linux/fs/jffs2
Linus Torvalds 3eccc0c886 for-6.5/splice-2023-06-23
-----BEGIN PGP SIGNATURE-----
 
 iQJEBAABCAAuFiEEwPw5LcreJtl1+l5K99NY+ylx4KYFAmSV8QgQHGF4Ym9lQGtl
 cm5lbC5kawAKCRD301j7KXHgpupIEADKEZvpxDyaxHjYZFFeoSJRkh+AEJHe0Xtr
 J5vUL8t8zmAV3F7i8XaoAEcR0dC0VQcoTc8fAOty71+5hsc7gvtyyNjqU/YWRVqK
 Xr+VJuSJ+OGx3MzpRWEkepagfPyqP5cyyCOK6gqIgqzc3IwqkR/3QHVRc6oR8YbY
 AQd7tqm2fQXK9WDHEy5hcaQeqb9uKZjQQoZejpPPerpJM+9RMgKxpCGtnLLIUhr/
 sgl7KyLIQPBmveO2vfOR+dmsJBqsLqneqkXDKMAIfpeVEEkHHAlCH4E5Ne1XUS+s
 ie4If+reuyn1Ktt5Ry1t7w2wr8cX1fcay3K28tgwjE2Bvremc5YnYgb3pyUDW38f
 tXXkpg/eTXd/Pn0Crpagoa9zJ927tt5JXIO1/PagPEP1XOqUuthshDFsrVqfqbs+
 36gqX2JWB4NJTg9B9KBHA3+iVCJyZLjUqOqws7hOJOvhQytZVm/IwkGBg1Slhe1a
 J5WemBlqX8lTgXz0nM7cOhPYTZeKe6hazCcb5VwxTUTj9SGyYtsMfqqTwRJO9kiF
 j1VzbOAgExDYe+GvfqOFPh9VqZho66+DyOD/Xtca4eH7oYyHSmP66o8nhRyPBPZA
 maBxQhUkPQn4/V/0fL2TwIdWYKsbj8bUyINKPZ2L35YfeICiaYIctTwNJxtRmItB
 M3VxWD3GZQ==
 =KhW4
 -----END PGP SIGNATURE-----

Merge tag 'for-6.5/splice-2023-06-23' of git://git.kernel.dk/linux

Pull splice updates from Jens Axboe:
 "This kills off ITER_PIPE to avoid a race between truncate,
  iov_iter_revert() on the pipe and an as-yet incomplete DMA to a bio
  with unpinned/unref'ed pages from an O_DIRECT splice read. This causes
  memory corruption.

  Instead, we either use (a) filemap_splice_read(), which invokes the
  buffered file reading code and splices from the pagecache into the
  pipe; (b) copy_splice_read(), which bulk-allocates a buffer, reads
  into it and then pushes the filled pages into the pipe; or (c) handle
  it in filesystem-specific code.

  Summary:

   - Rename direct_splice_read() to copy_splice_read()

   - Simplify the calculations for the number of pages to be reclaimed
     in copy_splice_read()

   - Turn do_splice_to() into a helper, vfs_splice_read(), so that it
     can be used by overlayfs and coda to perform the checks on the
     lower fs

   - Make vfs_splice_read() jump to copy_splice_read() to handle
     direct-I/O and DAX

   - Provide shmem with its own splice_read to handle non-existent pages
     in the pagecache. We don't want a ->read_folio() as we don't want
     to populate holes, but filemap_get_pages() requires it

   - Provide overlayfs with its own splice_read to call down to a lower
     layer as overlayfs doesn't provide ->read_folio()

   - Provide coda with its own splice_read to call down to a lower layer
     as coda doesn't provide ->read_folio()

   - Direct ->splice_read to copy_splice_read() in tty, procfs, kernfs
     and random files as they just copy to the output buffer and don't
     splice pages

   - Provide wrappers for afs, ceph, ecryptfs, ext4, f2fs, nfs, ntfs3,
     ocfs2, orangefs, xfs and zonefs to do locking and/or revalidation

   - Make cifs use filemap_splice_read()

   - Replace pointers to generic_file_splice_read() with pointers to
     filemap_splice_read() as DIO and DAX are handled in the caller;
     filesystems can still provide their own alternate ->splice_read()
     op

   - Remove generic_file_splice_read()

   - Remove ITER_PIPE and its paraphernalia as generic_file_splice_read
     was the only user"

* tag 'for-6.5/splice-2023-06-23' of git://git.kernel.dk/linux: (31 commits)
  splice: kdoc for filemap_splice_read() and copy_splice_read()
  iov_iter: Kill ITER_PIPE
  splice: Remove generic_file_splice_read()
  splice: Use filemap_splice_read() instead of generic_file_splice_read()
  cifs: Use filemap_splice_read()
  trace: Convert trace/seq to use copy_splice_read()
  zonefs: Provide a splice-read wrapper
  xfs: Provide a splice-read wrapper
  orangefs: Provide a splice-read wrapper
  ocfs2: Provide a splice-read wrapper
  ntfs3: Provide a splice-read wrapper
  nfs: Provide a splice-read wrapper
  f2fs: Provide a splice-read wrapper
  ext4: Provide a splice-read wrapper
  ecryptfs: Provide a splice-read wrapper
  ceph: Provide a splice-read wrapper
  afs: Provide a splice-read wrapper
  9p: Add splice_read wrapper
  net: Make sock_splice_read() use copy_splice_read() by default
  tty, proc, kernfs, random: Use copy_splice_read()
  ...
2023-06-26 11:52:12 -07:00
..
acl.c fs: port acl to mnt_idmap 2023-01-19 09:24:28 +01:00
acl.h fs: port ->set_acl() to pass mnt_idmap 2023-01-19 09:24:27 +01:00
background.c exit: Rename complete_and_exit to kthread_complete_and_exit 2021-12-13 12:04:45 -06:00
build.c jffs2: reduce stack usage in jffs2_build_xattr_subsystem() 2023-05-15 12:43:15 +02:00
compr_lzo.c
compr_rtime.c jffs2: check the validity of dstlen in jffs2_zlib_compress() 2021-02-12 21:53:23 +01:00
compr_rubin.c
compr_zlib.c
compr.c jffs2: Fix list_del corruption if compressors initialized failed 2023-02-02 21:13:55 +01:00
compr.h jffs2: Use function instead of macro when initialize compressors 2023-02-02 21:13:54 +01:00
debug.c
debug.h jffs2: Fix if/else empty body warnings 2020-12-13 21:51:54 +01:00
dir.c fs: port ->rename() to pass mnt_idmap 2023-01-19 09:24:26 +01:00
erase.c jffs2: Use kzalloc instead of kmalloc/memset 2022-05-27 16:12:55 +02:00
file.c splice: Use filemap_splice_read() instead of generic_file_splice_read() 2023-05-24 08:42:17 -06:00
fs.c This pull request contains updates for JFFS2, UBI and UBIFS 2023-03-01 09:06:51 -08:00
gc.c fs: Change the type of filler_t 2022-05-09 16:36:48 -04:00
ioctl.c
jffs2_fs_i.h fs/jffs2: fix comments mentioning i_mutex 2022-03-16 22:02:48 +01:00
jffs2_fs_sb.h jffs2: Allow setting rp_size to zero during remounting 2020-12-13 21:56:24 +01:00
Kconfig treewide: Add SPDX license identifier - Makefile/Kconfig 2019-05-21 10:50:46 +02:00
LICENCE
Makefile License cleanup: add SPDX GPL-2.0 license identifier to files with no license 2017-11-02 11:10:55 +01:00
malloc.c
nodelist.c Revert "jffs2: Fix possible null-pointer dereferences in jffs2_add_frag_to_fragtree()" 2019-11-29 11:29:58 +01:00
nodelist.h jffs2: remove trailing semicolon in macro definition 2020-12-13 21:57:20 +01:00
nodemgmt.c sched/headers: Prepare to move signal wakeup & sigpending methods from <linux/sched.h> into <linux/sched/signal.h> 2017-03-02 08:42:32 +01:00
os-linux.h fs: port ->setattr() to pass mnt_idmap 2023-01-19 09:24:02 +01:00
read.c
readinode.c jffs2: Fix GC exit abnormally 2020-12-13 21:55:39 +01:00
README.Locking
scan.c jffs2: fix memory leak in jffs2_scan_medium 2022-03-16 22:54:03 +01:00
security.c fs: port xattr to mnt_idmap 2023-01-19 09:24:28 +01:00
summary.c jffs2: fix use after free in jffs2_sum_write_data() 2021-02-12 21:53:22 +01:00
summary.h jffs2: avoid Wempty-body warnings 2021-04-15 22:01:11 +02:00
super.c fs: allocate inode by using alloc_inode_sb() 2022-03-22 15:57:03 -07:00
symlink.c
wbuf.c mtd: always initialize 'stats' in struct mtd_oob_ops 2022-09-21 10:38:07 +02:00
write.c
writev.c
xattr_trusted.c fs: port xattr to mnt_idmap 2023-01-19 09:24:28 +01:00
xattr_user.c fs: port xattr to mnt_idmap 2023-01-19 09:24:28 +01:00
xattr.c jffs2: reduce stack usage in jffs2_build_xattr_subsystem() 2023-05-15 12:43:15 +02:00
xattr.h jffs2: reduce stack usage in jffs2_build_xattr_subsystem() 2023-05-15 12:43:15 +02:00

	JFFS2 LOCKING DOCUMENTATION
	---------------------------

This document attempts to describe the existing locking rules for
JFFS2. It is not expected to remain perfectly up to date, but ought to
be fairly close.


	alloc_sem
	---------

The alloc_sem is a per-filesystem mutex, used primarily to ensure
contiguous allocation of space on the medium. It is automatically
obtained during space allocations (jffs2_reserve_space()) and freed
upon write completion (jffs2_complete_reservation()). Note that
the garbage collector will obtain this right at the beginning of
jffs2_garbage_collect_pass() and release it at the end, thereby
preventing any other write activity on the file system during a
garbage collect pass.

When writing new nodes, the alloc_sem must be held until the new nodes
have been properly linked into the data structures for the inode to
which they belong. This is for the benefit of NAND flash - adding new
nodes to an inode may obsolete old ones, and by holding the alloc_sem
until this happens we ensure that any data in the write-buffer at the
time this happens are part of the new node, not just something that
was written afterwards. Hence, we can ensure the newly-obsoleted nodes
don't actually get erased until the write-buffer has been flushed to
the medium.

With the introduction of NAND flash support and the write-buffer, 
the alloc_sem is also used to protect the wbuf-related members of the
jffs2_sb_info structure. Atomically reading the wbuf_len member to see
if the wbuf is currently holding any data is permitted, though.

Ordering constraints: See f->sem.


	File Mutex f->sem
	---------------------

This is the JFFS2-internal equivalent of the inode mutex i->i_sem.
It protects the contents of the jffs2_inode_info private inode data,
including the linked list of node fragments (but see the notes below on
erase_completion_lock), etc.

The reason that the i_sem itself isn't used for this purpose is to
avoid deadlocks with garbage collection -- the VFS will lock the i_sem
before calling a function which may need to allocate space. The
allocation may trigger garbage-collection, which may need to move a
node belonging to the inode which was locked in the first place by the
VFS. If the garbage collection code were to attempt to lock the i_sem
of the inode from which it's garbage-collecting a physical node, this
lead to deadlock, unless we played games with unlocking the i_sem
before calling the space allocation functions.

Instead of playing such games, we just have an extra internal
mutex, which is obtained by the garbage collection code and also
by the normal file system code _after_ allocation of space.

Ordering constraints: 

	1. Never attempt to allocate space or lock alloc_sem with 
	   any f->sem held.
	2. Never attempt to lock two file mutexes in one thread.
	   No ordering rules have been made for doing so.
	3. Never lock a page cache page with f->sem held.


	erase_completion_lock spinlock
	------------------------------

This is used to serialise access to the eraseblock lists, to the
per-eraseblock lists of physical jffs2_raw_node_ref structures, and
(NB) the per-inode list of physical nodes. The latter is a special
case - see below.

As the MTD API no longer permits erase-completion callback functions
to be called from bottom-half (timer) context (on the basis that nobody
ever actually implemented such a thing), it's now sufficient to use
a simple spin_lock() rather than spin_lock_bh().

Note that the per-inode list of physical nodes (f->nodes) is a special
case. Any changes to _valid_ nodes (i.e. ->flash_offset & 1 == 0) in
the list are protected by the file mutex f->sem. But the erase code
may remove _obsolete_ nodes from the list while holding only the
erase_completion_lock. So you can walk the list only while holding the
erase_completion_lock, and can drop the lock temporarily mid-walk as
long as the pointer you're holding is to a _valid_ node, not an
obsolete one.

The erase_completion_lock is also used to protect the c->gc_task
pointer when the garbage collection thread exits. The code to kill the
GC thread locks it, sends the signal, then unlocks it - while the GC
thread itself locks it, zeroes c->gc_task, then unlocks on the exit path.


	inocache_lock spinlock
	----------------------

This spinlock protects the hashed list (c->inocache_list) of the
in-core jffs2_inode_cache objects (each inode in JFFS2 has the
correspondent jffs2_inode_cache object). So, the inocache_lock
has to be locked while walking the c->inocache_list hash buckets.

This spinlock also covers allocation of new inode numbers, which is
currently just '++->highest_ino++', but might one day get more complicated
if we need to deal with wrapping after 4 milliard inode numbers are used.

Note, the f->sem guarantees that the correspondent jffs2_inode_cache
will not be removed. So, it is allowed to access it without locking
the inocache_lock spinlock. 

Ordering constraints: 

	If both erase_completion_lock and inocache_lock are needed, the
	c->erase_completion has to be acquired first.


	erase_free_sem
	--------------

This mutex is only used by the erase code which frees obsolete node
references and the jffs2_garbage_collect_deletion_dirent() function.
The latter function on NAND flash must read _obsolete_ nodes to
determine whether the 'deletion dirent' under consideration can be
discarded or whether it is still required to show that an inode has
been unlinked. Because reading from the flash may sleep, the
erase_completion_lock cannot be held, so an alternative, more
heavyweight lock was required to prevent the erase code from freeing
the jffs2_raw_node_ref structures in question while the garbage
collection code is looking at them.

Suggestions for alternative solutions to this problem would be welcomed.


	wbuf_sem
	--------

This read/write semaphore protects against concurrent access to the
write-behind buffer ('wbuf') used for flash chips where we must write
in blocks. It protects both the contents of the wbuf and the metadata
which indicates which flash region (if any) is currently covered by 
the buffer.

Ordering constraints:
	Lock wbuf_sem last, after the alloc_sem or and f->sem.


	c->xattr_sem
	------------

This read/write semaphore protects against concurrent access to the
xattr related objects which include stuff in superblock and ic->xref.
In read-only path, write-semaphore is too much exclusion. It's enough
by read-semaphore. But you must hold write-semaphore when updating,
creating or deleting any xattr related object.

Once xattr_sem released, there would be no assurance for the existence
of those objects. Thus, a series of processes is often required to retry,
when updating such a object is necessary under holding read semaphore.
For example, do_jffs2_getxattr() holds read-semaphore to scan xref and
xdatum at first. But it retries this process with holding write-semaphore
after release read-semaphore, if it's necessary to load name/value pair
from medium.

Ordering constraints:
	Lock xattr_sem last, after the alloc_sem.