mirror of
https://github.com/torvalds/linux.git
synced 2024-12-28 05:41:55 +00:00
98e61df570
Signed-off-by: Joel Stanley <joel@jms.id.au> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://msgid.link/20230613045202.294451-4-joel@jms.id.au
341 lines
10 KiB
C
341 lines
10 KiB
C
/* SPDX-License-Identifier: GPL-2.0 */
|
|
#ifndef __POWERNV_PCI_H
|
|
#define __POWERNV_PCI_H
|
|
|
|
#include <linux/compiler.h> /* for __printf */
|
|
#include <linux/iommu.h>
|
|
#include <asm/iommu.h>
|
|
#include <asm/msi_bitmap.h>
|
|
|
|
struct pci_dn;
|
|
|
|
enum pnv_phb_type {
|
|
PNV_PHB_IODA2,
|
|
PNV_PHB_NPU_OCAPI,
|
|
};
|
|
|
|
/* Precise PHB model for error management */
|
|
enum pnv_phb_model {
|
|
PNV_PHB_MODEL_UNKNOWN,
|
|
PNV_PHB_MODEL_P7IOC,
|
|
PNV_PHB_MODEL_PHB3,
|
|
};
|
|
|
|
#define PNV_PCI_DIAG_BUF_SIZE 8192
|
|
#define PNV_IODA_PE_DEV (1 << 0) /* PE has single PCI device */
|
|
#define PNV_IODA_PE_BUS (1 << 1) /* PE has primary PCI bus */
|
|
#define PNV_IODA_PE_BUS_ALL (1 << 2) /* PE has subordinate buses */
|
|
#define PNV_IODA_PE_MASTER (1 << 3) /* Master PE in compound case */
|
|
#define PNV_IODA_PE_SLAVE (1 << 4) /* Slave PE in compound case */
|
|
#define PNV_IODA_PE_VF (1 << 5) /* PE for one VF */
|
|
|
|
/*
|
|
* A brief note on PNV_IODA_PE_BUS_ALL
|
|
*
|
|
* This is needed because of the behaviour of PCIe-to-PCI bridges. The PHB uses
|
|
* the Requester ID field of the PCIe request header to determine the device
|
|
* (and PE) that initiated a DMA. In legacy PCI individual memory read/write
|
|
* requests aren't tagged with the RID. To work around this the PCIe-to-PCI
|
|
* bridge will use (secondary_bus_no << 8) | 0x00 as the RID on the PCIe side.
|
|
*
|
|
* PCIe-to-X bridges have a similar issue even though PCI-X requests also have
|
|
* a RID in the transaction header. The PCIe-to-X bridge is permitted to "take
|
|
* ownership" of a transaction by a PCI-X device when forwarding it to the PCIe
|
|
* side of the bridge.
|
|
*
|
|
* To work around these problems we use the BUS_ALL flag since every subordinate
|
|
* bus of the bridge should go into the same PE.
|
|
*/
|
|
|
|
/* Indicates operations are frozen for a PE: MMIO in PESTA & DMA in PESTB. */
|
|
#define PNV_IODA_STOPPED_STATE 0x8000000000000000
|
|
|
|
/* Data associated with a PE, including IOMMU tracking etc.. */
|
|
struct pnv_phb;
|
|
struct pnv_ioda_pe {
|
|
unsigned long flags;
|
|
struct pnv_phb *phb;
|
|
int device_count;
|
|
|
|
/* A PE can be associated with a single device or an
|
|
* entire bus (& children). In the former case, pdev
|
|
* is populated, in the later case, pbus is.
|
|
*/
|
|
#ifdef CONFIG_PCI_IOV
|
|
struct pci_dev *parent_dev;
|
|
#endif
|
|
struct pci_dev *pdev;
|
|
struct pci_bus *pbus;
|
|
|
|
/* Effective RID (device RID for a device PE and base bus
|
|
* RID with devfn 0 for a bus PE)
|
|
*/
|
|
unsigned int rid;
|
|
|
|
/* PE number */
|
|
unsigned int pe_number;
|
|
|
|
/* "Base" iommu table, ie, 4K TCEs, 32-bit DMA */
|
|
struct iommu_table_group table_group;
|
|
|
|
/* 64-bit TCE bypass region */
|
|
bool tce_bypass_enabled;
|
|
uint64_t tce_bypass_base;
|
|
|
|
/*
|
|
* Used to track whether we've done DMA setup for this PE or not. We
|
|
* want to defer allocating TCE tables, etc until we've added a
|
|
* non-bridge device to the PE.
|
|
*/
|
|
bool dma_setup_done;
|
|
|
|
/* MSIs. MVE index is identical for 32 and 64 bit MSI
|
|
* and -1 if not supported. (It's actually identical to the
|
|
* PE number)
|
|
*/
|
|
int mve_number;
|
|
|
|
/* PEs in compound case */
|
|
struct pnv_ioda_pe *master;
|
|
struct list_head slaves;
|
|
|
|
/* Link in list of PE#s */
|
|
struct list_head list;
|
|
};
|
|
|
|
#define PNV_PHB_FLAG_EEH (1 << 0)
|
|
|
|
struct pnv_phb {
|
|
struct pci_controller *hose;
|
|
enum pnv_phb_type type;
|
|
enum pnv_phb_model model;
|
|
u64 hub_id;
|
|
u64 opal_id;
|
|
int flags;
|
|
void __iomem *regs;
|
|
u64 regs_phys;
|
|
spinlock_t lock;
|
|
|
|
#ifdef CONFIG_DEBUG_FS
|
|
int has_dbgfs;
|
|
struct dentry *dbgfs;
|
|
#endif
|
|
|
|
unsigned int msi_base;
|
|
struct msi_bitmap msi_bmp;
|
|
int (*init_m64)(struct pnv_phb *phb);
|
|
int (*get_pe_state)(struct pnv_phb *phb, int pe_no);
|
|
void (*freeze_pe)(struct pnv_phb *phb, int pe_no);
|
|
int (*unfreeze_pe)(struct pnv_phb *phb, int pe_no, int opt);
|
|
|
|
struct {
|
|
/* Global bridge info */
|
|
unsigned int total_pe_num;
|
|
unsigned int reserved_pe_idx;
|
|
unsigned int root_pe_idx;
|
|
|
|
/* 32-bit MMIO window */
|
|
unsigned int m32_size;
|
|
unsigned int m32_segsize;
|
|
unsigned int m32_pci_base;
|
|
|
|
/* 64-bit MMIO window */
|
|
unsigned int m64_bar_idx;
|
|
unsigned long m64_size;
|
|
unsigned long m64_segsize;
|
|
unsigned long m64_base;
|
|
#define MAX_M64_BARS 64
|
|
unsigned long m64_bar_alloc;
|
|
|
|
/* IO ports */
|
|
unsigned int io_size;
|
|
unsigned int io_segsize;
|
|
unsigned int io_pci_base;
|
|
|
|
/* PE allocation */
|
|
struct mutex pe_alloc_mutex;
|
|
unsigned long *pe_alloc;
|
|
struct pnv_ioda_pe *pe_array;
|
|
|
|
/* M32 & IO segment maps */
|
|
unsigned int *m64_segmap;
|
|
unsigned int *m32_segmap;
|
|
unsigned int *io_segmap;
|
|
|
|
/* IRQ chip */
|
|
int irq_chip_init;
|
|
struct irq_chip irq_chip;
|
|
|
|
/* Sorted list of used PE's based
|
|
* on the sequence of creation
|
|
*/
|
|
struct list_head pe_list;
|
|
struct mutex pe_list_mutex;
|
|
|
|
/* Reverse map of PEs, indexed by {bus, devfn} */
|
|
unsigned int pe_rmap[0x10000];
|
|
} ioda;
|
|
|
|
/* PHB and hub diagnostics */
|
|
unsigned int diag_data_size;
|
|
u8 *diag_data;
|
|
};
|
|
|
|
|
|
/* IODA PE management */
|
|
|
|
static inline bool pnv_pci_is_m64(struct pnv_phb *phb, struct resource *r)
|
|
{
|
|
/*
|
|
* WARNING: We cannot rely on the resource flags. The Linux PCI
|
|
* allocation code sometimes decides to put a 64-bit prefetchable
|
|
* BAR in the 32-bit window, so we have to compare the addresses.
|
|
*
|
|
* For simplicity we only test resource start.
|
|
*/
|
|
return (r->start >= phb->ioda.m64_base &&
|
|
r->start < (phb->ioda.m64_base + phb->ioda.m64_size));
|
|
}
|
|
|
|
static inline bool pnv_pci_is_m64_flags(unsigned long resource_flags)
|
|
{
|
|
unsigned long flags = (IORESOURCE_MEM_64 | IORESOURCE_PREFETCH);
|
|
|
|
return (resource_flags & flags) == flags;
|
|
}
|
|
|
|
int pnv_ioda_configure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe);
|
|
int pnv_ioda_deconfigure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe);
|
|
|
|
void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe);
|
|
void pnv_pci_ioda2_release_pe_dma(struct pnv_ioda_pe *pe);
|
|
|
|
struct pnv_ioda_pe *pnv_ioda_alloc_pe(struct pnv_phb *phb, int count);
|
|
void pnv_ioda_free_pe(struct pnv_ioda_pe *pe);
|
|
|
|
#ifdef CONFIG_PCI_IOV
|
|
/*
|
|
* For SR-IOV we want to put each VF's MMIO resource in to a separate PE.
|
|
* This requires a bit of acrobatics with the MMIO -> PE configuration
|
|
* and this structure is used to keep track of it all.
|
|
*/
|
|
struct pnv_iov_data {
|
|
/* number of VFs enabled */
|
|
u16 num_vfs;
|
|
|
|
/* pointer to the array of VF PEs. num_vfs long*/
|
|
struct pnv_ioda_pe *vf_pe_arr;
|
|
|
|
/* Did we map the VF BAR with single-PE IODA BARs? */
|
|
bool m64_single_mode[PCI_SRIOV_NUM_BARS];
|
|
|
|
/*
|
|
* True if we're using any segmented windows. In that case we need
|
|
* shift the start of the IOV resource the segment corresponding to
|
|
* the allocated PE.
|
|
*/
|
|
bool need_shift;
|
|
|
|
/*
|
|
* Bit mask used to track which m64 windows are used to map the
|
|
* SR-IOV BARs for this device.
|
|
*/
|
|
DECLARE_BITMAP(used_m64_bar_mask, MAX_M64_BARS);
|
|
|
|
/*
|
|
* If we map the SR-IOV BARs with a segmented window then
|
|
* parts of that window will be "claimed" by other PEs.
|
|
*
|
|
* "holes" here is used to reserve the leading portion
|
|
* of the window that is used by other (non VF) PEs.
|
|
*/
|
|
struct resource holes[PCI_SRIOV_NUM_BARS];
|
|
};
|
|
|
|
static inline struct pnv_iov_data *pnv_iov_get(struct pci_dev *pdev)
|
|
{
|
|
return pdev->dev.archdata.iov_data;
|
|
}
|
|
|
|
void pnv_pci_ioda_fixup_iov(struct pci_dev *pdev);
|
|
resource_size_t pnv_pci_iov_resource_alignment(struct pci_dev *pdev, int resno);
|
|
|
|
int pnv_pcibios_sriov_enable(struct pci_dev *pdev, u16 num_vfs);
|
|
int pnv_pcibios_sriov_disable(struct pci_dev *pdev);
|
|
#endif /* CONFIG_PCI_IOV */
|
|
|
|
extern struct pci_ops pnv_pci_ops;
|
|
|
|
void pnv_pci_dump_phb_diag_data(struct pci_controller *hose,
|
|
unsigned char *log_buff);
|
|
int pnv_pci_cfg_read(struct pci_dn *pdn,
|
|
int where, int size, u32 *val);
|
|
int pnv_pci_cfg_write(struct pci_dn *pdn,
|
|
int where, int size, u32 val);
|
|
extern struct iommu_table *pnv_pci_table_alloc(int nid);
|
|
|
|
extern void pnv_pci_init_ioda_hub(struct device_node *np);
|
|
extern void pnv_pci_init_ioda2_phb(struct device_node *np);
|
|
extern void pnv_pci_init_npu2_opencapi_phb(struct device_node *np);
|
|
extern void pnv_pci_reset_secondary_bus(struct pci_dev *dev);
|
|
extern int pnv_eeh_phb_reset(struct pci_controller *hose, int option);
|
|
|
|
extern struct pnv_ioda_pe *pnv_pci_bdfn_to_pe(struct pnv_phb *phb, u16 bdfn);
|
|
extern struct pnv_ioda_pe *pnv_ioda_get_pe(struct pci_dev *dev);
|
|
extern void pnv_set_msi_irq_chip(struct pnv_phb *phb, unsigned int virq);
|
|
extern unsigned long pnv_pci_ioda2_get_table_size(__u32 page_shift,
|
|
__u64 window_size, __u32 levels);
|
|
extern int pnv_eeh_post_init(void);
|
|
|
|
__printf(3, 4)
|
|
extern void pe_level_printk(const struct pnv_ioda_pe *pe, const char *level,
|
|
const char *fmt, ...);
|
|
#define pe_err(pe, fmt, ...) \
|
|
pe_level_printk(pe, KERN_ERR, fmt, ##__VA_ARGS__)
|
|
#define pe_warn(pe, fmt, ...) \
|
|
pe_level_printk(pe, KERN_WARNING, fmt, ##__VA_ARGS__)
|
|
#define pe_info(pe, fmt, ...) \
|
|
pe_level_printk(pe, KERN_INFO, fmt, ##__VA_ARGS__)
|
|
|
|
/* pci-ioda-tce.c */
|
|
#define POWERNV_IOMMU_DEFAULT_LEVELS 2
|
|
#define POWERNV_IOMMU_MAX_LEVELS 5
|
|
|
|
extern int pnv_tce_build(struct iommu_table *tbl, long index, long npages,
|
|
unsigned long uaddr, enum dma_data_direction direction,
|
|
unsigned long attrs);
|
|
extern void pnv_tce_free(struct iommu_table *tbl, long index, long npages);
|
|
extern int pnv_tce_xchg(struct iommu_table *tbl, long index,
|
|
unsigned long *hpa, enum dma_data_direction *direction);
|
|
extern __be64 *pnv_tce_useraddrptr(struct iommu_table *tbl, long index,
|
|
bool alloc);
|
|
extern unsigned long pnv_tce_get(struct iommu_table *tbl, long index);
|
|
|
|
extern long pnv_pci_ioda2_table_alloc_pages(int nid, __u64 bus_offset,
|
|
__u32 page_shift, __u64 window_size, __u32 levels,
|
|
bool alloc_userspace_copy, struct iommu_table *tbl);
|
|
extern void pnv_pci_ioda2_table_free_pages(struct iommu_table *tbl);
|
|
|
|
extern long pnv_pci_link_table_and_group(int node, int num,
|
|
struct iommu_table *tbl,
|
|
struct iommu_table_group *table_group);
|
|
extern void pnv_pci_unlink_table_and_group(struct iommu_table *tbl,
|
|
struct iommu_table_group *table_group);
|
|
extern void pnv_pci_setup_iommu_table(struct iommu_table *tbl,
|
|
void *tce_mem, u64 tce_size,
|
|
u64 dma_offset, unsigned int page_shift);
|
|
|
|
extern unsigned long pnv_ioda_parse_tce_sizes(struct pnv_phb *phb);
|
|
|
|
static inline struct pnv_phb *pci_bus_to_pnvhb(struct pci_bus *bus)
|
|
{
|
|
struct pci_controller *hose = bus->sysdata;
|
|
|
|
if (hose)
|
|
return hose->private_data;
|
|
|
|
return NULL;
|
|
}
|
|
|
|
#endif /* __POWERNV_PCI_H */
|