mirror of
https://github.com/torvalds/linux.git
synced 2024-11-28 15:11:31 +00:00
b3e3d4c618
Currently we use a mixture of %016llx, %llx, and %16llx when printing a SAS address. Since the most significant nibble of the SAS address is always 5 - as per standard - this formatting is not so important; but some fake SAS addresses for SATA devices may not be. And we have mangled/invalid address to consider also. And it's better to be consistent in the code, so use a fixed format. The SAS address is a fixed size at 64b, so we want to 0 byte extend to 16 nibbles, so use %016llx globally. Also make some prints to be explicitly hex, and tidy some whitespace issue. Link: https://lore.kernel.org/r/1576758957-227350-1-git-send-email-john.garry@huawei.com Signed-off-by: John Garry <john.garry@huawei.com> Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2182 lines
55 KiB
C
2182 lines
55 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Serial Attached SCSI (SAS) Expander discovery and configuration
|
|
*
|
|
* Copyright (C) 2005 Adaptec, Inc. All rights reserved.
|
|
* Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
|
|
*
|
|
* This file is licensed under GPLv2.
|
|
*/
|
|
|
|
#include <linux/scatterlist.h>
|
|
#include <linux/blkdev.h>
|
|
#include <linux/slab.h>
|
|
#include <asm/unaligned.h>
|
|
|
|
#include "sas_internal.h"
|
|
|
|
#include <scsi/sas_ata.h>
|
|
#include <scsi/scsi_transport.h>
|
|
#include <scsi/scsi_transport_sas.h>
|
|
#include "../scsi_sas_internal.h"
|
|
|
|
static int sas_discover_expander(struct domain_device *dev);
|
|
static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr);
|
|
static int sas_configure_phy(struct domain_device *dev, int phy_id,
|
|
u8 *sas_addr, int include);
|
|
static int sas_disable_routing(struct domain_device *dev, u8 *sas_addr);
|
|
|
|
/* ---------- SMP task management ---------- */
|
|
|
|
static void smp_task_timedout(struct timer_list *t)
|
|
{
|
|
struct sas_task_slow *slow = from_timer(slow, t, timer);
|
|
struct sas_task *task = slow->task;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&task->task_state_lock, flags);
|
|
if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
|
|
task->task_state_flags |= SAS_TASK_STATE_ABORTED;
|
|
complete(&task->slow_task->completion);
|
|
}
|
|
spin_unlock_irqrestore(&task->task_state_lock, flags);
|
|
}
|
|
|
|
static void smp_task_done(struct sas_task *task)
|
|
{
|
|
del_timer(&task->slow_task->timer);
|
|
complete(&task->slow_task->completion);
|
|
}
|
|
|
|
/* Give it some long enough timeout. In seconds. */
|
|
#define SMP_TIMEOUT 10
|
|
|
|
static int smp_execute_task_sg(struct domain_device *dev,
|
|
struct scatterlist *req, struct scatterlist *resp)
|
|
{
|
|
int res, retry;
|
|
struct sas_task *task = NULL;
|
|
struct sas_internal *i =
|
|
to_sas_internal(dev->port->ha->core.shost->transportt);
|
|
|
|
mutex_lock(&dev->ex_dev.cmd_mutex);
|
|
for (retry = 0; retry < 3; retry++) {
|
|
if (test_bit(SAS_DEV_GONE, &dev->state)) {
|
|
res = -ECOMM;
|
|
break;
|
|
}
|
|
|
|
task = sas_alloc_slow_task(GFP_KERNEL);
|
|
if (!task) {
|
|
res = -ENOMEM;
|
|
break;
|
|
}
|
|
task->dev = dev;
|
|
task->task_proto = dev->tproto;
|
|
task->smp_task.smp_req = *req;
|
|
task->smp_task.smp_resp = *resp;
|
|
|
|
task->task_done = smp_task_done;
|
|
|
|
task->slow_task->timer.function = smp_task_timedout;
|
|
task->slow_task->timer.expires = jiffies + SMP_TIMEOUT*HZ;
|
|
add_timer(&task->slow_task->timer);
|
|
|
|
res = i->dft->lldd_execute_task(task, GFP_KERNEL);
|
|
|
|
if (res) {
|
|
del_timer(&task->slow_task->timer);
|
|
pr_notice("executing SMP task failed:%d\n", res);
|
|
break;
|
|
}
|
|
|
|
wait_for_completion(&task->slow_task->completion);
|
|
res = -ECOMM;
|
|
if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
|
|
pr_notice("smp task timed out or aborted\n");
|
|
i->dft->lldd_abort_task(task);
|
|
if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
|
|
pr_notice("SMP task aborted and not done\n");
|
|
break;
|
|
}
|
|
}
|
|
if (task->task_status.resp == SAS_TASK_COMPLETE &&
|
|
task->task_status.stat == SAM_STAT_GOOD) {
|
|
res = 0;
|
|
break;
|
|
}
|
|
if (task->task_status.resp == SAS_TASK_COMPLETE &&
|
|
task->task_status.stat == SAS_DATA_UNDERRUN) {
|
|
/* no error, but return the number of bytes of
|
|
* underrun */
|
|
res = task->task_status.residual;
|
|
break;
|
|
}
|
|
if (task->task_status.resp == SAS_TASK_COMPLETE &&
|
|
task->task_status.stat == SAS_DATA_OVERRUN) {
|
|
res = -EMSGSIZE;
|
|
break;
|
|
}
|
|
if (task->task_status.resp == SAS_TASK_UNDELIVERED &&
|
|
task->task_status.stat == SAS_DEVICE_UNKNOWN)
|
|
break;
|
|
else {
|
|
pr_notice("%s: task to dev %016llx response: 0x%x status 0x%x\n",
|
|
__func__,
|
|
SAS_ADDR(dev->sas_addr),
|
|
task->task_status.resp,
|
|
task->task_status.stat);
|
|
sas_free_task(task);
|
|
task = NULL;
|
|
}
|
|
}
|
|
mutex_unlock(&dev->ex_dev.cmd_mutex);
|
|
|
|
BUG_ON(retry == 3 && task != NULL);
|
|
sas_free_task(task);
|
|
return res;
|
|
}
|
|
|
|
static int smp_execute_task(struct domain_device *dev, void *req, int req_size,
|
|
void *resp, int resp_size)
|
|
{
|
|
struct scatterlist req_sg;
|
|
struct scatterlist resp_sg;
|
|
|
|
sg_init_one(&req_sg, req, req_size);
|
|
sg_init_one(&resp_sg, resp, resp_size);
|
|
return smp_execute_task_sg(dev, &req_sg, &resp_sg);
|
|
}
|
|
|
|
/* ---------- Allocations ---------- */
|
|
|
|
static inline void *alloc_smp_req(int size)
|
|
{
|
|
u8 *p = kzalloc(size, GFP_KERNEL);
|
|
if (p)
|
|
p[0] = SMP_REQUEST;
|
|
return p;
|
|
}
|
|
|
|
static inline void *alloc_smp_resp(int size)
|
|
{
|
|
return kzalloc(size, GFP_KERNEL);
|
|
}
|
|
|
|
static char sas_route_char(struct domain_device *dev, struct ex_phy *phy)
|
|
{
|
|
switch (phy->routing_attr) {
|
|
case TABLE_ROUTING:
|
|
if (dev->ex_dev.t2t_supp)
|
|
return 'U';
|
|
else
|
|
return 'T';
|
|
case DIRECT_ROUTING:
|
|
return 'D';
|
|
case SUBTRACTIVE_ROUTING:
|
|
return 'S';
|
|
default:
|
|
return '?';
|
|
}
|
|
}
|
|
|
|
static enum sas_device_type to_dev_type(struct discover_resp *dr)
|
|
{
|
|
/* This is detecting a failure to transmit initial dev to host
|
|
* FIS as described in section J.5 of sas-2 r16
|
|
*/
|
|
if (dr->attached_dev_type == SAS_PHY_UNUSED && dr->attached_sata_dev &&
|
|
dr->linkrate >= SAS_LINK_RATE_1_5_GBPS)
|
|
return SAS_SATA_PENDING;
|
|
else
|
|
return dr->attached_dev_type;
|
|
}
|
|
|
|
static void sas_set_ex_phy(struct domain_device *dev, int phy_id, void *rsp)
|
|
{
|
|
enum sas_device_type dev_type;
|
|
enum sas_linkrate linkrate;
|
|
u8 sas_addr[SAS_ADDR_SIZE];
|
|
struct smp_resp *resp = rsp;
|
|
struct discover_resp *dr = &resp->disc;
|
|
struct sas_ha_struct *ha = dev->port->ha;
|
|
struct expander_device *ex = &dev->ex_dev;
|
|
struct ex_phy *phy = &ex->ex_phy[phy_id];
|
|
struct sas_rphy *rphy = dev->rphy;
|
|
bool new_phy = !phy->phy;
|
|
char *type;
|
|
|
|
if (new_phy) {
|
|
if (WARN_ON_ONCE(test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)))
|
|
return;
|
|
phy->phy = sas_phy_alloc(&rphy->dev, phy_id);
|
|
|
|
/* FIXME: error_handling */
|
|
BUG_ON(!phy->phy);
|
|
}
|
|
|
|
switch (resp->result) {
|
|
case SMP_RESP_PHY_VACANT:
|
|
phy->phy_state = PHY_VACANT;
|
|
break;
|
|
default:
|
|
phy->phy_state = PHY_NOT_PRESENT;
|
|
break;
|
|
case SMP_RESP_FUNC_ACC:
|
|
phy->phy_state = PHY_EMPTY; /* do not know yet */
|
|
break;
|
|
}
|
|
|
|
/* check if anything important changed to squelch debug */
|
|
dev_type = phy->attached_dev_type;
|
|
linkrate = phy->linkrate;
|
|
memcpy(sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
|
|
|
|
/* Handle vacant phy - rest of dr data is not valid so skip it */
|
|
if (phy->phy_state == PHY_VACANT) {
|
|
memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
|
|
phy->attached_dev_type = SAS_PHY_UNUSED;
|
|
if (!test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)) {
|
|
phy->phy_id = phy_id;
|
|
goto skip;
|
|
} else
|
|
goto out;
|
|
}
|
|
|
|
phy->attached_dev_type = to_dev_type(dr);
|
|
if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))
|
|
goto out;
|
|
phy->phy_id = phy_id;
|
|
phy->linkrate = dr->linkrate;
|
|
phy->attached_sata_host = dr->attached_sata_host;
|
|
phy->attached_sata_dev = dr->attached_sata_dev;
|
|
phy->attached_sata_ps = dr->attached_sata_ps;
|
|
phy->attached_iproto = dr->iproto << 1;
|
|
phy->attached_tproto = dr->tproto << 1;
|
|
/* help some expanders that fail to zero sas_address in the 'no
|
|
* device' case
|
|
*/
|
|
if (phy->attached_dev_type == SAS_PHY_UNUSED ||
|
|
phy->linkrate < SAS_LINK_RATE_1_5_GBPS)
|
|
memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
|
|
else
|
|
memcpy(phy->attached_sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE);
|
|
phy->attached_phy_id = dr->attached_phy_id;
|
|
phy->phy_change_count = dr->change_count;
|
|
phy->routing_attr = dr->routing_attr;
|
|
phy->virtual = dr->virtual;
|
|
phy->last_da_index = -1;
|
|
|
|
phy->phy->identify.sas_address = SAS_ADDR(phy->attached_sas_addr);
|
|
phy->phy->identify.device_type = dr->attached_dev_type;
|
|
phy->phy->identify.initiator_port_protocols = phy->attached_iproto;
|
|
phy->phy->identify.target_port_protocols = phy->attached_tproto;
|
|
if (!phy->attached_tproto && dr->attached_sata_dev)
|
|
phy->phy->identify.target_port_protocols = SAS_PROTOCOL_SATA;
|
|
phy->phy->identify.phy_identifier = phy_id;
|
|
phy->phy->minimum_linkrate_hw = dr->hmin_linkrate;
|
|
phy->phy->maximum_linkrate_hw = dr->hmax_linkrate;
|
|
phy->phy->minimum_linkrate = dr->pmin_linkrate;
|
|
phy->phy->maximum_linkrate = dr->pmax_linkrate;
|
|
phy->phy->negotiated_linkrate = phy->linkrate;
|
|
phy->phy->enabled = (phy->linkrate != SAS_PHY_DISABLED);
|
|
|
|
skip:
|
|
if (new_phy)
|
|
if (sas_phy_add(phy->phy)) {
|
|
sas_phy_free(phy->phy);
|
|
return;
|
|
}
|
|
|
|
out:
|
|
switch (phy->attached_dev_type) {
|
|
case SAS_SATA_PENDING:
|
|
type = "stp pending";
|
|
break;
|
|
case SAS_PHY_UNUSED:
|
|
type = "no device";
|
|
break;
|
|
case SAS_END_DEVICE:
|
|
if (phy->attached_iproto) {
|
|
if (phy->attached_tproto)
|
|
type = "host+target";
|
|
else
|
|
type = "host";
|
|
} else {
|
|
if (dr->attached_sata_dev)
|
|
type = "stp";
|
|
else
|
|
type = "ssp";
|
|
}
|
|
break;
|
|
case SAS_EDGE_EXPANDER_DEVICE:
|
|
case SAS_FANOUT_EXPANDER_DEVICE:
|
|
type = "smp";
|
|
break;
|
|
default:
|
|
type = "unknown";
|
|
}
|
|
|
|
/* this routine is polled by libata error recovery so filter
|
|
* unimportant messages
|
|
*/
|
|
if (new_phy || phy->attached_dev_type != dev_type ||
|
|
phy->linkrate != linkrate ||
|
|
SAS_ADDR(phy->attached_sas_addr) != SAS_ADDR(sas_addr))
|
|
/* pass */;
|
|
else
|
|
return;
|
|
|
|
/* if the attached device type changed and ata_eh is active,
|
|
* make sure we run revalidation when eh completes (see:
|
|
* sas_enable_revalidation)
|
|
*/
|
|
if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))
|
|
set_bit(DISCE_REVALIDATE_DOMAIN, &dev->port->disc.pending);
|
|
|
|
pr_debug("%sex %016llx phy%02d:%c:%X attached: %016llx (%s)\n",
|
|
test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state) ? "ata: " : "",
|
|
SAS_ADDR(dev->sas_addr), phy->phy_id,
|
|
sas_route_char(dev, phy), phy->linkrate,
|
|
SAS_ADDR(phy->attached_sas_addr), type);
|
|
}
|
|
|
|
/* check if we have an existing attached ata device on this expander phy */
|
|
struct domain_device *sas_ex_to_ata(struct domain_device *ex_dev, int phy_id)
|
|
{
|
|
struct ex_phy *ex_phy = &ex_dev->ex_dev.ex_phy[phy_id];
|
|
struct domain_device *dev;
|
|
struct sas_rphy *rphy;
|
|
|
|
if (!ex_phy->port)
|
|
return NULL;
|
|
|
|
rphy = ex_phy->port->rphy;
|
|
if (!rphy)
|
|
return NULL;
|
|
|
|
dev = sas_find_dev_by_rphy(rphy);
|
|
|
|
if (dev && dev_is_sata(dev))
|
|
return dev;
|
|
|
|
return NULL;
|
|
}
|
|
|
|
#define DISCOVER_REQ_SIZE 16
|
|
#define DISCOVER_RESP_SIZE 56
|
|
|
|
static int sas_ex_phy_discover_helper(struct domain_device *dev, u8 *disc_req,
|
|
u8 *disc_resp, int single)
|
|
{
|
|
struct discover_resp *dr;
|
|
int res;
|
|
|
|
disc_req[9] = single;
|
|
|
|
res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
|
|
disc_resp, DISCOVER_RESP_SIZE);
|
|
if (res)
|
|
return res;
|
|
dr = &((struct smp_resp *)disc_resp)->disc;
|
|
if (memcmp(dev->sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE) == 0) {
|
|
pr_notice("Found loopback topology, just ignore it!\n");
|
|
return 0;
|
|
}
|
|
sas_set_ex_phy(dev, single, disc_resp);
|
|
return 0;
|
|
}
|
|
|
|
int sas_ex_phy_discover(struct domain_device *dev, int single)
|
|
{
|
|
struct expander_device *ex = &dev->ex_dev;
|
|
int res = 0;
|
|
u8 *disc_req;
|
|
u8 *disc_resp;
|
|
|
|
disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
|
|
if (!disc_req)
|
|
return -ENOMEM;
|
|
|
|
disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
|
|
if (!disc_resp) {
|
|
kfree(disc_req);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
disc_req[1] = SMP_DISCOVER;
|
|
|
|
if (0 <= single && single < ex->num_phys) {
|
|
res = sas_ex_phy_discover_helper(dev, disc_req, disc_resp, single);
|
|
} else {
|
|
int i;
|
|
|
|
for (i = 0; i < ex->num_phys; i++) {
|
|
res = sas_ex_phy_discover_helper(dev, disc_req,
|
|
disc_resp, i);
|
|
if (res)
|
|
goto out_err;
|
|
}
|
|
}
|
|
out_err:
|
|
kfree(disc_resp);
|
|
kfree(disc_req);
|
|
return res;
|
|
}
|
|
|
|
static int sas_expander_discover(struct domain_device *dev)
|
|
{
|
|
struct expander_device *ex = &dev->ex_dev;
|
|
int res = -ENOMEM;
|
|
|
|
ex->ex_phy = kcalloc(ex->num_phys, sizeof(*ex->ex_phy), GFP_KERNEL);
|
|
if (!ex->ex_phy)
|
|
return -ENOMEM;
|
|
|
|
res = sas_ex_phy_discover(dev, -1);
|
|
if (res)
|
|
goto out_err;
|
|
|
|
return 0;
|
|
out_err:
|
|
kfree(ex->ex_phy);
|
|
ex->ex_phy = NULL;
|
|
return res;
|
|
}
|
|
|
|
#define MAX_EXPANDER_PHYS 128
|
|
|
|
static void ex_assign_report_general(struct domain_device *dev,
|
|
struct smp_resp *resp)
|
|
{
|
|
struct report_general_resp *rg = &resp->rg;
|
|
|
|
dev->ex_dev.ex_change_count = be16_to_cpu(rg->change_count);
|
|
dev->ex_dev.max_route_indexes = be16_to_cpu(rg->route_indexes);
|
|
dev->ex_dev.num_phys = min(rg->num_phys, (u8)MAX_EXPANDER_PHYS);
|
|
dev->ex_dev.t2t_supp = rg->t2t_supp;
|
|
dev->ex_dev.conf_route_table = rg->conf_route_table;
|
|
dev->ex_dev.configuring = rg->configuring;
|
|
memcpy(dev->ex_dev.enclosure_logical_id, rg->enclosure_logical_id, 8);
|
|
}
|
|
|
|
#define RG_REQ_SIZE 8
|
|
#define RG_RESP_SIZE 32
|
|
|
|
static int sas_ex_general(struct domain_device *dev)
|
|
{
|
|
u8 *rg_req;
|
|
struct smp_resp *rg_resp;
|
|
int res;
|
|
int i;
|
|
|
|
rg_req = alloc_smp_req(RG_REQ_SIZE);
|
|
if (!rg_req)
|
|
return -ENOMEM;
|
|
|
|
rg_resp = alloc_smp_resp(RG_RESP_SIZE);
|
|
if (!rg_resp) {
|
|
kfree(rg_req);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
rg_req[1] = SMP_REPORT_GENERAL;
|
|
|
|
for (i = 0; i < 5; i++) {
|
|
res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
|
|
RG_RESP_SIZE);
|
|
|
|
if (res) {
|
|
pr_notice("RG to ex %016llx failed:0x%x\n",
|
|
SAS_ADDR(dev->sas_addr), res);
|
|
goto out;
|
|
} else if (rg_resp->result != SMP_RESP_FUNC_ACC) {
|
|
pr_debug("RG:ex %016llx returned SMP result:0x%x\n",
|
|
SAS_ADDR(dev->sas_addr), rg_resp->result);
|
|
res = rg_resp->result;
|
|
goto out;
|
|
}
|
|
|
|
ex_assign_report_general(dev, rg_resp);
|
|
|
|
if (dev->ex_dev.configuring) {
|
|
pr_debug("RG: ex %016llx self-configuring...\n",
|
|
SAS_ADDR(dev->sas_addr));
|
|
schedule_timeout_interruptible(5*HZ);
|
|
} else
|
|
break;
|
|
}
|
|
out:
|
|
kfree(rg_req);
|
|
kfree(rg_resp);
|
|
return res;
|
|
}
|
|
|
|
static void ex_assign_manuf_info(struct domain_device *dev, void
|
|
*_mi_resp)
|
|
{
|
|
u8 *mi_resp = _mi_resp;
|
|
struct sas_rphy *rphy = dev->rphy;
|
|
struct sas_expander_device *edev = rphy_to_expander_device(rphy);
|
|
|
|
memcpy(edev->vendor_id, mi_resp + 12, SAS_EXPANDER_VENDOR_ID_LEN);
|
|
memcpy(edev->product_id, mi_resp + 20, SAS_EXPANDER_PRODUCT_ID_LEN);
|
|
memcpy(edev->product_rev, mi_resp + 36,
|
|
SAS_EXPANDER_PRODUCT_REV_LEN);
|
|
|
|
if (mi_resp[8] & 1) {
|
|
memcpy(edev->component_vendor_id, mi_resp + 40,
|
|
SAS_EXPANDER_COMPONENT_VENDOR_ID_LEN);
|
|
edev->component_id = mi_resp[48] << 8 | mi_resp[49];
|
|
edev->component_revision_id = mi_resp[50];
|
|
}
|
|
}
|
|
|
|
#define MI_REQ_SIZE 8
|
|
#define MI_RESP_SIZE 64
|
|
|
|
static int sas_ex_manuf_info(struct domain_device *dev)
|
|
{
|
|
u8 *mi_req;
|
|
u8 *mi_resp;
|
|
int res;
|
|
|
|
mi_req = alloc_smp_req(MI_REQ_SIZE);
|
|
if (!mi_req)
|
|
return -ENOMEM;
|
|
|
|
mi_resp = alloc_smp_resp(MI_RESP_SIZE);
|
|
if (!mi_resp) {
|
|
kfree(mi_req);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
mi_req[1] = SMP_REPORT_MANUF_INFO;
|
|
|
|
res = smp_execute_task(dev, mi_req, MI_REQ_SIZE, mi_resp,MI_RESP_SIZE);
|
|
if (res) {
|
|
pr_notice("MI: ex %016llx failed:0x%x\n",
|
|
SAS_ADDR(dev->sas_addr), res);
|
|
goto out;
|
|
} else if (mi_resp[2] != SMP_RESP_FUNC_ACC) {
|
|
pr_debug("MI ex %016llx returned SMP result:0x%x\n",
|
|
SAS_ADDR(dev->sas_addr), mi_resp[2]);
|
|
goto out;
|
|
}
|
|
|
|
ex_assign_manuf_info(dev, mi_resp);
|
|
out:
|
|
kfree(mi_req);
|
|
kfree(mi_resp);
|
|
return res;
|
|
}
|
|
|
|
#define PC_REQ_SIZE 44
|
|
#define PC_RESP_SIZE 8
|
|
|
|
int sas_smp_phy_control(struct domain_device *dev, int phy_id,
|
|
enum phy_func phy_func,
|
|
struct sas_phy_linkrates *rates)
|
|
{
|
|
u8 *pc_req;
|
|
u8 *pc_resp;
|
|
int res;
|
|
|
|
pc_req = alloc_smp_req(PC_REQ_SIZE);
|
|
if (!pc_req)
|
|
return -ENOMEM;
|
|
|
|
pc_resp = alloc_smp_resp(PC_RESP_SIZE);
|
|
if (!pc_resp) {
|
|
kfree(pc_req);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
pc_req[1] = SMP_PHY_CONTROL;
|
|
pc_req[9] = phy_id;
|
|
pc_req[10]= phy_func;
|
|
if (rates) {
|
|
pc_req[32] = rates->minimum_linkrate << 4;
|
|
pc_req[33] = rates->maximum_linkrate << 4;
|
|
}
|
|
|
|
res = smp_execute_task(dev, pc_req, PC_REQ_SIZE, pc_resp,PC_RESP_SIZE);
|
|
if (res) {
|
|
pr_err("ex %016llx phy%02d PHY control failed: %d\n",
|
|
SAS_ADDR(dev->sas_addr), phy_id, res);
|
|
} else if (pc_resp[2] != SMP_RESP_FUNC_ACC) {
|
|
pr_err("ex %016llx phy%02d PHY control failed: function result 0x%x\n",
|
|
SAS_ADDR(dev->sas_addr), phy_id, pc_resp[2]);
|
|
res = pc_resp[2];
|
|
}
|
|
kfree(pc_resp);
|
|
kfree(pc_req);
|
|
return res;
|
|
}
|
|
|
|
static void sas_ex_disable_phy(struct domain_device *dev, int phy_id)
|
|
{
|
|
struct expander_device *ex = &dev->ex_dev;
|
|
struct ex_phy *phy = &ex->ex_phy[phy_id];
|
|
|
|
sas_smp_phy_control(dev, phy_id, PHY_FUNC_DISABLE, NULL);
|
|
phy->linkrate = SAS_PHY_DISABLED;
|
|
}
|
|
|
|
static void sas_ex_disable_port(struct domain_device *dev, u8 *sas_addr)
|
|
{
|
|
struct expander_device *ex = &dev->ex_dev;
|
|
int i;
|
|
|
|
for (i = 0; i < ex->num_phys; i++) {
|
|
struct ex_phy *phy = &ex->ex_phy[i];
|
|
|
|
if (phy->phy_state == PHY_VACANT ||
|
|
phy->phy_state == PHY_NOT_PRESENT)
|
|
continue;
|
|
|
|
if (SAS_ADDR(phy->attached_sas_addr) == SAS_ADDR(sas_addr))
|
|
sas_ex_disable_phy(dev, i);
|
|
}
|
|
}
|
|
|
|
static int sas_dev_present_in_domain(struct asd_sas_port *port,
|
|
u8 *sas_addr)
|
|
{
|
|
struct domain_device *dev;
|
|
|
|
if (SAS_ADDR(port->sas_addr) == SAS_ADDR(sas_addr))
|
|
return 1;
|
|
list_for_each_entry(dev, &port->dev_list, dev_list_node) {
|
|
if (SAS_ADDR(dev->sas_addr) == SAS_ADDR(sas_addr))
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
#define RPEL_REQ_SIZE 16
|
|
#define RPEL_RESP_SIZE 32
|
|
int sas_smp_get_phy_events(struct sas_phy *phy)
|
|
{
|
|
int res;
|
|
u8 *req;
|
|
u8 *resp;
|
|
struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent);
|
|
struct domain_device *dev = sas_find_dev_by_rphy(rphy);
|
|
|
|
req = alloc_smp_req(RPEL_REQ_SIZE);
|
|
if (!req)
|
|
return -ENOMEM;
|
|
|
|
resp = alloc_smp_resp(RPEL_RESP_SIZE);
|
|
if (!resp) {
|
|
kfree(req);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
req[1] = SMP_REPORT_PHY_ERR_LOG;
|
|
req[9] = phy->number;
|
|
|
|
res = smp_execute_task(dev, req, RPEL_REQ_SIZE,
|
|
resp, RPEL_RESP_SIZE);
|
|
|
|
if (res)
|
|
goto out;
|
|
|
|
phy->invalid_dword_count = get_unaligned_be32(&resp[12]);
|
|
phy->running_disparity_error_count = get_unaligned_be32(&resp[16]);
|
|
phy->loss_of_dword_sync_count = get_unaligned_be32(&resp[20]);
|
|
phy->phy_reset_problem_count = get_unaligned_be32(&resp[24]);
|
|
|
|
out:
|
|
kfree(req);
|
|
kfree(resp);
|
|
return res;
|
|
|
|
}
|
|
|
|
#ifdef CONFIG_SCSI_SAS_ATA
|
|
|
|
#define RPS_REQ_SIZE 16
|
|
#define RPS_RESP_SIZE 60
|
|
|
|
int sas_get_report_phy_sata(struct domain_device *dev, int phy_id,
|
|
struct smp_resp *rps_resp)
|
|
{
|
|
int res;
|
|
u8 *rps_req = alloc_smp_req(RPS_REQ_SIZE);
|
|
u8 *resp = (u8 *)rps_resp;
|
|
|
|
if (!rps_req)
|
|
return -ENOMEM;
|
|
|
|
rps_req[1] = SMP_REPORT_PHY_SATA;
|
|
rps_req[9] = phy_id;
|
|
|
|
res = smp_execute_task(dev, rps_req, RPS_REQ_SIZE,
|
|
rps_resp, RPS_RESP_SIZE);
|
|
|
|
/* 0x34 is the FIS type for the D2H fis. There's a potential
|
|
* standards cockup here. sas-2 explicitly specifies the FIS
|
|
* should be encoded so that FIS type is in resp[24].
|
|
* However, some expanders endian reverse this. Undo the
|
|
* reversal here */
|
|
if (!res && resp[27] == 0x34 && resp[24] != 0x34) {
|
|
int i;
|
|
|
|
for (i = 0; i < 5; i++) {
|
|
int j = 24 + (i*4);
|
|
u8 a, b;
|
|
a = resp[j + 0];
|
|
b = resp[j + 1];
|
|
resp[j + 0] = resp[j + 3];
|
|
resp[j + 1] = resp[j + 2];
|
|
resp[j + 2] = b;
|
|
resp[j + 3] = a;
|
|
}
|
|
}
|
|
|
|
kfree(rps_req);
|
|
return res;
|
|
}
|
|
#endif
|
|
|
|
static void sas_ex_get_linkrate(struct domain_device *parent,
|
|
struct domain_device *child,
|
|
struct ex_phy *parent_phy)
|
|
{
|
|
struct expander_device *parent_ex = &parent->ex_dev;
|
|
struct sas_port *port;
|
|
int i;
|
|
|
|
child->pathways = 0;
|
|
|
|
port = parent_phy->port;
|
|
|
|
for (i = 0; i < parent_ex->num_phys; i++) {
|
|
struct ex_phy *phy = &parent_ex->ex_phy[i];
|
|
|
|
if (phy->phy_state == PHY_VACANT ||
|
|
phy->phy_state == PHY_NOT_PRESENT)
|
|
continue;
|
|
|
|
if (SAS_ADDR(phy->attached_sas_addr) ==
|
|
SAS_ADDR(child->sas_addr)) {
|
|
|
|
child->min_linkrate = min(parent->min_linkrate,
|
|
phy->linkrate);
|
|
child->max_linkrate = max(parent->max_linkrate,
|
|
phy->linkrate);
|
|
child->pathways++;
|
|
sas_port_add_phy(port, phy->phy);
|
|
}
|
|
}
|
|
child->linkrate = min(parent_phy->linkrate, child->max_linkrate);
|
|
child->pathways = min(child->pathways, parent->pathways);
|
|
}
|
|
|
|
static struct domain_device *sas_ex_discover_end_dev(
|
|
struct domain_device *parent, int phy_id)
|
|
{
|
|
struct expander_device *parent_ex = &parent->ex_dev;
|
|
struct ex_phy *phy = &parent_ex->ex_phy[phy_id];
|
|
struct domain_device *child = NULL;
|
|
struct sas_rphy *rphy;
|
|
int res;
|
|
|
|
if (phy->attached_sata_host || phy->attached_sata_ps)
|
|
return NULL;
|
|
|
|
child = sas_alloc_device();
|
|
if (!child)
|
|
return NULL;
|
|
|
|
kref_get(&parent->kref);
|
|
child->parent = parent;
|
|
child->port = parent->port;
|
|
child->iproto = phy->attached_iproto;
|
|
memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
|
|
sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
|
|
if (!phy->port) {
|
|
phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
|
|
if (unlikely(!phy->port))
|
|
goto out_err;
|
|
if (unlikely(sas_port_add(phy->port) != 0)) {
|
|
sas_port_free(phy->port);
|
|
goto out_err;
|
|
}
|
|
}
|
|
sas_ex_get_linkrate(parent, child, phy);
|
|
sas_device_set_phy(child, phy->port);
|
|
|
|
#ifdef CONFIG_SCSI_SAS_ATA
|
|
if ((phy->attached_tproto & SAS_PROTOCOL_STP) || phy->attached_sata_dev) {
|
|
if (child->linkrate > parent->min_linkrate) {
|
|
struct sas_phy *cphy = child->phy;
|
|
enum sas_linkrate min_prate = cphy->minimum_linkrate,
|
|
parent_min_lrate = parent->min_linkrate,
|
|
min_linkrate = (min_prate > parent_min_lrate) ?
|
|
parent_min_lrate : 0;
|
|
struct sas_phy_linkrates rates = {
|
|
.maximum_linkrate = parent->min_linkrate,
|
|
.minimum_linkrate = min_linkrate,
|
|
};
|
|
int ret;
|
|
|
|
pr_notice("ex %016llx phy%02d SATA device linkrate > min pathway connection rate, attempting to lower device linkrate\n",
|
|
SAS_ADDR(child->sas_addr), phy_id);
|
|
ret = sas_smp_phy_control(parent, phy_id,
|
|
PHY_FUNC_LINK_RESET, &rates);
|
|
if (ret) {
|
|
pr_err("ex %016llx phy%02d SATA device could not set linkrate (%d)\n",
|
|
SAS_ADDR(child->sas_addr), phy_id, ret);
|
|
goto out_free;
|
|
}
|
|
pr_notice("ex %016llx phy%02d SATA device set linkrate successfully\n",
|
|
SAS_ADDR(child->sas_addr), phy_id);
|
|
child->linkrate = child->min_linkrate;
|
|
}
|
|
res = sas_get_ata_info(child, phy);
|
|
if (res)
|
|
goto out_free;
|
|
|
|
sas_init_dev(child);
|
|
res = sas_ata_init(child);
|
|
if (res)
|
|
goto out_free;
|
|
rphy = sas_end_device_alloc(phy->port);
|
|
if (!rphy)
|
|
goto out_free;
|
|
rphy->identify.phy_identifier = phy_id;
|
|
|
|
child->rphy = rphy;
|
|
get_device(&rphy->dev);
|
|
|
|
list_add_tail(&child->disco_list_node, &parent->port->disco_list);
|
|
|
|
res = sas_discover_sata(child);
|
|
if (res) {
|
|
pr_notice("sas_discover_sata() for device %16llx at %016llx:%02d returned 0x%x\n",
|
|
SAS_ADDR(child->sas_addr),
|
|
SAS_ADDR(parent->sas_addr), phy_id, res);
|
|
goto out_list_del;
|
|
}
|
|
} else
|
|
#endif
|
|
if (phy->attached_tproto & SAS_PROTOCOL_SSP) {
|
|
child->dev_type = SAS_END_DEVICE;
|
|
rphy = sas_end_device_alloc(phy->port);
|
|
/* FIXME: error handling */
|
|
if (unlikely(!rphy))
|
|
goto out_free;
|
|
child->tproto = phy->attached_tproto;
|
|
sas_init_dev(child);
|
|
|
|
child->rphy = rphy;
|
|
get_device(&rphy->dev);
|
|
rphy->identify.phy_identifier = phy_id;
|
|
sas_fill_in_rphy(child, rphy);
|
|
|
|
list_add_tail(&child->disco_list_node, &parent->port->disco_list);
|
|
|
|
res = sas_discover_end_dev(child);
|
|
if (res) {
|
|
pr_notice("sas_discover_end_dev() for device %016llx at %016llx:%02d returned 0x%x\n",
|
|
SAS_ADDR(child->sas_addr),
|
|
SAS_ADDR(parent->sas_addr), phy_id, res);
|
|
goto out_list_del;
|
|
}
|
|
} else {
|
|
pr_notice("target proto 0x%x at %016llx:0x%x not handled\n",
|
|
phy->attached_tproto, SAS_ADDR(parent->sas_addr),
|
|
phy_id);
|
|
goto out_free;
|
|
}
|
|
|
|
list_add_tail(&child->siblings, &parent_ex->children);
|
|
return child;
|
|
|
|
out_list_del:
|
|
sas_rphy_free(child->rphy);
|
|
list_del(&child->disco_list_node);
|
|
spin_lock_irq(&parent->port->dev_list_lock);
|
|
list_del(&child->dev_list_node);
|
|
spin_unlock_irq(&parent->port->dev_list_lock);
|
|
out_free:
|
|
sas_port_delete(phy->port);
|
|
out_err:
|
|
phy->port = NULL;
|
|
sas_put_device(child);
|
|
return NULL;
|
|
}
|
|
|
|
/* See if this phy is part of a wide port */
|
|
static bool sas_ex_join_wide_port(struct domain_device *parent, int phy_id)
|
|
{
|
|
struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
|
|
int i;
|
|
|
|
for (i = 0; i < parent->ex_dev.num_phys; i++) {
|
|
struct ex_phy *ephy = &parent->ex_dev.ex_phy[i];
|
|
|
|
if (ephy == phy)
|
|
continue;
|
|
|
|
if (!memcmp(phy->attached_sas_addr, ephy->attached_sas_addr,
|
|
SAS_ADDR_SIZE) && ephy->port) {
|
|
sas_port_add_phy(ephy->port, phy->phy);
|
|
phy->port = ephy->port;
|
|
phy->phy_state = PHY_DEVICE_DISCOVERED;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static struct domain_device *sas_ex_discover_expander(
|
|
struct domain_device *parent, int phy_id)
|
|
{
|
|
struct sas_expander_device *parent_ex = rphy_to_expander_device(parent->rphy);
|
|
struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
|
|
struct domain_device *child = NULL;
|
|
struct sas_rphy *rphy;
|
|
struct sas_expander_device *edev;
|
|
struct asd_sas_port *port;
|
|
int res;
|
|
|
|
if (phy->routing_attr == DIRECT_ROUTING) {
|
|
pr_warn("ex %016llx:%02d:D <--> ex %016llx:0x%x is not allowed\n",
|
|
SAS_ADDR(parent->sas_addr), phy_id,
|
|
SAS_ADDR(phy->attached_sas_addr),
|
|
phy->attached_phy_id);
|
|
return NULL;
|
|
}
|
|
child = sas_alloc_device();
|
|
if (!child)
|
|
return NULL;
|
|
|
|
phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
|
|
/* FIXME: better error handling */
|
|
BUG_ON(sas_port_add(phy->port) != 0);
|
|
|
|
|
|
switch (phy->attached_dev_type) {
|
|
case SAS_EDGE_EXPANDER_DEVICE:
|
|
rphy = sas_expander_alloc(phy->port,
|
|
SAS_EDGE_EXPANDER_DEVICE);
|
|
break;
|
|
case SAS_FANOUT_EXPANDER_DEVICE:
|
|
rphy = sas_expander_alloc(phy->port,
|
|
SAS_FANOUT_EXPANDER_DEVICE);
|
|
break;
|
|
default:
|
|
rphy = NULL; /* shut gcc up */
|
|
BUG();
|
|
}
|
|
port = parent->port;
|
|
child->rphy = rphy;
|
|
get_device(&rphy->dev);
|
|
edev = rphy_to_expander_device(rphy);
|
|
child->dev_type = phy->attached_dev_type;
|
|
kref_get(&parent->kref);
|
|
child->parent = parent;
|
|
child->port = port;
|
|
child->iproto = phy->attached_iproto;
|
|
child->tproto = phy->attached_tproto;
|
|
memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
|
|
sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
|
|
sas_ex_get_linkrate(parent, child, phy);
|
|
edev->level = parent_ex->level + 1;
|
|
parent->port->disc.max_level = max(parent->port->disc.max_level,
|
|
edev->level);
|
|
sas_init_dev(child);
|
|
sas_fill_in_rphy(child, rphy);
|
|
sas_rphy_add(rphy);
|
|
|
|
spin_lock_irq(&parent->port->dev_list_lock);
|
|
list_add_tail(&child->dev_list_node, &parent->port->dev_list);
|
|
spin_unlock_irq(&parent->port->dev_list_lock);
|
|
|
|
res = sas_discover_expander(child);
|
|
if (res) {
|
|
sas_rphy_delete(rphy);
|
|
spin_lock_irq(&parent->port->dev_list_lock);
|
|
list_del(&child->dev_list_node);
|
|
spin_unlock_irq(&parent->port->dev_list_lock);
|
|
sas_put_device(child);
|
|
sas_port_delete(phy->port);
|
|
phy->port = NULL;
|
|
return NULL;
|
|
}
|
|
list_add_tail(&child->siblings, &parent->ex_dev.children);
|
|
return child;
|
|
}
|
|
|
|
static int sas_ex_discover_dev(struct domain_device *dev, int phy_id)
|
|
{
|
|
struct expander_device *ex = &dev->ex_dev;
|
|
struct ex_phy *ex_phy = &ex->ex_phy[phy_id];
|
|
struct domain_device *child = NULL;
|
|
int res = 0;
|
|
|
|
/* Phy state */
|
|
if (ex_phy->linkrate == SAS_SATA_SPINUP_HOLD) {
|
|
if (!sas_smp_phy_control(dev, phy_id, PHY_FUNC_LINK_RESET, NULL))
|
|
res = sas_ex_phy_discover(dev, phy_id);
|
|
if (res)
|
|
return res;
|
|
}
|
|
|
|
/* Parent and domain coherency */
|
|
if (!dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
|
|
SAS_ADDR(dev->port->sas_addr))) {
|
|
sas_add_parent_port(dev, phy_id);
|
|
return 0;
|
|
}
|
|
if (dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
|
|
SAS_ADDR(dev->parent->sas_addr))) {
|
|
sas_add_parent_port(dev, phy_id);
|
|
if (ex_phy->routing_attr == TABLE_ROUTING)
|
|
sas_configure_phy(dev, phy_id, dev->port->sas_addr, 1);
|
|
return 0;
|
|
}
|
|
|
|
if (sas_dev_present_in_domain(dev->port, ex_phy->attached_sas_addr))
|
|
sas_ex_disable_port(dev, ex_phy->attached_sas_addr);
|
|
|
|
if (ex_phy->attached_dev_type == SAS_PHY_UNUSED) {
|
|
if (ex_phy->routing_attr == DIRECT_ROUTING) {
|
|
memset(ex_phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
|
|
sas_configure_routing(dev, ex_phy->attached_sas_addr);
|
|
}
|
|
return 0;
|
|
} else if (ex_phy->linkrate == SAS_LINK_RATE_UNKNOWN)
|
|
return 0;
|
|
|
|
if (ex_phy->attached_dev_type != SAS_END_DEVICE &&
|
|
ex_phy->attached_dev_type != SAS_FANOUT_EXPANDER_DEVICE &&
|
|
ex_phy->attached_dev_type != SAS_EDGE_EXPANDER_DEVICE &&
|
|
ex_phy->attached_dev_type != SAS_SATA_PENDING) {
|
|
pr_warn("unknown device type(0x%x) attached to ex %016llx phy%02d\n",
|
|
ex_phy->attached_dev_type,
|
|
SAS_ADDR(dev->sas_addr),
|
|
phy_id);
|
|
return 0;
|
|
}
|
|
|
|
res = sas_configure_routing(dev, ex_phy->attached_sas_addr);
|
|
if (res) {
|
|
pr_notice("configure routing for dev %016llx reported 0x%x. Forgotten\n",
|
|
SAS_ADDR(ex_phy->attached_sas_addr), res);
|
|
sas_disable_routing(dev, ex_phy->attached_sas_addr);
|
|
return res;
|
|
}
|
|
|
|
if (sas_ex_join_wide_port(dev, phy_id)) {
|
|
pr_debug("Attaching ex phy%02d to wide port %016llx\n",
|
|
phy_id, SAS_ADDR(ex_phy->attached_sas_addr));
|
|
return res;
|
|
}
|
|
|
|
switch (ex_phy->attached_dev_type) {
|
|
case SAS_END_DEVICE:
|
|
case SAS_SATA_PENDING:
|
|
child = sas_ex_discover_end_dev(dev, phy_id);
|
|
break;
|
|
case SAS_FANOUT_EXPANDER_DEVICE:
|
|
if (SAS_ADDR(dev->port->disc.fanout_sas_addr)) {
|
|
pr_debug("second fanout expander %016llx phy%02d attached to ex %016llx phy%02d\n",
|
|
SAS_ADDR(ex_phy->attached_sas_addr),
|
|
ex_phy->attached_phy_id,
|
|
SAS_ADDR(dev->sas_addr),
|
|
phy_id);
|
|
sas_ex_disable_phy(dev, phy_id);
|
|
return res;
|
|
} else
|
|
memcpy(dev->port->disc.fanout_sas_addr,
|
|
ex_phy->attached_sas_addr, SAS_ADDR_SIZE);
|
|
/* fallthrough */
|
|
case SAS_EDGE_EXPANDER_DEVICE:
|
|
child = sas_ex_discover_expander(dev, phy_id);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
if (!child)
|
|
pr_notice("ex %016llx phy%02d failed to discover\n",
|
|
SAS_ADDR(dev->sas_addr), phy_id);
|
|
return res;
|
|
}
|
|
|
|
static int sas_find_sub_addr(struct domain_device *dev, u8 *sub_addr)
|
|
{
|
|
struct expander_device *ex = &dev->ex_dev;
|
|
int i;
|
|
|
|
for (i = 0; i < ex->num_phys; i++) {
|
|
struct ex_phy *phy = &ex->ex_phy[i];
|
|
|
|
if (phy->phy_state == PHY_VACANT ||
|
|
phy->phy_state == PHY_NOT_PRESENT)
|
|
continue;
|
|
|
|
if (dev_is_expander(phy->attached_dev_type) &&
|
|
phy->routing_attr == SUBTRACTIVE_ROUTING) {
|
|
|
|
memcpy(sub_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
|
|
|
|
return 1;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int sas_check_level_subtractive_boundary(struct domain_device *dev)
|
|
{
|
|
struct expander_device *ex = &dev->ex_dev;
|
|
struct domain_device *child;
|
|
u8 sub_addr[SAS_ADDR_SIZE] = {0, };
|
|
|
|
list_for_each_entry(child, &ex->children, siblings) {
|
|
if (!dev_is_expander(child->dev_type))
|
|
continue;
|
|
if (sub_addr[0] == 0) {
|
|
sas_find_sub_addr(child, sub_addr);
|
|
continue;
|
|
} else {
|
|
u8 s2[SAS_ADDR_SIZE];
|
|
|
|
if (sas_find_sub_addr(child, s2) &&
|
|
(SAS_ADDR(sub_addr) != SAS_ADDR(s2))) {
|
|
|
|
pr_notice("ex %016llx->%016llx-?->%016llx diverges from subtractive boundary %016llx\n",
|
|
SAS_ADDR(dev->sas_addr),
|
|
SAS_ADDR(child->sas_addr),
|
|
SAS_ADDR(s2),
|
|
SAS_ADDR(sub_addr));
|
|
|
|
sas_ex_disable_port(child, s2);
|
|
}
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
/**
|
|
* sas_ex_discover_devices - discover devices attached to this expander
|
|
* @dev: pointer to the expander domain device
|
|
* @single: if you want to do a single phy, else set to -1;
|
|
*
|
|
* Configure this expander for use with its devices and register the
|
|
* devices of this expander.
|
|
*/
|
|
static int sas_ex_discover_devices(struct domain_device *dev, int single)
|
|
{
|
|
struct expander_device *ex = &dev->ex_dev;
|
|
int i = 0, end = ex->num_phys;
|
|
int res = 0;
|
|
|
|
if (0 <= single && single < end) {
|
|
i = single;
|
|
end = i+1;
|
|
}
|
|
|
|
for ( ; i < end; i++) {
|
|
struct ex_phy *ex_phy = &ex->ex_phy[i];
|
|
|
|
if (ex_phy->phy_state == PHY_VACANT ||
|
|
ex_phy->phy_state == PHY_NOT_PRESENT ||
|
|
ex_phy->phy_state == PHY_DEVICE_DISCOVERED)
|
|
continue;
|
|
|
|
switch (ex_phy->linkrate) {
|
|
case SAS_PHY_DISABLED:
|
|
case SAS_PHY_RESET_PROBLEM:
|
|
case SAS_SATA_PORT_SELECTOR:
|
|
continue;
|
|
default:
|
|
res = sas_ex_discover_dev(dev, i);
|
|
if (res)
|
|
break;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
if (!res)
|
|
sas_check_level_subtractive_boundary(dev);
|
|
|
|
return res;
|
|
}
|
|
|
|
static int sas_check_ex_subtractive_boundary(struct domain_device *dev)
|
|
{
|
|
struct expander_device *ex = &dev->ex_dev;
|
|
int i;
|
|
u8 *sub_sas_addr = NULL;
|
|
|
|
if (dev->dev_type != SAS_EDGE_EXPANDER_DEVICE)
|
|
return 0;
|
|
|
|
for (i = 0; i < ex->num_phys; i++) {
|
|
struct ex_phy *phy = &ex->ex_phy[i];
|
|
|
|
if (phy->phy_state == PHY_VACANT ||
|
|
phy->phy_state == PHY_NOT_PRESENT)
|
|
continue;
|
|
|
|
if (dev_is_expander(phy->attached_dev_type) &&
|
|
phy->routing_attr == SUBTRACTIVE_ROUTING) {
|
|
|
|
if (!sub_sas_addr)
|
|
sub_sas_addr = &phy->attached_sas_addr[0];
|
|
else if (SAS_ADDR(sub_sas_addr) !=
|
|
SAS_ADDR(phy->attached_sas_addr)) {
|
|
|
|
pr_notice("ex %016llx phy%02d diverges(%016llx) on subtractive boundary(%016llx). Disabled\n",
|
|
SAS_ADDR(dev->sas_addr), i,
|
|
SAS_ADDR(phy->attached_sas_addr),
|
|
SAS_ADDR(sub_sas_addr));
|
|
sas_ex_disable_phy(dev, i);
|
|
}
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void sas_print_parent_topology_bug(struct domain_device *child,
|
|
struct ex_phy *parent_phy,
|
|
struct ex_phy *child_phy)
|
|
{
|
|
static const char *ex_type[] = {
|
|
[SAS_EDGE_EXPANDER_DEVICE] = "edge",
|
|
[SAS_FANOUT_EXPANDER_DEVICE] = "fanout",
|
|
};
|
|
struct domain_device *parent = child->parent;
|
|
|
|
pr_notice("%s ex %016llx phy%02d <--> %s ex %016llx phy%02d has %c:%c routing link!\n",
|
|
ex_type[parent->dev_type],
|
|
SAS_ADDR(parent->sas_addr),
|
|
parent_phy->phy_id,
|
|
|
|
ex_type[child->dev_type],
|
|
SAS_ADDR(child->sas_addr),
|
|
child_phy->phy_id,
|
|
|
|
sas_route_char(parent, parent_phy),
|
|
sas_route_char(child, child_phy));
|
|
}
|
|
|
|
static int sas_check_eeds(struct domain_device *child,
|
|
struct ex_phy *parent_phy,
|
|
struct ex_phy *child_phy)
|
|
{
|
|
int res = 0;
|
|
struct domain_device *parent = child->parent;
|
|
|
|
if (SAS_ADDR(parent->port->disc.fanout_sas_addr) != 0) {
|
|
res = -ENODEV;
|
|
pr_warn("edge ex %016llx phy S:%02d <--> edge ex %016llx phy S:%02d, while there is a fanout ex %016llx\n",
|
|
SAS_ADDR(parent->sas_addr),
|
|
parent_phy->phy_id,
|
|
SAS_ADDR(child->sas_addr),
|
|
child_phy->phy_id,
|
|
SAS_ADDR(parent->port->disc.fanout_sas_addr));
|
|
} else if (SAS_ADDR(parent->port->disc.eeds_a) == 0) {
|
|
memcpy(parent->port->disc.eeds_a, parent->sas_addr,
|
|
SAS_ADDR_SIZE);
|
|
memcpy(parent->port->disc.eeds_b, child->sas_addr,
|
|
SAS_ADDR_SIZE);
|
|
} else if (((SAS_ADDR(parent->port->disc.eeds_a) ==
|
|
SAS_ADDR(parent->sas_addr)) ||
|
|
(SAS_ADDR(parent->port->disc.eeds_a) ==
|
|
SAS_ADDR(child->sas_addr)))
|
|
&&
|
|
((SAS_ADDR(parent->port->disc.eeds_b) ==
|
|
SAS_ADDR(parent->sas_addr)) ||
|
|
(SAS_ADDR(parent->port->disc.eeds_b) ==
|
|
SAS_ADDR(child->sas_addr))))
|
|
;
|
|
else {
|
|
res = -ENODEV;
|
|
pr_warn("edge ex %016llx phy%02d <--> edge ex %016llx phy%02d link forms a third EEDS!\n",
|
|
SAS_ADDR(parent->sas_addr),
|
|
parent_phy->phy_id,
|
|
SAS_ADDR(child->sas_addr),
|
|
child_phy->phy_id);
|
|
}
|
|
|
|
return res;
|
|
}
|
|
|
|
/* Here we spill over 80 columns. It is intentional.
|
|
*/
|
|
static int sas_check_parent_topology(struct domain_device *child)
|
|
{
|
|
struct expander_device *child_ex = &child->ex_dev;
|
|
struct expander_device *parent_ex;
|
|
int i;
|
|
int res = 0;
|
|
|
|
if (!child->parent)
|
|
return 0;
|
|
|
|
if (!dev_is_expander(child->parent->dev_type))
|
|
return 0;
|
|
|
|
parent_ex = &child->parent->ex_dev;
|
|
|
|
for (i = 0; i < parent_ex->num_phys; i++) {
|
|
struct ex_phy *parent_phy = &parent_ex->ex_phy[i];
|
|
struct ex_phy *child_phy;
|
|
|
|
if (parent_phy->phy_state == PHY_VACANT ||
|
|
parent_phy->phy_state == PHY_NOT_PRESENT)
|
|
continue;
|
|
|
|
if (SAS_ADDR(parent_phy->attached_sas_addr) != SAS_ADDR(child->sas_addr))
|
|
continue;
|
|
|
|
child_phy = &child_ex->ex_phy[parent_phy->attached_phy_id];
|
|
|
|
switch (child->parent->dev_type) {
|
|
case SAS_EDGE_EXPANDER_DEVICE:
|
|
if (child->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
|
|
if (parent_phy->routing_attr != SUBTRACTIVE_ROUTING ||
|
|
child_phy->routing_attr != TABLE_ROUTING) {
|
|
sas_print_parent_topology_bug(child, parent_phy, child_phy);
|
|
res = -ENODEV;
|
|
}
|
|
} else if (parent_phy->routing_attr == SUBTRACTIVE_ROUTING) {
|
|
if (child_phy->routing_attr == SUBTRACTIVE_ROUTING) {
|
|
res = sas_check_eeds(child, parent_phy, child_phy);
|
|
} else if (child_phy->routing_attr != TABLE_ROUTING) {
|
|
sas_print_parent_topology_bug(child, parent_phy, child_phy);
|
|
res = -ENODEV;
|
|
}
|
|
} else if (parent_phy->routing_attr == TABLE_ROUTING) {
|
|
if (child_phy->routing_attr == SUBTRACTIVE_ROUTING ||
|
|
(child_phy->routing_attr == TABLE_ROUTING &&
|
|
child_ex->t2t_supp && parent_ex->t2t_supp)) {
|
|
/* All good */;
|
|
} else {
|
|
sas_print_parent_topology_bug(child, parent_phy, child_phy);
|
|
res = -ENODEV;
|
|
}
|
|
}
|
|
break;
|
|
case SAS_FANOUT_EXPANDER_DEVICE:
|
|
if (parent_phy->routing_attr != TABLE_ROUTING ||
|
|
child_phy->routing_attr != SUBTRACTIVE_ROUTING) {
|
|
sas_print_parent_topology_bug(child, parent_phy, child_phy);
|
|
res = -ENODEV;
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
return res;
|
|
}
|
|
|
|
#define RRI_REQ_SIZE 16
|
|
#define RRI_RESP_SIZE 44
|
|
|
|
static int sas_configure_present(struct domain_device *dev, int phy_id,
|
|
u8 *sas_addr, int *index, int *present)
|
|
{
|
|
int i, res = 0;
|
|
struct expander_device *ex = &dev->ex_dev;
|
|
struct ex_phy *phy = &ex->ex_phy[phy_id];
|
|
u8 *rri_req;
|
|
u8 *rri_resp;
|
|
|
|
*present = 0;
|
|
*index = 0;
|
|
|
|
rri_req = alloc_smp_req(RRI_REQ_SIZE);
|
|
if (!rri_req)
|
|
return -ENOMEM;
|
|
|
|
rri_resp = alloc_smp_resp(RRI_RESP_SIZE);
|
|
if (!rri_resp) {
|
|
kfree(rri_req);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
rri_req[1] = SMP_REPORT_ROUTE_INFO;
|
|
rri_req[9] = phy_id;
|
|
|
|
for (i = 0; i < ex->max_route_indexes ; i++) {
|
|
*(__be16 *)(rri_req+6) = cpu_to_be16(i);
|
|
res = smp_execute_task(dev, rri_req, RRI_REQ_SIZE, rri_resp,
|
|
RRI_RESP_SIZE);
|
|
if (res)
|
|
goto out;
|
|
res = rri_resp[2];
|
|
if (res == SMP_RESP_NO_INDEX) {
|
|
pr_warn("overflow of indexes: dev %016llx phy%02d index 0x%x\n",
|
|
SAS_ADDR(dev->sas_addr), phy_id, i);
|
|
goto out;
|
|
} else if (res != SMP_RESP_FUNC_ACC) {
|
|
pr_notice("%s: dev %016llx phy%02d index 0x%x result 0x%x\n",
|
|
__func__, SAS_ADDR(dev->sas_addr), phy_id,
|
|
i, res);
|
|
goto out;
|
|
}
|
|
if (SAS_ADDR(sas_addr) != 0) {
|
|
if (SAS_ADDR(rri_resp+16) == SAS_ADDR(sas_addr)) {
|
|
*index = i;
|
|
if ((rri_resp[12] & 0x80) == 0x80)
|
|
*present = 0;
|
|
else
|
|
*present = 1;
|
|
goto out;
|
|
} else if (SAS_ADDR(rri_resp+16) == 0) {
|
|
*index = i;
|
|
*present = 0;
|
|
goto out;
|
|
}
|
|
} else if (SAS_ADDR(rri_resp+16) == 0 &&
|
|
phy->last_da_index < i) {
|
|
phy->last_da_index = i;
|
|
*index = i;
|
|
*present = 0;
|
|
goto out;
|
|
}
|
|
}
|
|
res = -1;
|
|
out:
|
|
kfree(rri_req);
|
|
kfree(rri_resp);
|
|
return res;
|
|
}
|
|
|
|
#define CRI_REQ_SIZE 44
|
|
#define CRI_RESP_SIZE 8
|
|
|
|
static int sas_configure_set(struct domain_device *dev, int phy_id,
|
|
u8 *sas_addr, int index, int include)
|
|
{
|
|
int res;
|
|
u8 *cri_req;
|
|
u8 *cri_resp;
|
|
|
|
cri_req = alloc_smp_req(CRI_REQ_SIZE);
|
|
if (!cri_req)
|
|
return -ENOMEM;
|
|
|
|
cri_resp = alloc_smp_resp(CRI_RESP_SIZE);
|
|
if (!cri_resp) {
|
|
kfree(cri_req);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
cri_req[1] = SMP_CONF_ROUTE_INFO;
|
|
*(__be16 *)(cri_req+6) = cpu_to_be16(index);
|
|
cri_req[9] = phy_id;
|
|
if (SAS_ADDR(sas_addr) == 0 || !include)
|
|
cri_req[12] |= 0x80;
|
|
memcpy(cri_req+16, sas_addr, SAS_ADDR_SIZE);
|
|
|
|
res = smp_execute_task(dev, cri_req, CRI_REQ_SIZE, cri_resp,
|
|
CRI_RESP_SIZE);
|
|
if (res)
|
|
goto out;
|
|
res = cri_resp[2];
|
|
if (res == SMP_RESP_NO_INDEX) {
|
|
pr_warn("overflow of indexes: dev %016llx phy%02d index 0x%x\n",
|
|
SAS_ADDR(dev->sas_addr), phy_id, index);
|
|
}
|
|
out:
|
|
kfree(cri_req);
|
|
kfree(cri_resp);
|
|
return res;
|
|
}
|
|
|
|
static int sas_configure_phy(struct domain_device *dev, int phy_id,
|
|
u8 *sas_addr, int include)
|
|
{
|
|
int index;
|
|
int present;
|
|
int res;
|
|
|
|
res = sas_configure_present(dev, phy_id, sas_addr, &index, &present);
|
|
if (res)
|
|
return res;
|
|
if (include ^ present)
|
|
return sas_configure_set(dev, phy_id, sas_addr, index,include);
|
|
|
|
return res;
|
|
}
|
|
|
|
/**
|
|
* sas_configure_parent - configure routing table of parent
|
|
* @parent: parent expander
|
|
* @child: child expander
|
|
* @sas_addr: SAS port identifier of device directly attached to child
|
|
* @include: whether or not to include @child in the expander routing table
|
|
*/
|
|
static int sas_configure_parent(struct domain_device *parent,
|
|
struct domain_device *child,
|
|
u8 *sas_addr, int include)
|
|
{
|
|
struct expander_device *ex_parent = &parent->ex_dev;
|
|
int res = 0;
|
|
int i;
|
|
|
|
if (parent->parent) {
|
|
res = sas_configure_parent(parent->parent, parent, sas_addr,
|
|
include);
|
|
if (res)
|
|
return res;
|
|
}
|
|
|
|
if (ex_parent->conf_route_table == 0) {
|
|
pr_debug("ex %016llx has self-configuring routing table\n",
|
|
SAS_ADDR(parent->sas_addr));
|
|
return 0;
|
|
}
|
|
|
|
for (i = 0; i < ex_parent->num_phys; i++) {
|
|
struct ex_phy *phy = &ex_parent->ex_phy[i];
|
|
|
|
if ((phy->routing_attr == TABLE_ROUTING) &&
|
|
(SAS_ADDR(phy->attached_sas_addr) ==
|
|
SAS_ADDR(child->sas_addr))) {
|
|
res = sas_configure_phy(parent, i, sas_addr, include);
|
|
if (res)
|
|
return res;
|
|
}
|
|
}
|
|
|
|
return res;
|
|
}
|
|
|
|
/**
|
|
* sas_configure_routing - configure routing
|
|
* @dev: expander device
|
|
* @sas_addr: port identifier of device directly attached to the expander device
|
|
*/
|
|
static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr)
|
|
{
|
|
if (dev->parent)
|
|
return sas_configure_parent(dev->parent, dev, sas_addr, 1);
|
|
return 0;
|
|
}
|
|
|
|
static int sas_disable_routing(struct domain_device *dev, u8 *sas_addr)
|
|
{
|
|
if (dev->parent)
|
|
return sas_configure_parent(dev->parent, dev, sas_addr, 0);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* sas_discover_expander - expander discovery
|
|
* @dev: pointer to expander domain device
|
|
*
|
|
* See comment in sas_discover_sata().
|
|
*/
|
|
static int sas_discover_expander(struct domain_device *dev)
|
|
{
|
|
int res;
|
|
|
|
res = sas_notify_lldd_dev_found(dev);
|
|
if (res)
|
|
return res;
|
|
|
|
res = sas_ex_general(dev);
|
|
if (res)
|
|
goto out_err;
|
|
res = sas_ex_manuf_info(dev);
|
|
if (res)
|
|
goto out_err;
|
|
|
|
res = sas_expander_discover(dev);
|
|
if (res) {
|
|
pr_warn("expander %016llx discovery failed(0x%x)\n",
|
|
SAS_ADDR(dev->sas_addr), res);
|
|
goto out_err;
|
|
}
|
|
|
|
sas_check_ex_subtractive_boundary(dev);
|
|
res = sas_check_parent_topology(dev);
|
|
if (res)
|
|
goto out_err;
|
|
return 0;
|
|
out_err:
|
|
sas_notify_lldd_dev_gone(dev);
|
|
return res;
|
|
}
|
|
|
|
static int sas_ex_level_discovery(struct asd_sas_port *port, const int level)
|
|
{
|
|
int res = 0;
|
|
struct domain_device *dev;
|
|
|
|
list_for_each_entry(dev, &port->dev_list, dev_list_node) {
|
|
if (dev_is_expander(dev->dev_type)) {
|
|
struct sas_expander_device *ex =
|
|
rphy_to_expander_device(dev->rphy);
|
|
|
|
if (level == ex->level)
|
|
res = sas_ex_discover_devices(dev, -1);
|
|
else if (level > 0)
|
|
res = sas_ex_discover_devices(port->port_dev, -1);
|
|
|
|
}
|
|
}
|
|
|
|
return res;
|
|
}
|
|
|
|
static int sas_ex_bfs_disc(struct asd_sas_port *port)
|
|
{
|
|
int res;
|
|
int level;
|
|
|
|
do {
|
|
level = port->disc.max_level;
|
|
res = sas_ex_level_discovery(port, level);
|
|
mb();
|
|
} while (level < port->disc.max_level);
|
|
|
|
return res;
|
|
}
|
|
|
|
int sas_discover_root_expander(struct domain_device *dev)
|
|
{
|
|
int res;
|
|
struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
|
|
|
|
res = sas_rphy_add(dev->rphy);
|
|
if (res)
|
|
goto out_err;
|
|
|
|
ex->level = dev->port->disc.max_level; /* 0 */
|
|
res = sas_discover_expander(dev);
|
|
if (res)
|
|
goto out_err2;
|
|
|
|
sas_ex_bfs_disc(dev->port);
|
|
|
|
return res;
|
|
|
|
out_err2:
|
|
sas_rphy_remove(dev->rphy);
|
|
out_err:
|
|
return res;
|
|
}
|
|
|
|
/* ---------- Domain revalidation ---------- */
|
|
|
|
static int sas_get_phy_discover(struct domain_device *dev,
|
|
int phy_id, struct smp_resp *disc_resp)
|
|
{
|
|
int res;
|
|
u8 *disc_req;
|
|
|
|
disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
|
|
if (!disc_req)
|
|
return -ENOMEM;
|
|
|
|
disc_req[1] = SMP_DISCOVER;
|
|
disc_req[9] = phy_id;
|
|
|
|
res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
|
|
disc_resp, DISCOVER_RESP_SIZE);
|
|
if (res)
|
|
goto out;
|
|
else if (disc_resp->result != SMP_RESP_FUNC_ACC) {
|
|
res = disc_resp->result;
|
|
goto out;
|
|
}
|
|
out:
|
|
kfree(disc_req);
|
|
return res;
|
|
}
|
|
|
|
static int sas_get_phy_change_count(struct domain_device *dev,
|
|
int phy_id, int *pcc)
|
|
{
|
|
int res;
|
|
struct smp_resp *disc_resp;
|
|
|
|
disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
|
|
if (!disc_resp)
|
|
return -ENOMEM;
|
|
|
|
res = sas_get_phy_discover(dev, phy_id, disc_resp);
|
|
if (!res)
|
|
*pcc = disc_resp->disc.change_count;
|
|
|
|
kfree(disc_resp);
|
|
return res;
|
|
}
|
|
|
|
static int sas_get_phy_attached_dev(struct domain_device *dev, int phy_id,
|
|
u8 *sas_addr, enum sas_device_type *type)
|
|
{
|
|
int res;
|
|
struct smp_resp *disc_resp;
|
|
struct discover_resp *dr;
|
|
|
|
disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
|
|
if (!disc_resp)
|
|
return -ENOMEM;
|
|
dr = &disc_resp->disc;
|
|
|
|
res = sas_get_phy_discover(dev, phy_id, disc_resp);
|
|
if (res == 0) {
|
|
memcpy(sas_addr, disc_resp->disc.attached_sas_addr,
|
|
SAS_ADDR_SIZE);
|
|
*type = to_dev_type(dr);
|
|
if (*type == 0)
|
|
memset(sas_addr, 0, SAS_ADDR_SIZE);
|
|
}
|
|
kfree(disc_resp);
|
|
return res;
|
|
}
|
|
|
|
static int sas_find_bcast_phy(struct domain_device *dev, int *phy_id,
|
|
int from_phy, bool update)
|
|
{
|
|
struct expander_device *ex = &dev->ex_dev;
|
|
int res = 0;
|
|
int i;
|
|
|
|
for (i = from_phy; i < ex->num_phys; i++) {
|
|
int phy_change_count = 0;
|
|
|
|
res = sas_get_phy_change_count(dev, i, &phy_change_count);
|
|
switch (res) {
|
|
case SMP_RESP_PHY_VACANT:
|
|
case SMP_RESP_NO_PHY:
|
|
continue;
|
|
case SMP_RESP_FUNC_ACC:
|
|
break;
|
|
default:
|
|
return res;
|
|
}
|
|
|
|
if (phy_change_count != ex->ex_phy[i].phy_change_count) {
|
|
if (update)
|
|
ex->ex_phy[i].phy_change_count =
|
|
phy_change_count;
|
|
*phy_id = i;
|
|
return 0;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int sas_get_ex_change_count(struct domain_device *dev, int *ecc)
|
|
{
|
|
int res;
|
|
u8 *rg_req;
|
|
struct smp_resp *rg_resp;
|
|
|
|
rg_req = alloc_smp_req(RG_REQ_SIZE);
|
|
if (!rg_req)
|
|
return -ENOMEM;
|
|
|
|
rg_resp = alloc_smp_resp(RG_RESP_SIZE);
|
|
if (!rg_resp) {
|
|
kfree(rg_req);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
rg_req[1] = SMP_REPORT_GENERAL;
|
|
|
|
res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
|
|
RG_RESP_SIZE);
|
|
if (res)
|
|
goto out;
|
|
if (rg_resp->result != SMP_RESP_FUNC_ACC) {
|
|
res = rg_resp->result;
|
|
goto out;
|
|
}
|
|
|
|
*ecc = be16_to_cpu(rg_resp->rg.change_count);
|
|
out:
|
|
kfree(rg_resp);
|
|
kfree(rg_req);
|
|
return res;
|
|
}
|
|
/**
|
|
* sas_find_bcast_dev - find the device issue BROADCAST(CHANGE).
|
|
* @dev:domain device to be detect.
|
|
* @src_dev: the device which originated BROADCAST(CHANGE).
|
|
*
|
|
* Add self-configuration expander support. Suppose two expander cascading,
|
|
* when the first level expander is self-configuring, hotplug the disks in
|
|
* second level expander, BROADCAST(CHANGE) will not only be originated
|
|
* in the second level expander, but also be originated in the first level
|
|
* expander (see SAS protocol SAS 2r-14, 7.11 for detail), it is to say,
|
|
* expander changed count in two level expanders will all increment at least
|
|
* once, but the phy which chang count has changed is the source device which
|
|
* we concerned.
|
|
*/
|
|
|
|
static int sas_find_bcast_dev(struct domain_device *dev,
|
|
struct domain_device **src_dev)
|
|
{
|
|
struct expander_device *ex = &dev->ex_dev;
|
|
int ex_change_count = -1;
|
|
int phy_id = -1;
|
|
int res;
|
|
struct domain_device *ch;
|
|
|
|
res = sas_get_ex_change_count(dev, &ex_change_count);
|
|
if (res)
|
|
goto out;
|
|
if (ex_change_count != -1 && ex_change_count != ex->ex_change_count) {
|
|
/* Just detect if this expander phys phy change count changed,
|
|
* in order to determine if this expander originate BROADCAST,
|
|
* and do not update phy change count field in our structure.
|
|
*/
|
|
res = sas_find_bcast_phy(dev, &phy_id, 0, false);
|
|
if (phy_id != -1) {
|
|
*src_dev = dev;
|
|
ex->ex_change_count = ex_change_count;
|
|
pr_info("ex %016llx phy%02d change count has changed\n",
|
|
SAS_ADDR(dev->sas_addr), phy_id);
|
|
return res;
|
|
} else
|
|
pr_info("ex %016llx phys DID NOT change\n",
|
|
SAS_ADDR(dev->sas_addr));
|
|
}
|
|
list_for_each_entry(ch, &ex->children, siblings) {
|
|
if (dev_is_expander(ch->dev_type)) {
|
|
res = sas_find_bcast_dev(ch, src_dev);
|
|
if (*src_dev)
|
|
return res;
|
|
}
|
|
}
|
|
out:
|
|
return res;
|
|
}
|
|
|
|
static void sas_unregister_ex_tree(struct asd_sas_port *port, struct domain_device *dev)
|
|
{
|
|
struct expander_device *ex = &dev->ex_dev;
|
|
struct domain_device *child, *n;
|
|
|
|
list_for_each_entry_safe(child, n, &ex->children, siblings) {
|
|
set_bit(SAS_DEV_GONE, &child->state);
|
|
if (dev_is_expander(child->dev_type))
|
|
sas_unregister_ex_tree(port, child);
|
|
else
|
|
sas_unregister_dev(port, child);
|
|
}
|
|
sas_unregister_dev(port, dev);
|
|
}
|
|
|
|
static void sas_unregister_devs_sas_addr(struct domain_device *parent,
|
|
int phy_id, bool last)
|
|
{
|
|
struct expander_device *ex_dev = &parent->ex_dev;
|
|
struct ex_phy *phy = &ex_dev->ex_phy[phy_id];
|
|
struct domain_device *child, *n, *found = NULL;
|
|
if (last) {
|
|
list_for_each_entry_safe(child, n,
|
|
&ex_dev->children, siblings) {
|
|
if (SAS_ADDR(child->sas_addr) ==
|
|
SAS_ADDR(phy->attached_sas_addr)) {
|
|
set_bit(SAS_DEV_GONE, &child->state);
|
|
if (dev_is_expander(child->dev_type))
|
|
sas_unregister_ex_tree(parent->port, child);
|
|
else
|
|
sas_unregister_dev(parent->port, child);
|
|
found = child;
|
|
break;
|
|
}
|
|
}
|
|
sas_disable_routing(parent, phy->attached_sas_addr);
|
|
}
|
|
memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
|
|
if (phy->port) {
|
|
sas_port_delete_phy(phy->port, phy->phy);
|
|
sas_device_set_phy(found, phy->port);
|
|
if (phy->port->num_phys == 0)
|
|
list_add_tail(&phy->port->del_list,
|
|
&parent->port->sas_port_del_list);
|
|
phy->port = NULL;
|
|
}
|
|
}
|
|
|
|
static int sas_discover_bfs_by_root_level(struct domain_device *root,
|
|
const int level)
|
|
{
|
|
struct expander_device *ex_root = &root->ex_dev;
|
|
struct domain_device *child;
|
|
int res = 0;
|
|
|
|
list_for_each_entry(child, &ex_root->children, siblings) {
|
|
if (dev_is_expander(child->dev_type)) {
|
|
struct sas_expander_device *ex =
|
|
rphy_to_expander_device(child->rphy);
|
|
|
|
if (level > ex->level)
|
|
res = sas_discover_bfs_by_root_level(child,
|
|
level);
|
|
else if (level == ex->level)
|
|
res = sas_ex_discover_devices(child, -1);
|
|
}
|
|
}
|
|
return res;
|
|
}
|
|
|
|
static int sas_discover_bfs_by_root(struct domain_device *dev)
|
|
{
|
|
int res;
|
|
struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
|
|
int level = ex->level+1;
|
|
|
|
res = sas_ex_discover_devices(dev, -1);
|
|
if (res)
|
|
goto out;
|
|
do {
|
|
res = sas_discover_bfs_by_root_level(dev, level);
|
|
mb();
|
|
level += 1;
|
|
} while (level <= dev->port->disc.max_level);
|
|
out:
|
|
return res;
|
|
}
|
|
|
|
static int sas_discover_new(struct domain_device *dev, int phy_id)
|
|
{
|
|
struct ex_phy *ex_phy = &dev->ex_dev.ex_phy[phy_id];
|
|
struct domain_device *child;
|
|
int res;
|
|
|
|
pr_debug("ex %016llx phy%02d new device attached\n",
|
|
SAS_ADDR(dev->sas_addr), phy_id);
|
|
res = sas_ex_phy_discover(dev, phy_id);
|
|
if (res)
|
|
return res;
|
|
|
|
if (sas_ex_join_wide_port(dev, phy_id))
|
|
return 0;
|
|
|
|
res = sas_ex_discover_devices(dev, phy_id);
|
|
if (res)
|
|
return res;
|
|
list_for_each_entry(child, &dev->ex_dev.children, siblings) {
|
|
if (SAS_ADDR(child->sas_addr) ==
|
|
SAS_ADDR(ex_phy->attached_sas_addr)) {
|
|
if (dev_is_expander(child->dev_type))
|
|
res = sas_discover_bfs_by_root(child);
|
|
break;
|
|
}
|
|
}
|
|
return res;
|
|
}
|
|
|
|
static bool dev_type_flutter(enum sas_device_type new, enum sas_device_type old)
|
|
{
|
|
if (old == new)
|
|
return true;
|
|
|
|
/* treat device directed resets as flutter, if we went
|
|
* SAS_END_DEVICE to SAS_SATA_PENDING the link needs recovery
|
|
*/
|
|
if ((old == SAS_SATA_PENDING && new == SAS_END_DEVICE) ||
|
|
(old == SAS_END_DEVICE && new == SAS_SATA_PENDING))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
static int sas_rediscover_dev(struct domain_device *dev, int phy_id,
|
|
bool last, int sibling)
|
|
{
|
|
struct expander_device *ex = &dev->ex_dev;
|
|
struct ex_phy *phy = &ex->ex_phy[phy_id];
|
|
enum sas_device_type type = SAS_PHY_UNUSED;
|
|
u8 sas_addr[SAS_ADDR_SIZE];
|
|
char msg[80] = "";
|
|
int res;
|
|
|
|
if (!last)
|
|
sprintf(msg, ", part of a wide port with phy%02d", sibling);
|
|
|
|
pr_debug("ex %016llx rediscovering phy%02d%s\n",
|
|
SAS_ADDR(dev->sas_addr), phy_id, msg);
|
|
|
|
memset(sas_addr, 0, SAS_ADDR_SIZE);
|
|
res = sas_get_phy_attached_dev(dev, phy_id, sas_addr, &type);
|
|
switch (res) {
|
|
case SMP_RESP_NO_PHY:
|
|
phy->phy_state = PHY_NOT_PRESENT;
|
|
sas_unregister_devs_sas_addr(dev, phy_id, last);
|
|
return res;
|
|
case SMP_RESP_PHY_VACANT:
|
|
phy->phy_state = PHY_VACANT;
|
|
sas_unregister_devs_sas_addr(dev, phy_id, last);
|
|
return res;
|
|
case SMP_RESP_FUNC_ACC:
|
|
break;
|
|
case -ECOMM:
|
|
break;
|
|
default:
|
|
return res;
|
|
}
|
|
|
|
if ((SAS_ADDR(sas_addr) == 0) || (res == -ECOMM)) {
|
|
phy->phy_state = PHY_EMPTY;
|
|
sas_unregister_devs_sas_addr(dev, phy_id, last);
|
|
/*
|
|
* Even though the PHY is empty, for convenience we discover
|
|
* the PHY to update the PHY info, like negotiated linkrate.
|
|
*/
|
|
sas_ex_phy_discover(dev, phy_id);
|
|
return res;
|
|
} else if (SAS_ADDR(sas_addr) == SAS_ADDR(phy->attached_sas_addr) &&
|
|
dev_type_flutter(type, phy->attached_dev_type)) {
|
|
struct domain_device *ata_dev = sas_ex_to_ata(dev, phy_id);
|
|
char *action = "";
|
|
|
|
sas_ex_phy_discover(dev, phy_id);
|
|
|
|
if (ata_dev && phy->attached_dev_type == SAS_SATA_PENDING)
|
|
action = ", needs recovery";
|
|
pr_debug("ex %016llx phy%02d broadcast flutter%s\n",
|
|
SAS_ADDR(dev->sas_addr), phy_id, action);
|
|
return res;
|
|
}
|
|
|
|
/* we always have to delete the old device when we went here */
|
|
pr_info("ex %016llx phy%02d replace %016llx\n",
|
|
SAS_ADDR(dev->sas_addr), phy_id,
|
|
SAS_ADDR(phy->attached_sas_addr));
|
|
sas_unregister_devs_sas_addr(dev, phy_id, last);
|
|
|
|
return sas_discover_new(dev, phy_id);
|
|
}
|
|
|
|
/**
|
|
* sas_rediscover - revalidate the domain.
|
|
* @dev:domain device to be detect.
|
|
* @phy_id: the phy id will be detected.
|
|
*
|
|
* NOTE: this process _must_ quit (return) as soon as any connection
|
|
* errors are encountered. Connection recovery is done elsewhere.
|
|
* Discover process only interrogates devices in order to discover the
|
|
* domain.For plugging out, we un-register the device only when it is
|
|
* the last phy in the port, for other phys in this port, we just delete it
|
|
* from the port.For inserting, we do discovery when it is the
|
|
* first phy,for other phys in this port, we add it to the port to
|
|
* forming the wide-port.
|
|
*/
|
|
static int sas_rediscover(struct domain_device *dev, const int phy_id)
|
|
{
|
|
struct expander_device *ex = &dev->ex_dev;
|
|
struct ex_phy *changed_phy = &ex->ex_phy[phy_id];
|
|
int res = 0;
|
|
int i;
|
|
bool last = true; /* is this the last phy of the port */
|
|
|
|
pr_debug("ex %016llx phy%02d originated BROADCAST(CHANGE)\n",
|
|
SAS_ADDR(dev->sas_addr), phy_id);
|
|
|
|
if (SAS_ADDR(changed_phy->attached_sas_addr) != 0) {
|
|
for (i = 0; i < ex->num_phys; i++) {
|
|
struct ex_phy *phy = &ex->ex_phy[i];
|
|
|
|
if (i == phy_id)
|
|
continue;
|
|
if (SAS_ADDR(phy->attached_sas_addr) ==
|
|
SAS_ADDR(changed_phy->attached_sas_addr)) {
|
|
last = false;
|
|
break;
|
|
}
|
|
}
|
|
res = sas_rediscover_dev(dev, phy_id, last, i);
|
|
} else
|
|
res = sas_discover_new(dev, phy_id);
|
|
return res;
|
|
}
|
|
|
|
/**
|
|
* sas_ex_revalidate_domain - revalidate the domain
|
|
* @port_dev: port domain device.
|
|
*
|
|
* NOTE: this process _must_ quit (return) as soon as any connection
|
|
* errors are encountered. Connection recovery is done elsewhere.
|
|
* Discover process only interrogates devices in order to discover the
|
|
* domain.
|
|
*/
|
|
int sas_ex_revalidate_domain(struct domain_device *port_dev)
|
|
{
|
|
int res;
|
|
struct domain_device *dev = NULL;
|
|
|
|
res = sas_find_bcast_dev(port_dev, &dev);
|
|
if (res == 0 && dev) {
|
|
struct expander_device *ex = &dev->ex_dev;
|
|
int i = 0, phy_id;
|
|
|
|
do {
|
|
phy_id = -1;
|
|
res = sas_find_bcast_phy(dev, &phy_id, i, true);
|
|
if (phy_id == -1)
|
|
break;
|
|
res = sas_rediscover(dev, phy_id);
|
|
i = phy_id + 1;
|
|
} while (i < ex->num_phys);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
void sas_smp_handler(struct bsg_job *job, struct Scsi_Host *shost,
|
|
struct sas_rphy *rphy)
|
|
{
|
|
struct domain_device *dev;
|
|
unsigned int rcvlen = 0;
|
|
int ret = -EINVAL;
|
|
|
|
/* no rphy means no smp target support (ie aic94xx host) */
|
|
if (!rphy)
|
|
return sas_smp_host_handler(job, shost);
|
|
|
|
switch (rphy->identify.device_type) {
|
|
case SAS_EDGE_EXPANDER_DEVICE:
|
|
case SAS_FANOUT_EXPANDER_DEVICE:
|
|
break;
|
|
default:
|
|
pr_err("%s: can we send a smp request to a device?\n",
|
|
__func__);
|
|
goto out;
|
|
}
|
|
|
|
dev = sas_find_dev_by_rphy(rphy);
|
|
if (!dev) {
|
|
pr_err("%s: fail to find a domain_device?\n", __func__);
|
|
goto out;
|
|
}
|
|
|
|
/* do we need to support multiple segments? */
|
|
if (job->request_payload.sg_cnt > 1 ||
|
|
job->reply_payload.sg_cnt > 1) {
|
|
pr_info("%s: multiple segments req %u, rsp %u\n",
|
|
__func__, job->request_payload.payload_len,
|
|
job->reply_payload.payload_len);
|
|
goto out;
|
|
}
|
|
|
|
ret = smp_execute_task_sg(dev, job->request_payload.sg_list,
|
|
job->reply_payload.sg_list);
|
|
if (ret >= 0) {
|
|
/* bsg_job_done() requires the length received */
|
|
rcvlen = job->reply_payload.payload_len - ret;
|
|
ret = 0;
|
|
}
|
|
|
|
out:
|
|
bsg_job_done(job, ret, rcvlen);
|
|
}
|