linux/Documentation/timers/timer_stats.txt
Uwe Kleine-König b595076a18 tree-wide: fix comment/printk typos
"gadget", "through", "command", "maintain", "maintain", "controller", "address",
"between", "initiali[zs]e", "instead", "function", "select", "already",
"equal", "access", "management", "hierarchy", "registration", "interest",
"relative", "memory", "offset", "already",

Signed-off-by: Uwe Kleine-König <u.kleine-koenig@pengutronix.de>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2010-11-01 15:38:34 -04:00

74 lines
3.0 KiB
Plaintext

timer_stats - timer usage statistics
------------------------------------
timer_stats is a debugging facility to make the timer (ab)usage in a Linux
system visible to kernel and userspace developers. If enabled in the config
but not used it has almost zero runtime overhead, and a relatively small
data structure overhead. Even if collection is enabled runtime all the
locking is per-CPU and lookup is hashed.
timer_stats should be used by kernel and userspace developers to verify that
their code does not make unduly use of timers. This helps to avoid unnecessary
wakeups, which should be avoided to optimize power consumption.
It can be enabled by CONFIG_TIMER_STATS in the "Kernel hacking" configuration
section.
timer_stats collects information about the timer events which are fired in a
Linux system over a sample period:
- the pid of the task(process) which initialized the timer
- the name of the process which initialized the timer
- the function where the timer was initialized
- the callback function which is associated to the timer
- the number of events (callbacks)
timer_stats adds an entry to /proc: /proc/timer_stats
This entry is used to control the statistics functionality and to read out the
sampled information.
The timer_stats functionality is inactive on bootup.
To activate a sample period issue:
# echo 1 >/proc/timer_stats
To stop a sample period issue:
# echo 0 >/proc/timer_stats
The statistics can be retrieved by:
# cat /proc/timer_stats
The readout of /proc/timer_stats automatically disables sampling. The sampled
information is kept until a new sample period is started. This allows multiple
readouts.
Sample output of /proc/timer_stats:
Timerstats sample period: 3.888770 s
12, 0 swapper hrtimer_stop_sched_tick (hrtimer_sched_tick)
15, 1 swapper hcd_submit_urb (rh_timer_func)
4, 959 kedac schedule_timeout (process_timeout)
1, 0 swapper page_writeback_init (wb_timer_fn)
28, 0 swapper hrtimer_stop_sched_tick (hrtimer_sched_tick)
22, 2948 IRQ 4 tty_flip_buffer_push (delayed_work_timer_fn)
3, 3100 bash schedule_timeout (process_timeout)
1, 1 swapper queue_delayed_work_on (delayed_work_timer_fn)
1, 1 swapper queue_delayed_work_on (delayed_work_timer_fn)
1, 1 swapper neigh_table_init_no_netlink (neigh_periodic_timer)
1, 2292 ip __netdev_watchdog_up (dev_watchdog)
1, 23 events/1 do_cache_clean (delayed_work_timer_fn)
90 total events, 30.0 events/sec
The first column is the number of events, the second column the pid, the third
column is the name of the process. The forth column shows the function which
initialized the timer and in parenthesis the callback function which was
executed on expiry.
Thomas, Ingo
Added flag to indicate 'deferrable timer' in /proc/timer_stats. A deferrable
timer will appear as follows
10D, 1 swapper queue_delayed_work_on (delayed_work_timer_fn)