, "PCI:%s", pci_name(pci));
if ((chip->tea575x_tuner & TUNER_TYPE_MASK) > 0 &&
(chip->tea575x_tuner & TUNER_TYPE_MASK) < 4) {
if (snd_tea575x_init(&chip->tea, THIS_MODULE)) {
dev_err(card->dev, "TEA575x radio not found\n");
snd_fm801_free(chip);
return -ENODEV;
}
} else if ((chip->tea575x_tuner & TUNER_TYPE_MASK) == 0) {
unsigned int tuner_only = chip->tea575x_tuner & TUNER_ONLY;
/* autodetect tuner connection */
for (tea575x_tuner = 1; tea575x_tuner <= 3; tea575x_tuner++) {
chip->tea575x_tuner = tea575x_tuner;
if (!snd_tea575x_init(&chip->tea, THIS_MODULE)) {
dev_info(card->dev,
"detected TEA575x radio type %s\n",
get_tea575x_gpio(chip)->name);
break;
}
}
if (tea575x_tuner == 4) {
dev_err(card->dev, "TEA575x radio not found\n");
chip->tea575x_tuner = TUNER_DISABLED;
}
chip->tea575x_tuner |= tuner_only;
}
if (!(chip->tea575x_tuner & TUNER_DISABLED)) {
strlcpy(chip->tea.card, get_tea575x_gpio(chip)->name,
sizeof(chip->tea.card));
}
#endif
*rchip = chip;
return 0;
}
static int snd_card_fm801_probe(struct pci_dev *pci,
const struct pci_device_id *pci_id)
{
static int dev;
struct snd_card *card;
struct fm801 *chip;
struct snd_opl3 *opl3;
int err;
if (dev >= SNDRV_CARDS)
return -ENODEV;
if (!enable[dev]) {
dev++;
return -ENOENT;
}
err = snd_card_new(&pci->dev, index[dev], id[dev], THIS_MODULE,
0, &card);
if (err < 0)
return err;
if ((err = snd_fm801_create(card, pci, tea575x_tuner[dev], radio_nr[dev], &chip)) < 0) {
snd_card_free(card);
return err;
}
card->private_data = chip;
strcpy(card->driver, "FM801");
strcpy(card->shortname, "ForteMedia FM801-");
strcat(card->shortname, chip->multichannel ? "AU" : "AS");
sprintf(card->longname, "%s at 0x%lx, irq %i",
card->shortname, chip->port, chip->irq);
if (chip->tea575x_tuner & TUNER_ONLY)
goto __fm801_tuner_only;
if ((err = snd_fm801_pcm(chip, 0)) < 0) {
snd_card_free(card);
return err;
}
if ((err = snd_fm801_mixer(chip)) < 0) {
snd_card_free(card);
return err;
}
if ((err = snd_mpu401_uart_new(card, 0, MPU401_HW_FM801,
chip->port + FM801_MPU401_DATA,
MPU401_INFO_INTEGRATED |
MPU401_INFO_IRQ_HOOK,
-1, &chip->rmidi)) < 0) {
snd_card_free(card);
return err;
}
if ((err = snd_opl3_create(card, chip->port + FM801_OPL3_BANK0,
chip->port + FM801_OPL3_BANK1,
OPL3_HW_OPL3_FM801, 1, &opl3)) < 0) {
snd_card_free(card);
return err;
}
if ((err = snd_opl3_hwdep_new(opl3, 0, 1, NULL)) < 0) {
snd_card_free(card);
return err;
}
__fm801_tuner_only:
if ((err = snd_card_register(card)) < 0) {
snd_card_free(card);
return err;
}
pci_set_drvdata(pci, card);
dev++;
return 0;
}
static void snd_card_fm801_remove(struct pci_dev *pci)
{
snd_card_free(pci_get_drvdata(pci));
}
#ifdef CONFIG_PM_SLEEP
static unsigned char saved_regs[] = {
FM801_PCM_VOL, FM801_I2S_VOL, FM801_FM_VOL, FM801_REC_SRC,
FM801_PLY_CTRL, FM801_PLY_COUNT, FM801_PLY_BUF1, FM801_PLY_BUF2,
FM801_CAP_CTRL, FM801_CAP_COUNT, FM801_CAP_BUF1, FM801_CAP_BUF2,
FM801_CODEC_CTRL, FM801_I2S_MODE, FM801_VOLUME, FM801_GEN_CTRL,
};
static int snd_fm801_suspend(struct device *dev)
{
struct snd_card *card = dev_get_drvdata(dev);
struct fm801 *chip = card->private_data;
int i;
snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
for (i = 0; i < ARRAY_SIZE(saved_regs); i++)
chip->saved_regs[i] = fm801_ioread16(chip, saved_regs[i]);
if (chip->tea575x_tuner & TUNER_ONLY) {
/* FIXME: tea575x suspend */
} else {
snd_ac97_suspend(chip->ac97);
snd_ac97_suspend(chip->ac97_sec);
}
return 0;
}
static int snd_fm801_resume(struct device *dev)
{
struct snd_card *card = dev_get_drvdata(dev);
struct fm801 *chip = card->private_data;
int i;
if (chip->tea575x_tuner & TUNER_ONLY) {
snd_fm801_chip_init(chip);
} else {
reset_codec(chip);
snd_fm801_chip_multichannel_init(chip);
snd_fm801_chip_init(chip);
snd_ac97_resume(chip->ac97);
snd_ac97_resume(chip->ac97_sec);
}
for (i = 0; i < ARRAY_SIZE(saved_regs); i++)
fm801_iowrite16(chip, saved_regs[i], chip->saved_regs[i]);
#ifdef CONFIG_SND_FM801_TEA575X_BOOL
if (!(chip->tea575x_tuner & TUNER_DISABLED))
snd_tea575x_set_freq(&chip->tea);
#endif
snd_power_change_state(card, SNDRV_CTL_POWER_D0);
return 0;
}
static SIMPLE_DEV_PM_OPS(snd_fm801_pm, snd_fm801_suspend, snd_fm801_resume);
#define SND_FM801_PM_OPS &snd_fm801_pm
#else
#define SND_FM801_PM_OPS NULL
#endif /* CONFIG_PM_SLEEP */
static struct pci_driver fm801_driver = {
.name = KBUILD_MODNAME,
.id_table = snd_fm801_ids,
.probe = snd_card_fm801_probe,
.remove = snd_card_fm801_remove,
.driver = {
.pm = SND_FM801_PM_OPS,
},
};
module_pci_driver(fm801_driver);