linux/drivers/clk/samsung/clk-cpu.c
Sam Protsenko 61f4399c74 clk: samsung: Add CPU clock support for Exynos850
Implement CPU clock control for Exynos850 SoC. It follows the same
procedure which is already implemented for other SoCs in clk-cpu.c:

1. Set the correct rate for the alternate parent (if needed) before
   switching to use it as the CPU clock
2. Switch to the alternate parent, so the CPU continues to get clocked
   while the PLL is being re-configured
3. Adjust the dividers for the CPU related buses (ACLK, ATCLK, etc)
4. Re-configure the PLL for the new CPU clock rate. It's done
   automatically, as the CPU clock rate change propagates to the PLL
   clock, because the CPU clock has CLK_SET_RATE_PARENT flag set in
   exynos_register_cpu_clock()
5. Once the PLL is locked, set it back as the CPU clock source
6. Set alternate parent clock rate back to max speed

As in already existing clk-cpu.c code, the divider and mux clocks are
configured in a low-level fashion (using direct register access instead
of CCF API), to avoid affecting how DIV and MUX clock flags are declared
in the actual clock driver (clk-exynos850.c).

No functional change. This patch adds support for Exynos850 CPU clock,
but doesn't enable it per se.

Signed-off-by: Sam Protsenko <semen.protsenko@linaro.org>
Link: https://lore.kernel.org/r/20240224202053.25313-13-semen.protsenko@linaro.org
Signed-off-by: Krzysztof Kozlowski <krzysztof.kozlowski@linaro.org>
2024-02-25 17:07:34 +01:00

726 lines
23 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2014 Samsung Electronics Co., Ltd.
* Author: Thomas Abraham <thomas.ab@samsung.com>
*
* Copyright (c) 2015 Samsung Electronics Co., Ltd.
* Bartlomiej Zolnierkiewicz <b.zolnierkie@samsung.com>
*
* This file contains the utility function to register CPU clock for Samsung
* Exynos platforms. A CPU clock is defined as a clock supplied to a CPU or a
* group of CPUs. The CPU clock is typically derived from a hierarchy of clock
* blocks which includes mux and divider blocks. There are a number of other
* auxiliary clocks supplied to the CPU domain such as the debug blocks and AXI
* clock for CPU domain. The rates of these auxiliary clocks are related to the
* CPU clock rate and this relation is usually specified in the hardware manual
* of the SoC or supplied after the SoC characterization.
*
* The below implementation of the CPU clock allows the rate changes of the CPU
* clock and the corresponding rate changes of the auxiliary clocks of the CPU
* domain. The platform clock driver provides a clock register configuration
* for each configurable rate which is then used to program the clock hardware
* registers to achieve a fast coordinated rate change for all the CPU domain
* clocks.
*
* On a rate change request for the CPU clock, the rate change is propagated
* up to the PLL supplying the clock to the CPU domain clock blocks. While the
* CPU domain PLL is reconfigured, the CPU domain clocks are driven using an
* alternate clock source. If required, the alternate clock source is divided
* down in order to keep the output clock rate within the previous OPP limits.
*/
#include <linux/delay.h>
#include <linux/errno.h>
#include <linux/io.h>
#include <linux/slab.h>
#include <linux/clk.h>
#include <linux/clk-provider.h>
#include "clk.h"
#include "clk-cpu.h"
struct exynos_cpuclk;
typedef int (*exynos_rate_change_fn_t)(struct clk_notifier_data *ndata,
struct exynos_cpuclk *cpuclk);
/**
* struct exynos_cpuclk_regs - Register offsets for CPU related clocks
* @mux_sel: offset of CPU MUX_SEL register (for selecting MUX clock parent)
* @mux_stat: offset of CPU MUX_STAT register (for checking MUX clock status)
* @div_cpu0: offset of CPU DIV0 register (for modifying divider values)
* @div_cpu1: offset of CPU DIV1 register (for modifying divider values)
* @div_stat_cpu0: offset of CPU DIV0_STAT register (for checking DIV status)
* @div_stat_cpu1: offset of CPU DIV1_STAT register (for checking DIV status)
* @mux: offset of MUX register for choosing CPU clock source
* @divs: offsets of DIV registers (ACLK, ATCLK, PCLKDBG and PERIPHCLK)
*/
struct exynos_cpuclk_regs {
u32 mux_sel;
u32 mux_stat;
u32 div_cpu0;
u32 div_cpu1;
u32 div_stat_cpu0;
u32 div_stat_cpu1;
u32 mux;
u32 divs[4];
};
/**
* struct exynos_cpuclk_chip - Chip specific data for CPU clock
* @regs: register offsets for CPU related clocks
* @pre_rate_cb: callback to run before CPU clock rate change
* @post_rate_cb: callback to run after CPU clock rate change
*/
struct exynos_cpuclk_chip {
const struct exynos_cpuclk_regs *regs;
exynos_rate_change_fn_t pre_rate_cb;
exynos_rate_change_fn_t post_rate_cb;
};
/**
* struct exynos_cpuclk - information about clock supplied to a CPU core
* @hw: handle between CCF and CPU clock
* @alt_parent: alternate parent clock to use when switching the speed
* of the primary parent clock
* @base: start address of the CPU clock registers block
* @lock: cpu clock domain register access lock
* @cfg: cpu clock rate configuration data
* @num_cfgs: number of array elements in @cfg array
* @clk_nb: clock notifier registered for changes in clock speed of the
* primary parent clock
* @flags: configuration flags for the CPU clock
* @chip: chip-specific data for the CPU clock
*
* This structure holds information required for programming the CPU clock for
* various clock speeds.
*/
struct exynos_cpuclk {
struct clk_hw hw;
const struct clk_hw *alt_parent;
void __iomem *base;
spinlock_t *lock;
const struct exynos_cpuclk_cfg_data *cfg;
const unsigned long num_cfgs;
struct notifier_block clk_nb;
unsigned long flags;
const struct exynos_cpuclk_chip *chip;
};
/* ---- Common code --------------------------------------------------------- */
/* Divider stabilization time, msec */
#define MAX_STAB_TIME 10
#define MAX_DIV 8
#define DIV_MASK GENMASK(2, 0)
#define DIV_MASK_ALL GENMASK(31, 0)
#define MUX_MASK GENMASK(2, 0)
/*
* Helper function to wait until divider(s) have stabilized after the divider
* value has changed.
*/
static void wait_until_divider_stable(void __iomem *div_reg, unsigned long mask)
{
unsigned long timeout = jiffies + msecs_to_jiffies(MAX_STAB_TIME);
do {
if (!(readl(div_reg) & mask))
return;
} while (time_before(jiffies, timeout));
if (!(readl(div_reg) & mask))
return;
pr_err("%s: timeout in divider stablization\n", __func__);
}
/*
* Helper function to wait until mux has stabilized after the mux selection
* value was changed.
*/
static void wait_until_mux_stable(void __iomem *mux_reg, u32 mux_pos,
unsigned long mask, unsigned long mux_value)
{
unsigned long timeout = jiffies + msecs_to_jiffies(MAX_STAB_TIME);
do {
if (((readl(mux_reg) >> mux_pos) & mask) == mux_value)
return;
} while (time_before(jiffies, timeout));
if (((readl(mux_reg) >> mux_pos) & mask) == mux_value)
return;
pr_err("%s: re-parenting mux timed-out\n", __func__);
}
/*
* Helper function to set the 'safe' dividers for the CPU clock. The parameters
* div and mask contain the divider value and the register bit mask of the
* dividers to be programmed.
*/
static void exynos_set_safe_div(struct exynos_cpuclk *cpuclk, unsigned long div,
unsigned long mask)
{
const struct exynos_cpuclk_regs * const regs = cpuclk->chip->regs;
void __iomem *base = cpuclk->base;
unsigned long div0;
div0 = readl(base + regs->div_cpu0);
div0 = (div0 & ~mask) | (div & mask);
writel(div0, base + regs->div_cpu0);
wait_until_divider_stable(base + regs->div_stat_cpu0, mask);
}
/* ---- Exynos 3/4/5 -------------------------------------------------------- */
#define E4210_DIV0_RATIO0_MASK GENMASK(2, 0)
#define E4210_DIV1_HPM_MASK GENMASK(6, 4)
#define E4210_DIV1_COPY_MASK GENMASK(2, 0)
#define E4210_MUX_HPM_MASK BIT(20)
#define E4210_DIV0_ATB_SHIFT 16
#define E4210_DIV0_ATB_MASK (DIV_MASK << E4210_DIV0_ATB_SHIFT)
static const struct exynos_cpuclk_regs e4210_cpuclk_regs = {
.mux_sel = 0x200,
.mux_stat = 0x400,
.div_cpu0 = 0x500,
.div_cpu1 = 0x504,
.div_stat_cpu0 = 0x600,
.div_stat_cpu1 = 0x604,
};
/* handler for pre-rate change notification from parent clock */
static int exynos_cpuclk_pre_rate_change(struct clk_notifier_data *ndata,
struct exynos_cpuclk *cpuclk)
{
const struct exynos_cpuclk_cfg_data *cfg_data = cpuclk->cfg;
const struct exynos_cpuclk_regs * const regs = cpuclk->chip->regs;
void __iomem *base = cpuclk->base;
unsigned long alt_prate = clk_hw_get_rate(cpuclk->alt_parent);
unsigned long div0, div1 = 0, mux_reg;
unsigned long flags;
/* find out the divider values to use for clock data */
while ((cfg_data->prate * 1000) != ndata->new_rate) {
if (cfg_data->prate == 0)
return -EINVAL;
cfg_data++;
}
spin_lock_irqsave(cpuclk->lock, flags);
/*
* For the selected PLL clock frequency, get the pre-defined divider
* values. If the clock for sclk_hpm is not sourced from apll, then
* the values for DIV_COPY and DIV_HPM dividers need not be set.
*/
div0 = cfg_data->div0;
if (cpuclk->flags & CLK_CPU_HAS_DIV1) {
div1 = cfg_data->div1;
if (readl(base + regs->mux_sel) & E4210_MUX_HPM_MASK)
div1 = readl(base + regs->div_cpu1) &
(E4210_DIV1_HPM_MASK | E4210_DIV1_COPY_MASK);
}
/*
* If the old parent clock speed is less than the clock speed of
* the alternate parent, then it should be ensured that at no point
* the armclk speed is more than the old_prate until the dividers are
* set. Also workaround the issue of the dividers being set to lower
* values before the parent clock speed is set to new lower speed
* (this can result in too high speed of armclk output clocks).
*/
if (alt_prate > ndata->old_rate || ndata->old_rate > ndata->new_rate) {
unsigned long tmp_rate = min(ndata->old_rate, ndata->new_rate);
unsigned long alt_div, alt_div_mask = DIV_MASK;
alt_div = DIV_ROUND_UP(alt_prate, tmp_rate) - 1;
WARN_ON(alt_div >= MAX_DIV);
if (cpuclk->flags & CLK_CPU_NEEDS_DEBUG_ALT_DIV) {
/*
* In Exynos4210, ATB clock parent is also mout_core. So
* ATB clock also needs to be mantained at safe speed.
*/
alt_div |= E4210_DIV0_ATB_MASK;
alt_div_mask |= E4210_DIV0_ATB_MASK;
}
exynos_set_safe_div(cpuclk, alt_div, alt_div_mask);
div0 |= alt_div;
}
/* select sclk_mpll as the alternate parent */
mux_reg = readl(base + regs->mux_sel);
writel(mux_reg | (1 << 16), base + regs->mux_sel);
wait_until_mux_stable(base + regs->mux_stat, 16, MUX_MASK, 2);
/* alternate parent is active now. set the dividers */
writel(div0, base + regs->div_cpu0);
wait_until_divider_stable(base + regs->div_stat_cpu0, DIV_MASK_ALL);
if (cpuclk->flags & CLK_CPU_HAS_DIV1) {
writel(div1, base + regs->div_cpu1);
wait_until_divider_stable(base + regs->div_stat_cpu1,
DIV_MASK_ALL);
}
spin_unlock_irqrestore(cpuclk->lock, flags);
return 0;
}
/* handler for post-rate change notification from parent clock */
static int exynos_cpuclk_post_rate_change(struct clk_notifier_data *ndata,
struct exynos_cpuclk *cpuclk)
{
const struct exynos_cpuclk_cfg_data *cfg_data = cpuclk->cfg;
const struct exynos_cpuclk_regs * const regs = cpuclk->chip->regs;
void __iomem *base = cpuclk->base;
unsigned long div = 0, div_mask = DIV_MASK;
unsigned long mux_reg;
unsigned long flags;
/* find out the divider values to use for clock data */
if (cpuclk->flags & CLK_CPU_NEEDS_DEBUG_ALT_DIV) {
while ((cfg_data->prate * 1000) != ndata->new_rate) {
if (cfg_data->prate == 0)
return -EINVAL;
cfg_data++;
}
}
spin_lock_irqsave(cpuclk->lock, flags);
/* select mout_apll as the alternate parent */
mux_reg = readl(base + regs->mux_sel);
writel(mux_reg & ~(1 << 16), base + regs->mux_sel);
wait_until_mux_stable(base + regs->mux_stat, 16, MUX_MASK, 1);
if (cpuclk->flags & CLK_CPU_NEEDS_DEBUG_ALT_DIV) {
div |= (cfg_data->div0 & E4210_DIV0_ATB_MASK);
div_mask |= E4210_DIV0_ATB_MASK;
}
exynos_set_safe_div(cpuclk, div, div_mask);
spin_unlock_irqrestore(cpuclk->lock, flags);
return 0;
}
/* ---- Exynos5433 ---------------------------------------------------------- */
static const struct exynos_cpuclk_regs e5433_cpuclk_regs = {
.mux_sel = 0x208,
.mux_stat = 0x408,
.div_cpu0 = 0x600,
.div_cpu1 = 0x604,
.div_stat_cpu0 = 0x700,
.div_stat_cpu1 = 0x704,
};
/* handler for pre-rate change notification from parent clock */
static int exynos5433_cpuclk_pre_rate_change(struct clk_notifier_data *ndata,
struct exynos_cpuclk *cpuclk)
{
const struct exynos_cpuclk_cfg_data *cfg_data = cpuclk->cfg;
const struct exynos_cpuclk_regs * const regs = cpuclk->chip->regs;
void __iomem *base = cpuclk->base;
unsigned long alt_prate = clk_hw_get_rate(cpuclk->alt_parent);
unsigned long div0, div1 = 0, mux_reg;
unsigned long flags;
/* find out the divider values to use for clock data */
while ((cfg_data->prate * 1000) != ndata->new_rate) {
if (cfg_data->prate == 0)
return -EINVAL;
cfg_data++;
}
spin_lock_irqsave(cpuclk->lock, flags);
/*
* For the selected PLL clock frequency, get the pre-defined divider
* values.
*/
div0 = cfg_data->div0;
div1 = cfg_data->div1;
/*
* If the old parent clock speed is less than the clock speed of
* the alternate parent, then it should be ensured that at no point
* the armclk speed is more than the old_prate until the dividers are
* set. Also workaround the issue of the dividers being set to lower
* values before the parent clock speed is set to new lower speed
* (this can result in too high speed of armclk output clocks).
*/
if (alt_prate > ndata->old_rate || ndata->old_rate > ndata->new_rate) {
unsigned long tmp_rate = min(ndata->old_rate, ndata->new_rate);
unsigned long alt_div, alt_div_mask = DIV_MASK;
alt_div = DIV_ROUND_UP(alt_prate, tmp_rate) - 1;
WARN_ON(alt_div >= MAX_DIV);
exynos_set_safe_div(cpuclk, alt_div, alt_div_mask);
div0 |= alt_div;
}
/* select the alternate parent */
mux_reg = readl(base + regs->mux_sel);
writel(mux_reg | 1, base + regs->mux_sel);
wait_until_mux_stable(base + regs->mux_stat, 0, MUX_MASK, 2);
/* alternate parent is active now. set the dividers */
writel(div0, base + regs->div_cpu0);
wait_until_divider_stable(base + regs->div_stat_cpu0, DIV_MASK_ALL);
writel(div1, base + regs->div_cpu1);
wait_until_divider_stable(base + regs->div_stat_cpu1, DIV_MASK_ALL);
spin_unlock_irqrestore(cpuclk->lock, flags);
return 0;
}
/* handler for post-rate change notification from parent clock */
static int exynos5433_cpuclk_post_rate_change(struct clk_notifier_data *ndata,
struct exynos_cpuclk *cpuclk)
{
const struct exynos_cpuclk_regs * const regs = cpuclk->chip->regs;
void __iomem *base = cpuclk->base;
unsigned long div = 0, div_mask = DIV_MASK;
unsigned long mux_reg;
unsigned long flags;
spin_lock_irqsave(cpuclk->lock, flags);
/* select apll as the alternate parent */
mux_reg = readl(base + regs->mux_sel);
writel(mux_reg & ~1, base + regs->mux_sel);
wait_until_mux_stable(base + regs->mux_stat, 0, MUX_MASK, 1);
exynos_set_safe_div(cpuclk, div, div_mask);
spin_unlock_irqrestore(cpuclk->lock, flags);
return 0;
}
/* ---- Exynos850 ----------------------------------------------------------- */
#define E850_DIV_RATIO_MASK GENMASK(3, 0)
#define E850_BUSY_MASK BIT(16)
/* Max time for divider or mux to stabilize, usec */
#define E850_DIV_MUX_STAB_TIME 100
/* OSCCLK clock rate, Hz */
#define E850_OSCCLK (26 * MHZ)
static const struct exynos_cpuclk_regs e850cl0_cpuclk_regs = {
.mux = 0x100c,
.divs = { 0x1800, 0x1808, 0x180c, 0x1810 },
};
static const struct exynos_cpuclk_regs e850cl1_cpuclk_regs = {
.mux = 0x1000,
.divs = { 0x1800, 0x1808, 0x180c, 0x1810 },
};
/*
* Set alternate parent rate to "rate" value or less.
*
* rate: Desired alt_parent rate, or 0 for max alt_parent rate
*
* Exynos850 doesn't have CPU clock divider in CMU_CPUCLx block (CMUREF divider
* doesn't affect CPU speed). So CPUCLx_SWITCH divider from CMU_TOP is used
* instead to adjust alternate parent speed.
*
* It's possible to use clk_set_max_rate() instead of this function, but it
* would set overly pessimistic rate values to alternate parent.
*/
static int exynos850_alt_parent_set_max_rate(const struct clk_hw *alt_parent,
unsigned long rate)
{
struct clk_hw *clk_div, *clk_divp;
unsigned long divp_rate, div_rate, div;
int ret;
/* Divider from CMU_TOP */
clk_div = clk_hw_get_parent(alt_parent);
if (!clk_div)
return -ENOENT;
/* Divider's parent from CMU_TOP */
clk_divp = clk_hw_get_parent(clk_div);
if (!clk_divp)
return -ENOENT;
/* Divider input rate */
divp_rate = clk_hw_get_rate(clk_divp);
if (!divp_rate)
return -EINVAL;
/* Calculate new alt_parent rate for integer divider value */
if (rate == 0)
div = 1;
else
div = DIV_ROUND_UP(divp_rate, rate);
div_rate = DIV_ROUND_UP(divp_rate, div);
WARN_ON(div >= MAX_DIV);
/* alt_parent will propagate this change up to the divider */
ret = clk_set_rate(alt_parent->clk, div_rate);
if (ret)
return ret;
udelay(E850_DIV_MUX_STAB_TIME);
return 0;
}
/* Handler for pre-rate change notification from parent clock */
static int exynos850_cpuclk_pre_rate_change(struct clk_notifier_data *ndata,
struct exynos_cpuclk *cpuclk)
{
const unsigned int shifts[4] = { 16, 12, 8, 4 }; /* E850_CPU_DIV0() */
const struct exynos_cpuclk_regs * const regs = cpuclk->chip->regs;
const struct exynos_cpuclk_cfg_data *cfg_data = cpuclk->cfg;
const struct clk_hw *alt_parent = cpuclk->alt_parent;
void __iomem *base = cpuclk->base;
unsigned long alt_prate = clk_hw_get_rate(alt_parent);
unsigned long flags;
u32 mux_reg;
size_t i;
int ret;
/* No actions are needed when switching to or from OSCCLK parent */
if (ndata->new_rate == E850_OSCCLK || ndata->old_rate == E850_OSCCLK)
return 0;
/* Find out the divider values to use for clock data */
while ((cfg_data->prate * 1000) != ndata->new_rate) {
if (cfg_data->prate == 0)
return -EINVAL;
cfg_data++;
}
/*
* If the old parent clock speed is less than the clock speed of
* the alternate parent, then it should be ensured that at no point
* the armclk speed is more than the old_prate until the dividers are
* set. Also workaround the issue of the dividers being set to lower
* values before the parent clock speed is set to new lower speed
* (this can result in too high speed of armclk output clocks).
*/
if (alt_prate > ndata->old_rate || ndata->old_rate > ndata->new_rate) {
unsigned long tmp_rate = min(ndata->old_rate, ndata->new_rate);
ret = exynos850_alt_parent_set_max_rate(alt_parent, tmp_rate);
if (ret)
return ret;
}
spin_lock_irqsave(cpuclk->lock, flags);
/* Select the alternate parent */
mux_reg = readl(base + regs->mux);
writel(mux_reg | 1, base + regs->mux);
wait_until_mux_stable(base + regs->mux, 16, 1, 0);
/* Alternate parent is active now. Set the dividers */
for (i = 0; i < ARRAY_SIZE(shifts); ++i) {
unsigned long div = (cfg_data->div0 >> shifts[i]) & 0xf;
u32 val;
val = readl(base + regs->divs[i]);
val = (val & ~E850_DIV_RATIO_MASK) | div;
writel(val, base + regs->divs[i]);
wait_until_divider_stable(base + regs->divs[i], E850_BUSY_MASK);
}
spin_unlock_irqrestore(cpuclk->lock, flags);
return 0;
}
/* Handler for post-rate change notification from parent clock */
static int exynos850_cpuclk_post_rate_change(struct clk_notifier_data *ndata,
struct exynos_cpuclk *cpuclk)
{
const struct exynos_cpuclk_regs * const regs = cpuclk->chip->regs;
const struct clk_hw *alt_parent = cpuclk->alt_parent;
void __iomem *base = cpuclk->base;
unsigned long flags;
u32 mux_reg;
/* No actions are needed when switching to or from OSCCLK parent */
if (ndata->new_rate == E850_OSCCLK || ndata->old_rate == E850_OSCCLK)
return 0;
spin_lock_irqsave(cpuclk->lock, flags);
/* Select main parent (PLL) for mux */
mux_reg = readl(base + regs->mux);
writel(mux_reg & ~1, base + regs->mux);
wait_until_mux_stable(base + regs->mux, 16, 1, 0);
spin_unlock_irqrestore(cpuclk->lock, flags);
/* Set alt_parent rate back to max */
return exynos850_alt_parent_set_max_rate(alt_parent, 0);
}
/* -------------------------------------------------------------------------- */
/* Common round rate callback usable for all types of CPU clocks */
static long exynos_cpuclk_round_rate(struct clk_hw *hw, unsigned long drate,
unsigned long *prate)
{
struct clk_hw *parent = clk_hw_get_parent(hw);
*prate = clk_hw_round_rate(parent, drate);
return *prate;
}
/* Common recalc rate callback usable for all types of CPU clocks */
static unsigned long exynos_cpuclk_recalc_rate(struct clk_hw *hw,
unsigned long parent_rate)
{
/*
* The CPU clock output (armclk) rate is the same as its parent
* rate. Although there exist certain dividers inside the CPU
* clock block that could be used to divide the parent clock,
* the driver does not make use of them currently, except during
* frequency transitions.
*/
return parent_rate;
}
static const struct clk_ops exynos_cpuclk_clk_ops = {
.recalc_rate = exynos_cpuclk_recalc_rate,
.round_rate = exynos_cpuclk_round_rate,
};
/*
* This notifier function is called for the pre-rate and post-rate change
* notifications of the parent clock of cpuclk.
*/
static int exynos_cpuclk_notifier_cb(struct notifier_block *nb,
unsigned long event, void *data)
{
struct clk_notifier_data *ndata = data;
struct exynos_cpuclk *cpuclk;
int err = 0;
cpuclk = container_of(nb, struct exynos_cpuclk, clk_nb);
if (event == PRE_RATE_CHANGE)
err = cpuclk->chip->pre_rate_cb(ndata, cpuclk);
else if (event == POST_RATE_CHANGE)
err = cpuclk->chip->post_rate_cb(ndata, cpuclk);
return notifier_from_errno(err);
}
static const struct exynos_cpuclk_chip exynos_clkcpu_chips[] = {
[CPUCLK_LAYOUT_E4210] = {
.regs = &e4210_cpuclk_regs,
.pre_rate_cb = exynos_cpuclk_pre_rate_change,
.post_rate_cb = exynos_cpuclk_post_rate_change,
},
[CPUCLK_LAYOUT_E5433] = {
.regs = &e5433_cpuclk_regs,
.pre_rate_cb = exynos5433_cpuclk_pre_rate_change,
.post_rate_cb = exynos5433_cpuclk_post_rate_change,
},
[CPUCLK_LAYOUT_E850_CL0] = {
.regs = &e850cl0_cpuclk_regs,
.pre_rate_cb = exynos850_cpuclk_pre_rate_change,
.post_rate_cb = exynos850_cpuclk_post_rate_change,
},
[CPUCLK_LAYOUT_E850_CL1] = {
.regs = &e850cl1_cpuclk_regs,
.pre_rate_cb = exynos850_cpuclk_pre_rate_change,
.post_rate_cb = exynos850_cpuclk_post_rate_change,
},
};
/* helper function to register a CPU clock */
static int __init exynos_register_cpu_clock(struct samsung_clk_provider *ctx,
const struct samsung_cpu_clock *clk_data)
{
const struct clk_hw *parent, *alt_parent;
struct clk_hw **hws;
struct exynos_cpuclk *cpuclk;
struct clk_init_data init;
const char *parent_name;
unsigned int num_cfgs;
int ret = 0;
hws = ctx->clk_data.hws;
parent = hws[clk_data->parent_id];
alt_parent = hws[clk_data->alt_parent_id];
if (IS_ERR(parent) || IS_ERR(alt_parent)) {
pr_err("%s: invalid parent clock(s)\n", __func__);
return -EINVAL;
}
cpuclk = kzalloc(sizeof(*cpuclk), GFP_KERNEL);
if (!cpuclk)
return -ENOMEM;
parent_name = clk_hw_get_name(parent);
init.name = clk_data->name;
init.flags = CLK_SET_RATE_PARENT;
init.parent_names = &parent_name;
init.num_parents = 1;
init.ops = &exynos_cpuclk_clk_ops;
cpuclk->alt_parent = alt_parent;
cpuclk->hw.init = &init;
cpuclk->base = ctx->reg_base + clk_data->offset;
cpuclk->lock = &ctx->lock;
cpuclk->flags = clk_data->flags;
cpuclk->clk_nb.notifier_call = exynos_cpuclk_notifier_cb;
cpuclk->chip = &exynos_clkcpu_chips[clk_data->reg_layout];
ret = clk_notifier_register(parent->clk, &cpuclk->clk_nb);
if (ret) {
pr_err("%s: failed to register clock notifier for %s\n",
__func__, clk_data->name);
goto free_cpuclk;
}
/* Find count of configuration rates in cfg */
for (num_cfgs = 0; clk_data->cfg[num_cfgs].prate != 0; )
num_cfgs++;
cpuclk->cfg = kmemdup(clk_data->cfg, sizeof(*clk_data->cfg) * num_cfgs,
GFP_KERNEL);
if (!cpuclk->cfg) {
ret = -ENOMEM;
goto unregister_clk_nb;
}
ret = clk_hw_register(NULL, &cpuclk->hw);
if (ret) {
pr_err("%s: could not register cpuclk %s\n", __func__,
clk_data->name);
goto free_cpuclk_data;
}
samsung_clk_add_lookup(ctx, &cpuclk->hw, clk_data->id);
return 0;
free_cpuclk_data:
kfree(cpuclk->cfg);
unregister_clk_nb:
clk_notifier_unregister(parent->clk, &cpuclk->clk_nb);
free_cpuclk:
kfree(cpuclk);
return ret;
}
void __init samsung_clk_register_cpu(struct samsung_clk_provider *ctx,
const struct samsung_cpu_clock *list, unsigned int nr_clk)
{
unsigned int idx;
for (idx = 0; idx < nr_clk; idx++)
exynos_register_cpu_clock(ctx, &list[idx]);
}