mirror of
https://github.com/torvalds/linux.git
synced 2024-12-27 05:11:48 +00:00
cee74f47a6
There is interest in being able to see what the actual policy is that was loaded into the kernel. The patch creates a new selinuxfs file /selinux/policy which can be read by userspace. The actual policy that is loaded into the kernel will be written back out to userspace. Signed-off-by: Eric Paris <eparis@redhat.com> Signed-off-by: James Morris <jmorris@namei.org>
557 lines
13 KiB
C
557 lines
13 KiB
C
/*
|
|
* Implementation of the access vector table type.
|
|
*
|
|
* Author : Stephen Smalley, <sds@epoch.ncsc.mil>
|
|
*/
|
|
|
|
/* Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
|
|
*
|
|
* Added conditional policy language extensions
|
|
*
|
|
* Copyright (C) 2003 Tresys Technology, LLC
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation, version 2.
|
|
*
|
|
* Updated: Yuichi Nakamura <ynakam@hitachisoft.jp>
|
|
* Tuned number of hash slots for avtab to reduce memory usage
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/errno.h>
|
|
#include "avtab.h"
|
|
#include "policydb.h"
|
|
|
|
static struct kmem_cache *avtab_node_cachep;
|
|
|
|
static inline int avtab_hash(struct avtab_key *keyp, u16 mask)
|
|
{
|
|
return ((keyp->target_class + (keyp->target_type << 2) +
|
|
(keyp->source_type << 9)) & mask);
|
|
}
|
|
|
|
static struct avtab_node*
|
|
avtab_insert_node(struct avtab *h, int hvalue,
|
|
struct avtab_node *prev, struct avtab_node *cur,
|
|
struct avtab_key *key, struct avtab_datum *datum)
|
|
{
|
|
struct avtab_node *newnode;
|
|
newnode = kmem_cache_zalloc(avtab_node_cachep, GFP_KERNEL);
|
|
if (newnode == NULL)
|
|
return NULL;
|
|
newnode->key = *key;
|
|
newnode->datum = *datum;
|
|
if (prev) {
|
|
newnode->next = prev->next;
|
|
prev->next = newnode;
|
|
} else {
|
|
newnode->next = h->htable[hvalue];
|
|
h->htable[hvalue] = newnode;
|
|
}
|
|
|
|
h->nel++;
|
|
return newnode;
|
|
}
|
|
|
|
static int avtab_insert(struct avtab *h, struct avtab_key *key, struct avtab_datum *datum)
|
|
{
|
|
int hvalue;
|
|
struct avtab_node *prev, *cur, *newnode;
|
|
u16 specified = key->specified & ~(AVTAB_ENABLED|AVTAB_ENABLED_OLD);
|
|
|
|
if (!h || !h->htable)
|
|
return -EINVAL;
|
|
|
|
hvalue = avtab_hash(key, h->mask);
|
|
for (prev = NULL, cur = h->htable[hvalue];
|
|
cur;
|
|
prev = cur, cur = cur->next) {
|
|
if (key->source_type == cur->key.source_type &&
|
|
key->target_type == cur->key.target_type &&
|
|
key->target_class == cur->key.target_class &&
|
|
(specified & cur->key.specified))
|
|
return -EEXIST;
|
|
if (key->source_type < cur->key.source_type)
|
|
break;
|
|
if (key->source_type == cur->key.source_type &&
|
|
key->target_type < cur->key.target_type)
|
|
break;
|
|
if (key->source_type == cur->key.source_type &&
|
|
key->target_type == cur->key.target_type &&
|
|
key->target_class < cur->key.target_class)
|
|
break;
|
|
}
|
|
|
|
newnode = avtab_insert_node(h, hvalue, prev, cur, key, datum);
|
|
if (!newnode)
|
|
return -ENOMEM;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Unlike avtab_insert(), this function allow multiple insertions of the same
|
|
* key/specified mask into the table, as needed by the conditional avtab.
|
|
* It also returns a pointer to the node inserted.
|
|
*/
|
|
struct avtab_node *
|
|
avtab_insert_nonunique(struct avtab *h, struct avtab_key *key, struct avtab_datum *datum)
|
|
{
|
|
int hvalue;
|
|
struct avtab_node *prev, *cur;
|
|
u16 specified = key->specified & ~(AVTAB_ENABLED|AVTAB_ENABLED_OLD);
|
|
|
|
if (!h || !h->htable)
|
|
return NULL;
|
|
hvalue = avtab_hash(key, h->mask);
|
|
for (prev = NULL, cur = h->htable[hvalue];
|
|
cur;
|
|
prev = cur, cur = cur->next) {
|
|
if (key->source_type == cur->key.source_type &&
|
|
key->target_type == cur->key.target_type &&
|
|
key->target_class == cur->key.target_class &&
|
|
(specified & cur->key.specified))
|
|
break;
|
|
if (key->source_type < cur->key.source_type)
|
|
break;
|
|
if (key->source_type == cur->key.source_type &&
|
|
key->target_type < cur->key.target_type)
|
|
break;
|
|
if (key->source_type == cur->key.source_type &&
|
|
key->target_type == cur->key.target_type &&
|
|
key->target_class < cur->key.target_class)
|
|
break;
|
|
}
|
|
return avtab_insert_node(h, hvalue, prev, cur, key, datum);
|
|
}
|
|
|
|
struct avtab_datum *avtab_search(struct avtab *h, struct avtab_key *key)
|
|
{
|
|
int hvalue;
|
|
struct avtab_node *cur;
|
|
u16 specified = key->specified & ~(AVTAB_ENABLED|AVTAB_ENABLED_OLD);
|
|
|
|
if (!h || !h->htable)
|
|
return NULL;
|
|
|
|
hvalue = avtab_hash(key, h->mask);
|
|
for (cur = h->htable[hvalue]; cur; cur = cur->next) {
|
|
if (key->source_type == cur->key.source_type &&
|
|
key->target_type == cur->key.target_type &&
|
|
key->target_class == cur->key.target_class &&
|
|
(specified & cur->key.specified))
|
|
return &cur->datum;
|
|
|
|
if (key->source_type < cur->key.source_type)
|
|
break;
|
|
if (key->source_type == cur->key.source_type &&
|
|
key->target_type < cur->key.target_type)
|
|
break;
|
|
if (key->source_type == cur->key.source_type &&
|
|
key->target_type == cur->key.target_type &&
|
|
key->target_class < cur->key.target_class)
|
|
break;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/* This search function returns a node pointer, and can be used in
|
|
* conjunction with avtab_search_next_node()
|
|
*/
|
|
struct avtab_node*
|
|
avtab_search_node(struct avtab *h, struct avtab_key *key)
|
|
{
|
|
int hvalue;
|
|
struct avtab_node *cur;
|
|
u16 specified = key->specified & ~(AVTAB_ENABLED|AVTAB_ENABLED_OLD);
|
|
|
|
if (!h || !h->htable)
|
|
return NULL;
|
|
|
|
hvalue = avtab_hash(key, h->mask);
|
|
for (cur = h->htable[hvalue]; cur; cur = cur->next) {
|
|
if (key->source_type == cur->key.source_type &&
|
|
key->target_type == cur->key.target_type &&
|
|
key->target_class == cur->key.target_class &&
|
|
(specified & cur->key.specified))
|
|
return cur;
|
|
|
|
if (key->source_type < cur->key.source_type)
|
|
break;
|
|
if (key->source_type == cur->key.source_type &&
|
|
key->target_type < cur->key.target_type)
|
|
break;
|
|
if (key->source_type == cur->key.source_type &&
|
|
key->target_type == cur->key.target_type &&
|
|
key->target_class < cur->key.target_class)
|
|
break;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
struct avtab_node*
|
|
avtab_search_node_next(struct avtab_node *node, int specified)
|
|
{
|
|
struct avtab_node *cur;
|
|
|
|
if (!node)
|
|
return NULL;
|
|
|
|
specified &= ~(AVTAB_ENABLED|AVTAB_ENABLED_OLD);
|
|
for (cur = node->next; cur; cur = cur->next) {
|
|
if (node->key.source_type == cur->key.source_type &&
|
|
node->key.target_type == cur->key.target_type &&
|
|
node->key.target_class == cur->key.target_class &&
|
|
(specified & cur->key.specified))
|
|
return cur;
|
|
|
|
if (node->key.source_type < cur->key.source_type)
|
|
break;
|
|
if (node->key.source_type == cur->key.source_type &&
|
|
node->key.target_type < cur->key.target_type)
|
|
break;
|
|
if (node->key.source_type == cur->key.source_type &&
|
|
node->key.target_type == cur->key.target_type &&
|
|
node->key.target_class < cur->key.target_class)
|
|
break;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
void avtab_destroy(struct avtab *h)
|
|
{
|
|
int i;
|
|
struct avtab_node *cur, *temp;
|
|
|
|
if (!h || !h->htable)
|
|
return;
|
|
|
|
for (i = 0; i < h->nslot; i++) {
|
|
cur = h->htable[i];
|
|
while (cur) {
|
|
temp = cur;
|
|
cur = cur->next;
|
|
kmem_cache_free(avtab_node_cachep, temp);
|
|
}
|
|
h->htable[i] = NULL;
|
|
}
|
|
kfree(h->htable);
|
|
h->htable = NULL;
|
|
h->nslot = 0;
|
|
h->mask = 0;
|
|
}
|
|
|
|
int avtab_init(struct avtab *h)
|
|
{
|
|
h->htable = NULL;
|
|
h->nel = 0;
|
|
return 0;
|
|
}
|
|
|
|
int avtab_alloc(struct avtab *h, u32 nrules)
|
|
{
|
|
u16 mask = 0;
|
|
u32 shift = 0;
|
|
u32 work = nrules;
|
|
u32 nslot = 0;
|
|
|
|
if (nrules == 0)
|
|
goto avtab_alloc_out;
|
|
|
|
while (work) {
|
|
work = work >> 1;
|
|
shift++;
|
|
}
|
|
if (shift > 2)
|
|
shift = shift - 2;
|
|
nslot = 1 << shift;
|
|
if (nslot > MAX_AVTAB_HASH_BUCKETS)
|
|
nslot = MAX_AVTAB_HASH_BUCKETS;
|
|
mask = nslot - 1;
|
|
|
|
h->htable = kcalloc(nslot, sizeof(*(h->htable)), GFP_KERNEL);
|
|
if (!h->htable)
|
|
return -ENOMEM;
|
|
|
|
avtab_alloc_out:
|
|
h->nel = 0;
|
|
h->nslot = nslot;
|
|
h->mask = mask;
|
|
printk(KERN_DEBUG "SELinux: %d avtab hash slots, %d rules.\n",
|
|
h->nslot, nrules);
|
|
return 0;
|
|
}
|
|
|
|
void avtab_hash_eval(struct avtab *h, char *tag)
|
|
{
|
|
int i, chain_len, slots_used, max_chain_len;
|
|
unsigned long long chain2_len_sum;
|
|
struct avtab_node *cur;
|
|
|
|
slots_used = 0;
|
|
max_chain_len = 0;
|
|
chain2_len_sum = 0;
|
|
for (i = 0; i < h->nslot; i++) {
|
|
cur = h->htable[i];
|
|
if (cur) {
|
|
slots_used++;
|
|
chain_len = 0;
|
|
while (cur) {
|
|
chain_len++;
|
|
cur = cur->next;
|
|
}
|
|
|
|
if (chain_len > max_chain_len)
|
|
max_chain_len = chain_len;
|
|
chain2_len_sum += chain_len * chain_len;
|
|
}
|
|
}
|
|
|
|
printk(KERN_DEBUG "SELinux: %s: %d entries and %d/%d buckets used, "
|
|
"longest chain length %d sum of chain length^2 %llu\n",
|
|
tag, h->nel, slots_used, h->nslot, max_chain_len,
|
|
chain2_len_sum);
|
|
}
|
|
|
|
static uint16_t spec_order[] = {
|
|
AVTAB_ALLOWED,
|
|
AVTAB_AUDITDENY,
|
|
AVTAB_AUDITALLOW,
|
|
AVTAB_TRANSITION,
|
|
AVTAB_CHANGE,
|
|
AVTAB_MEMBER
|
|
};
|
|
|
|
int avtab_read_item(struct avtab *a, void *fp, struct policydb *pol,
|
|
int (*insertf)(struct avtab *a, struct avtab_key *k,
|
|
struct avtab_datum *d, void *p),
|
|
void *p)
|
|
{
|
|
__le16 buf16[4];
|
|
u16 enabled;
|
|
__le32 buf32[7];
|
|
u32 items, items2, val, vers = pol->policyvers;
|
|
struct avtab_key key;
|
|
struct avtab_datum datum;
|
|
int i, rc;
|
|
unsigned set;
|
|
|
|
memset(&key, 0, sizeof(struct avtab_key));
|
|
memset(&datum, 0, sizeof(struct avtab_datum));
|
|
|
|
if (vers < POLICYDB_VERSION_AVTAB) {
|
|
rc = next_entry(buf32, fp, sizeof(u32));
|
|
if (rc) {
|
|
printk(KERN_ERR "SELinux: avtab: truncated entry\n");
|
|
return rc;
|
|
}
|
|
items2 = le32_to_cpu(buf32[0]);
|
|
if (items2 > ARRAY_SIZE(buf32)) {
|
|
printk(KERN_ERR "SELinux: avtab: entry overflow\n");
|
|
return -EINVAL;
|
|
|
|
}
|
|
rc = next_entry(buf32, fp, sizeof(u32)*items2);
|
|
if (rc) {
|
|
printk(KERN_ERR "SELinux: avtab: truncated entry\n");
|
|
return rc;
|
|
}
|
|
items = 0;
|
|
|
|
val = le32_to_cpu(buf32[items++]);
|
|
key.source_type = (u16)val;
|
|
if (key.source_type != val) {
|
|
printk(KERN_ERR "SELinux: avtab: truncated source type\n");
|
|
return -EINVAL;
|
|
}
|
|
val = le32_to_cpu(buf32[items++]);
|
|
key.target_type = (u16)val;
|
|
if (key.target_type != val) {
|
|
printk(KERN_ERR "SELinux: avtab: truncated target type\n");
|
|
return -EINVAL;
|
|
}
|
|
val = le32_to_cpu(buf32[items++]);
|
|
key.target_class = (u16)val;
|
|
if (key.target_class != val) {
|
|
printk(KERN_ERR "SELinux: avtab: truncated target class\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
val = le32_to_cpu(buf32[items++]);
|
|
enabled = (val & AVTAB_ENABLED_OLD) ? AVTAB_ENABLED : 0;
|
|
|
|
if (!(val & (AVTAB_AV | AVTAB_TYPE))) {
|
|
printk(KERN_ERR "SELinux: avtab: null entry\n");
|
|
return -EINVAL;
|
|
}
|
|
if ((val & AVTAB_AV) &&
|
|
(val & AVTAB_TYPE)) {
|
|
printk(KERN_ERR "SELinux: avtab: entry has both access vectors and types\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
for (i = 0; i < ARRAY_SIZE(spec_order); i++) {
|
|
if (val & spec_order[i]) {
|
|
key.specified = spec_order[i] | enabled;
|
|
datum.data = le32_to_cpu(buf32[items++]);
|
|
rc = insertf(a, &key, &datum, p);
|
|
if (rc)
|
|
return rc;
|
|
}
|
|
}
|
|
|
|
if (items != items2) {
|
|
printk(KERN_ERR "SELinux: avtab: entry only had %d items, expected %d\n", items2, items);
|
|
return -EINVAL;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
rc = next_entry(buf16, fp, sizeof(u16)*4);
|
|
if (rc) {
|
|
printk(KERN_ERR "SELinux: avtab: truncated entry\n");
|
|
return rc;
|
|
}
|
|
|
|
items = 0;
|
|
key.source_type = le16_to_cpu(buf16[items++]);
|
|
key.target_type = le16_to_cpu(buf16[items++]);
|
|
key.target_class = le16_to_cpu(buf16[items++]);
|
|
key.specified = le16_to_cpu(buf16[items++]);
|
|
|
|
if (!policydb_type_isvalid(pol, key.source_type) ||
|
|
!policydb_type_isvalid(pol, key.target_type) ||
|
|
!policydb_class_isvalid(pol, key.target_class)) {
|
|
printk(KERN_ERR "SELinux: avtab: invalid type or class\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
set = 0;
|
|
for (i = 0; i < ARRAY_SIZE(spec_order); i++) {
|
|
if (key.specified & spec_order[i])
|
|
set++;
|
|
}
|
|
if (!set || set > 1) {
|
|
printk(KERN_ERR "SELinux: avtab: more than one specifier\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
rc = next_entry(buf32, fp, sizeof(u32));
|
|
if (rc) {
|
|
printk(KERN_ERR "SELinux: avtab: truncated entry\n");
|
|
return rc;
|
|
}
|
|
datum.data = le32_to_cpu(*buf32);
|
|
if ((key.specified & AVTAB_TYPE) &&
|
|
!policydb_type_isvalid(pol, datum.data)) {
|
|
printk(KERN_ERR "SELinux: avtab: invalid type\n");
|
|
return -EINVAL;
|
|
}
|
|
return insertf(a, &key, &datum, p);
|
|
}
|
|
|
|
static int avtab_insertf(struct avtab *a, struct avtab_key *k,
|
|
struct avtab_datum *d, void *p)
|
|
{
|
|
return avtab_insert(a, k, d);
|
|
}
|
|
|
|
int avtab_read(struct avtab *a, void *fp, struct policydb *pol)
|
|
{
|
|
int rc;
|
|
__le32 buf[1];
|
|
u32 nel, i;
|
|
|
|
|
|
rc = next_entry(buf, fp, sizeof(u32));
|
|
if (rc < 0) {
|
|
printk(KERN_ERR "SELinux: avtab: truncated table\n");
|
|
goto bad;
|
|
}
|
|
nel = le32_to_cpu(buf[0]);
|
|
if (!nel) {
|
|
printk(KERN_ERR "SELinux: avtab: table is empty\n");
|
|
rc = -EINVAL;
|
|
goto bad;
|
|
}
|
|
|
|
rc = avtab_alloc(a, nel);
|
|
if (rc)
|
|
goto bad;
|
|
|
|
for (i = 0; i < nel; i++) {
|
|
rc = avtab_read_item(a, fp, pol, avtab_insertf, NULL);
|
|
if (rc) {
|
|
if (rc == -ENOMEM)
|
|
printk(KERN_ERR "SELinux: avtab: out of memory\n");
|
|
else if (rc == -EEXIST)
|
|
printk(KERN_ERR "SELinux: avtab: duplicate entry\n");
|
|
|
|
goto bad;
|
|
}
|
|
}
|
|
|
|
rc = 0;
|
|
out:
|
|
return rc;
|
|
|
|
bad:
|
|
avtab_destroy(a);
|
|
goto out;
|
|
}
|
|
|
|
int avtab_write_item(struct policydb *p, struct avtab_node *cur, void *fp)
|
|
{
|
|
__le16 buf16[4];
|
|
__le32 buf32[1];
|
|
int rc;
|
|
|
|
buf16[0] = cpu_to_le16(cur->key.source_type);
|
|
buf16[1] = cpu_to_le16(cur->key.target_type);
|
|
buf16[2] = cpu_to_le16(cur->key.target_class);
|
|
buf16[3] = cpu_to_le16(cur->key.specified);
|
|
rc = put_entry(buf16, sizeof(u16), 4, fp);
|
|
if (rc)
|
|
return rc;
|
|
buf32[0] = cpu_to_le32(cur->datum.data);
|
|
rc = put_entry(buf32, sizeof(u32), 1, fp);
|
|
if (rc)
|
|
return rc;
|
|
return 0;
|
|
}
|
|
|
|
int avtab_write(struct policydb *p, struct avtab *a, void *fp)
|
|
{
|
|
unsigned int i;
|
|
int rc = 0;
|
|
struct avtab_node *cur;
|
|
__le32 buf[1];
|
|
|
|
buf[0] = cpu_to_le32(a->nel);
|
|
rc = put_entry(buf, sizeof(u32), 1, fp);
|
|
if (rc)
|
|
return rc;
|
|
|
|
for (i = 0; i < a->nslot; i++) {
|
|
for (cur = a->htable[i]; cur; cur = cur->next) {
|
|
rc = avtab_write_item(p, cur, fp);
|
|
if (rc)
|
|
return rc;
|
|
}
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
void avtab_cache_init(void)
|
|
{
|
|
avtab_node_cachep = kmem_cache_create("avtab_node",
|
|
sizeof(struct avtab_node),
|
|
0, SLAB_PANIC, NULL);
|
|
}
|
|
|
|
void avtab_cache_destroy(void)
|
|
{
|
|
kmem_cache_destroy(avtab_node_cachep);
|
|
}
|