mirror of
https://github.com/torvalds/linux.git
synced 2024-12-02 09:01:34 +00:00
31ad3eff09
Traditionally, Linux unlocks the whole flash because there are legacy devices which has the write protection bits set by default at startup. If you actually want to use the flash protection bits, eg. because there is a read-only part for a bootloader, this automatic unlocking is harmful. If there is no hardware write protection in place (usually called WP#), a startup of the kernel just discards this protection. I've gone through the datasheets of all the flashes (except the Intel ones where I could not find any datasheet nor reference) which supports the unlocking feature and looked how the sector protection was implemented. The currently supported flashes can be divided into the following two categories: (1) block protection bits are non-volatile. Thus they keep their values at reset and power-cycle (2) flashes where these bits are volatile. After reset or power-cycle, the whole memory array is protected. (a) some devices needs a special "Global Unprotect" command, eg. the Atmel AT25DF041A. (b) some devices require to clear the BPn bits in the status register. Due to the reasons above, we do not want to clear the bits for flashes which belong to category (1). Fortunately for us, only Atmel flashes fall into category (2a). Implement the "Global Protect" and "Global Unprotect" commands for these. For (2b) we can use normal block protection locking scheme. This patch adds a new flag to indicate the case (2). Only if we have such a flash we unlock the whole flash array. To be backwards compatible it also introduces a kernel configuration option which restores the complete legacy behavior ("Disable write protection on any flashes"). Hopefully, this will clean up "unlock the entire flash for legacy devices" once and for all. For reference here are the actually commits which introduced the legacy behavior (and extended the behavior to other chip manufacturers): commitf80e521c91
("mtd: m25p80: add support for the Intel/Numonyx {16,32,64}0S33B SPI flash chips") commitea60658a08
("mtd: m25p80: disable SST software protection bits by default") commit7228982442
("[MTD] m25p80: fix bug - ATmel spi flash fails to be copied to") Actually, this might also fix handling of the Atmel AT25DF flashes, because the original commit7228982442
("[MTD] m25p80: fix bug - ATmel spi flash fails to be copied to") was writing a 0 to the status register, which is a "Global Unprotect". This might not be the case in the current code which only handles the block protection bits BP2, BP1 and BP0. Thus, it depends on the current contents of the status register if this unlock actually corresponds to a "Global Unprotect" command. In the worst case, the current code might leave the AT25DF flashes in a write protected state. The commit191f5c2ed4
("mtd: spi-nor: use 16-bit WRR command when QE is set on spansion flashes") changed that behavior by just clearing BP2 to BP0 instead of writing a 0 to the status register. Further, the commit3e0930f109
("mtd: spi-nor: Rework the disabling of block write protection") expanded the unlock_all() feature to ANY flash which supports locking. Signed-off-by: Michael Walle <michael@walle.cc> Signed-off-by: Vignesh Raghavendra <vigneshr@ti.com> Reviewed-by: Tudor Ambarus <tudor.ambarus@microchip.com> Link: https://lore.kernel.org/r/20201203162959.29589-8-michael@walle.cc
26 lines
667 B
C
26 lines
667 B
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Copyright (C) 2005, Intec Automation Inc.
|
|
* Copyright (C) 2014, Freescale Semiconductor, Inc.
|
|
*/
|
|
|
|
#include <linux/mtd/spi-nor.h>
|
|
|
|
#include "core.h"
|
|
|
|
static const struct flash_info esmt_parts[] = {
|
|
/* ESMT */
|
|
{ "f25l32pa", INFO(0x8c2016, 0, 64 * 1024, 64,
|
|
SECT_4K | SPI_NOR_HAS_LOCK | SPI_NOR_SWP_IS_VOLATILE) },
|
|
{ "f25l32qa", INFO(0x8c4116, 0, 64 * 1024, 64,
|
|
SECT_4K | SPI_NOR_HAS_LOCK) },
|
|
{ "f25l64qa", INFO(0x8c4117, 0, 64 * 1024, 128,
|
|
SECT_4K | SPI_NOR_HAS_LOCK) },
|
|
};
|
|
|
|
const struct spi_nor_manufacturer spi_nor_esmt = {
|
|
.name = "esmt",
|
|
.parts = esmt_parts,
|
|
.nparts = ARRAY_SIZE(esmt_parts),
|
|
};
|