mirror of
https://github.com/torvalds/linux.git
synced 2024-11-22 20:22:09 +00:00
68573b936d
Use try_cmpxchg() family of functions instead of cmpxchg (*ptr, old, new) == old. x86 CMPXCHG instruction returns success in ZF flag, so this change saves a compare after cmpxchg (and related move instruction in front of cmpxchg). Also, try_cmpxchg() implicitly assigns old *ptr value to "old" when cmpxchg fails. There is no need to re-read the value in the loop. No functional change intended. Signed-off-by: Uros Bizjak <ubizjak@gmail.com> Cc: Kent Overstreet <kent.overstreet@linux.dev> Cc: Brian Foster <bfoster@redhat.com> Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
1692 lines
43 KiB
C
1692 lines
43 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
|
|
* Copyright 2012 Google, Inc.
|
|
*/
|
|
|
|
#include "bcachefs.h"
|
|
#include "alloc_foreground.h"
|
|
#include "bkey_buf.h"
|
|
#include "bset.h"
|
|
#include "btree_update.h"
|
|
#include "buckets.h"
|
|
#include "checksum.h"
|
|
#include "clock.h"
|
|
#include "compress.h"
|
|
#include "debug.h"
|
|
#include "ec.h"
|
|
#include "error.h"
|
|
#include "extent_update.h"
|
|
#include "inode.h"
|
|
#include "io_write.h"
|
|
#include "journal.h"
|
|
#include "keylist.h"
|
|
#include "move.h"
|
|
#include "nocow_locking.h"
|
|
#include "rebalance.h"
|
|
#include "subvolume.h"
|
|
#include "super.h"
|
|
#include "super-io.h"
|
|
#include "trace.h"
|
|
|
|
#include <linux/blkdev.h>
|
|
#include <linux/prefetch.h>
|
|
#include <linux/random.h>
|
|
#include <linux/sched/mm.h>
|
|
|
|
#ifndef CONFIG_BCACHEFS_NO_LATENCY_ACCT
|
|
|
|
static inline void bch2_congested_acct(struct bch_dev *ca, u64 io_latency,
|
|
u64 now, int rw)
|
|
{
|
|
u64 latency_capable =
|
|
ca->io_latency[rw].quantiles.entries[QUANTILE_IDX(1)].m;
|
|
/* ideally we'd be taking into account the device's variance here: */
|
|
u64 latency_threshold = latency_capable << (rw == READ ? 2 : 3);
|
|
s64 latency_over = io_latency - latency_threshold;
|
|
|
|
if (latency_threshold && latency_over > 0) {
|
|
/*
|
|
* bump up congested by approximately latency_over * 4 /
|
|
* latency_threshold - we don't need much accuracy here so don't
|
|
* bother with the divide:
|
|
*/
|
|
if (atomic_read(&ca->congested) < CONGESTED_MAX)
|
|
atomic_add(latency_over >>
|
|
max_t(int, ilog2(latency_threshold) - 2, 0),
|
|
&ca->congested);
|
|
|
|
ca->congested_last = now;
|
|
} else if (atomic_read(&ca->congested) > 0) {
|
|
atomic_dec(&ca->congested);
|
|
}
|
|
}
|
|
|
|
void bch2_latency_acct(struct bch_dev *ca, u64 submit_time, int rw)
|
|
{
|
|
atomic64_t *latency = &ca->cur_latency[rw];
|
|
u64 now = local_clock();
|
|
u64 io_latency = time_after64(now, submit_time)
|
|
? now - submit_time
|
|
: 0;
|
|
u64 old, new;
|
|
|
|
old = atomic64_read(latency);
|
|
do {
|
|
/*
|
|
* If the io latency was reasonably close to the current
|
|
* latency, skip doing the update and atomic operation - most of
|
|
* the time:
|
|
*/
|
|
if (abs((int) (old - io_latency)) < (old >> 1) &&
|
|
now & ~(~0U << 5))
|
|
break;
|
|
|
|
new = ewma_add(old, io_latency, 5);
|
|
} while (!atomic64_try_cmpxchg(latency, &old, new));
|
|
|
|
bch2_congested_acct(ca, io_latency, now, rw);
|
|
|
|
__bch2_time_stats_update(&ca->io_latency[rw].stats, submit_time, now);
|
|
}
|
|
|
|
#endif
|
|
|
|
/* Allocate, free from mempool: */
|
|
|
|
void bch2_bio_free_pages_pool(struct bch_fs *c, struct bio *bio)
|
|
{
|
|
struct bvec_iter_all iter;
|
|
struct bio_vec *bv;
|
|
|
|
bio_for_each_segment_all(bv, bio, iter)
|
|
if (bv->bv_page != ZERO_PAGE(0))
|
|
mempool_free(bv->bv_page, &c->bio_bounce_pages);
|
|
bio->bi_vcnt = 0;
|
|
}
|
|
|
|
static struct page *__bio_alloc_page_pool(struct bch_fs *c, bool *using_mempool)
|
|
{
|
|
struct page *page;
|
|
|
|
if (likely(!*using_mempool)) {
|
|
page = alloc_page(GFP_NOFS);
|
|
if (unlikely(!page)) {
|
|
mutex_lock(&c->bio_bounce_pages_lock);
|
|
*using_mempool = true;
|
|
goto pool_alloc;
|
|
|
|
}
|
|
} else {
|
|
pool_alloc:
|
|
page = mempool_alloc(&c->bio_bounce_pages, GFP_NOFS);
|
|
}
|
|
|
|
return page;
|
|
}
|
|
|
|
void bch2_bio_alloc_pages_pool(struct bch_fs *c, struct bio *bio,
|
|
size_t size)
|
|
{
|
|
bool using_mempool = false;
|
|
|
|
while (size) {
|
|
struct page *page = __bio_alloc_page_pool(c, &using_mempool);
|
|
unsigned len = min_t(size_t, PAGE_SIZE, size);
|
|
|
|
BUG_ON(!bio_add_page(bio, page, len, 0));
|
|
size -= len;
|
|
}
|
|
|
|
if (using_mempool)
|
|
mutex_unlock(&c->bio_bounce_pages_lock);
|
|
}
|
|
|
|
/* Extent update path: */
|
|
|
|
int bch2_sum_sector_overwrites(struct btree_trans *trans,
|
|
struct btree_iter *extent_iter,
|
|
struct bkey_i *new,
|
|
bool *usage_increasing,
|
|
s64 *i_sectors_delta,
|
|
s64 *disk_sectors_delta)
|
|
{
|
|
struct bch_fs *c = trans->c;
|
|
struct btree_iter iter;
|
|
struct bkey_s_c old;
|
|
unsigned new_replicas = bch2_bkey_replicas(c, bkey_i_to_s_c(new));
|
|
bool new_compressed = bch2_bkey_sectors_compressed(bkey_i_to_s_c(new));
|
|
int ret = 0;
|
|
|
|
*usage_increasing = false;
|
|
*i_sectors_delta = 0;
|
|
*disk_sectors_delta = 0;
|
|
|
|
bch2_trans_copy_iter(&iter, extent_iter);
|
|
|
|
for_each_btree_key_upto_continue_norestart(iter,
|
|
new->k.p, BTREE_ITER_slots, old, ret) {
|
|
s64 sectors = min(new->k.p.offset, old.k->p.offset) -
|
|
max(bkey_start_offset(&new->k),
|
|
bkey_start_offset(old.k));
|
|
|
|
*i_sectors_delta += sectors *
|
|
(bkey_extent_is_allocation(&new->k) -
|
|
bkey_extent_is_allocation(old.k));
|
|
|
|
*disk_sectors_delta += sectors * bch2_bkey_nr_ptrs_allocated(bkey_i_to_s_c(new));
|
|
*disk_sectors_delta -= new->k.p.snapshot == old.k->p.snapshot
|
|
? sectors * bch2_bkey_nr_ptrs_fully_allocated(old)
|
|
: 0;
|
|
|
|
if (!*usage_increasing &&
|
|
(new->k.p.snapshot != old.k->p.snapshot ||
|
|
new_replicas > bch2_bkey_replicas(c, old) ||
|
|
(!new_compressed && bch2_bkey_sectors_compressed(old))))
|
|
*usage_increasing = true;
|
|
|
|
if (bkey_ge(old.k->p, new->k.p))
|
|
break;
|
|
}
|
|
|
|
bch2_trans_iter_exit(trans, &iter);
|
|
return ret;
|
|
}
|
|
|
|
static inline int bch2_extent_update_i_size_sectors(struct btree_trans *trans,
|
|
struct btree_iter *extent_iter,
|
|
u64 new_i_size,
|
|
s64 i_sectors_delta)
|
|
{
|
|
/*
|
|
* Crazy performance optimization:
|
|
* Every extent update needs to also update the inode: the inode trigger
|
|
* will set bi->journal_seq to the journal sequence number of this
|
|
* transaction - for fsync.
|
|
*
|
|
* But if that's the only reason we're updating the inode (we're not
|
|
* updating bi_size or bi_sectors), then we don't need the inode update
|
|
* to be journalled - if we crash, the bi_journal_seq update will be
|
|
* lost, but that's fine.
|
|
*/
|
|
unsigned inode_update_flags = BTREE_UPDATE_nojournal;
|
|
|
|
struct btree_iter iter;
|
|
struct bkey_s_c k = bch2_bkey_get_iter(trans, &iter, BTREE_ID_inodes,
|
|
SPOS(0,
|
|
extent_iter->pos.inode,
|
|
extent_iter->snapshot),
|
|
BTREE_ITER_cached);
|
|
int ret = bkey_err(k);
|
|
if (unlikely(ret))
|
|
return ret;
|
|
|
|
/*
|
|
* varint_decode_fast(), in the inode .invalid method, reads up to 7
|
|
* bytes past the end of the buffer:
|
|
*/
|
|
struct bkey_i *k_mut = bch2_trans_kmalloc_nomemzero(trans, bkey_bytes(k.k) + 8);
|
|
ret = PTR_ERR_OR_ZERO(k_mut);
|
|
if (unlikely(ret))
|
|
goto err;
|
|
|
|
bkey_reassemble(k_mut, k);
|
|
|
|
if (unlikely(k_mut->k.type != KEY_TYPE_inode_v3)) {
|
|
k_mut = bch2_inode_to_v3(trans, k_mut);
|
|
ret = PTR_ERR_OR_ZERO(k_mut);
|
|
if (unlikely(ret))
|
|
goto err;
|
|
}
|
|
|
|
struct bkey_i_inode_v3 *inode = bkey_i_to_inode_v3(k_mut);
|
|
|
|
if (!(le64_to_cpu(inode->v.bi_flags) & BCH_INODE_i_size_dirty) &&
|
|
new_i_size > le64_to_cpu(inode->v.bi_size)) {
|
|
inode->v.bi_size = cpu_to_le64(new_i_size);
|
|
inode_update_flags = 0;
|
|
}
|
|
|
|
if (i_sectors_delta) {
|
|
le64_add_cpu(&inode->v.bi_sectors, i_sectors_delta);
|
|
inode_update_flags = 0;
|
|
}
|
|
|
|
if (inode->k.p.snapshot != iter.snapshot) {
|
|
inode->k.p.snapshot = iter.snapshot;
|
|
inode_update_flags = 0;
|
|
}
|
|
|
|
ret = bch2_trans_update(trans, &iter, &inode->k_i,
|
|
BTREE_UPDATE_internal_snapshot_node|
|
|
inode_update_flags);
|
|
err:
|
|
bch2_trans_iter_exit(trans, &iter);
|
|
return ret;
|
|
}
|
|
|
|
int bch2_extent_update(struct btree_trans *trans,
|
|
subvol_inum inum,
|
|
struct btree_iter *iter,
|
|
struct bkey_i *k,
|
|
struct disk_reservation *disk_res,
|
|
u64 new_i_size,
|
|
s64 *i_sectors_delta_total,
|
|
bool check_enospc)
|
|
{
|
|
struct bpos next_pos;
|
|
bool usage_increasing;
|
|
s64 i_sectors_delta = 0, disk_sectors_delta = 0;
|
|
int ret;
|
|
|
|
/*
|
|
* This traverses us the iterator without changing iter->path->pos to
|
|
* search_key() (which is pos + 1 for extents): we want there to be a
|
|
* path already traversed at iter->pos because
|
|
* bch2_trans_extent_update() will use it to attempt extent merging
|
|
*/
|
|
ret = __bch2_btree_iter_traverse(iter);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = bch2_extent_trim_atomic(trans, iter, k);
|
|
if (ret)
|
|
return ret;
|
|
|
|
next_pos = k->k.p;
|
|
|
|
ret = bch2_sum_sector_overwrites(trans, iter, k,
|
|
&usage_increasing,
|
|
&i_sectors_delta,
|
|
&disk_sectors_delta);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (disk_res &&
|
|
disk_sectors_delta > (s64) disk_res->sectors) {
|
|
ret = bch2_disk_reservation_add(trans->c, disk_res,
|
|
disk_sectors_delta - disk_res->sectors,
|
|
!check_enospc || !usage_increasing
|
|
? BCH_DISK_RESERVATION_NOFAIL : 0);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Note:
|
|
* We always have to do an inode update - even when i_size/i_sectors
|
|
* aren't changing - for fsync to work properly; fsync relies on
|
|
* inode->bi_journal_seq which is updated by the trigger code:
|
|
*/
|
|
ret = bch2_extent_update_i_size_sectors(trans, iter,
|
|
min(k->k.p.offset << 9, new_i_size),
|
|
i_sectors_delta) ?:
|
|
bch2_trans_update(trans, iter, k, 0) ?:
|
|
bch2_trans_commit(trans, disk_res, NULL,
|
|
BCH_TRANS_COMMIT_no_check_rw|
|
|
BCH_TRANS_COMMIT_no_enospc);
|
|
if (unlikely(ret))
|
|
return ret;
|
|
|
|
if (i_sectors_delta_total)
|
|
*i_sectors_delta_total += i_sectors_delta;
|
|
bch2_btree_iter_set_pos(iter, next_pos);
|
|
return 0;
|
|
}
|
|
|
|
static int bch2_write_index_default(struct bch_write_op *op)
|
|
{
|
|
struct bch_fs *c = op->c;
|
|
struct bkey_buf sk;
|
|
struct keylist *keys = &op->insert_keys;
|
|
struct bkey_i *k = bch2_keylist_front(keys);
|
|
struct btree_trans *trans = bch2_trans_get(c);
|
|
struct btree_iter iter;
|
|
subvol_inum inum = {
|
|
.subvol = op->subvol,
|
|
.inum = k->k.p.inode,
|
|
};
|
|
int ret;
|
|
|
|
BUG_ON(!inum.subvol);
|
|
|
|
bch2_bkey_buf_init(&sk);
|
|
|
|
do {
|
|
bch2_trans_begin(trans);
|
|
|
|
k = bch2_keylist_front(keys);
|
|
bch2_bkey_buf_copy(&sk, c, k);
|
|
|
|
ret = bch2_subvolume_get_snapshot(trans, inum.subvol,
|
|
&sk.k->k.p.snapshot);
|
|
if (bch2_err_matches(ret, BCH_ERR_transaction_restart))
|
|
continue;
|
|
if (ret)
|
|
break;
|
|
|
|
bch2_trans_iter_init(trans, &iter, BTREE_ID_extents,
|
|
bkey_start_pos(&sk.k->k),
|
|
BTREE_ITER_slots|BTREE_ITER_intent);
|
|
|
|
ret = bch2_bkey_set_needs_rebalance(c, sk.k, &op->opts) ?:
|
|
bch2_extent_update(trans, inum, &iter, sk.k,
|
|
&op->res,
|
|
op->new_i_size, &op->i_sectors_delta,
|
|
op->flags & BCH_WRITE_CHECK_ENOSPC);
|
|
bch2_trans_iter_exit(trans, &iter);
|
|
|
|
if (bch2_err_matches(ret, BCH_ERR_transaction_restart))
|
|
continue;
|
|
if (ret)
|
|
break;
|
|
|
|
if (bkey_ge(iter.pos, k->k.p))
|
|
bch2_keylist_pop_front(&op->insert_keys);
|
|
else
|
|
bch2_cut_front(iter.pos, k);
|
|
} while (!bch2_keylist_empty(keys));
|
|
|
|
bch2_trans_put(trans);
|
|
bch2_bkey_buf_exit(&sk, c);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* Writes */
|
|
|
|
void bch2_submit_wbio_replicas(struct bch_write_bio *wbio, struct bch_fs *c,
|
|
enum bch_data_type type,
|
|
const struct bkey_i *k,
|
|
bool nocow)
|
|
{
|
|
struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(bkey_i_to_s_c(k));
|
|
struct bch_write_bio *n;
|
|
|
|
BUG_ON(c->opts.nochanges);
|
|
|
|
bkey_for_each_ptr(ptrs, ptr) {
|
|
struct bch_dev *ca = nocow
|
|
? bch2_dev_have_ref(c, ptr->dev)
|
|
: bch2_dev_get_ioref(c, ptr->dev, type == BCH_DATA_btree ? READ : WRITE);
|
|
|
|
if (to_entry(ptr + 1) < ptrs.end) {
|
|
n = to_wbio(bio_alloc_clone(NULL, &wbio->bio, GFP_NOFS, &c->replica_set));
|
|
|
|
n->bio.bi_end_io = wbio->bio.bi_end_io;
|
|
n->bio.bi_private = wbio->bio.bi_private;
|
|
n->parent = wbio;
|
|
n->split = true;
|
|
n->bounce = false;
|
|
n->put_bio = true;
|
|
n->bio.bi_opf = wbio->bio.bi_opf;
|
|
bio_inc_remaining(&wbio->bio);
|
|
} else {
|
|
n = wbio;
|
|
n->split = false;
|
|
}
|
|
|
|
n->c = c;
|
|
n->dev = ptr->dev;
|
|
n->have_ioref = ca != NULL;
|
|
n->nocow = nocow;
|
|
n->submit_time = local_clock();
|
|
n->inode_offset = bkey_start_offset(&k->k);
|
|
if (nocow)
|
|
n->nocow_bucket = PTR_BUCKET_NR(ca, ptr);
|
|
n->bio.bi_iter.bi_sector = ptr->offset;
|
|
|
|
if (likely(n->have_ioref)) {
|
|
this_cpu_add(ca->io_done->sectors[WRITE][type],
|
|
bio_sectors(&n->bio));
|
|
|
|
bio_set_dev(&n->bio, ca->disk_sb.bdev);
|
|
|
|
if (type != BCH_DATA_btree && unlikely(c->opts.no_data_io)) {
|
|
bio_endio(&n->bio);
|
|
continue;
|
|
}
|
|
|
|
submit_bio(&n->bio);
|
|
} else {
|
|
n->bio.bi_status = BLK_STS_REMOVED;
|
|
bio_endio(&n->bio);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void __bch2_write(struct bch_write_op *);
|
|
|
|
static void bch2_write_done(struct closure *cl)
|
|
{
|
|
struct bch_write_op *op = container_of(cl, struct bch_write_op, cl);
|
|
struct bch_fs *c = op->c;
|
|
|
|
EBUG_ON(op->open_buckets.nr);
|
|
|
|
bch2_time_stats_update(&c->times[BCH_TIME_data_write], op->start_time);
|
|
bch2_disk_reservation_put(c, &op->res);
|
|
|
|
if (!(op->flags & BCH_WRITE_MOVE))
|
|
bch2_write_ref_put(c, BCH_WRITE_REF_write);
|
|
bch2_keylist_free(&op->insert_keys, op->inline_keys);
|
|
|
|
EBUG_ON(cl->parent);
|
|
closure_debug_destroy(cl);
|
|
if (op->end_io)
|
|
op->end_io(op);
|
|
}
|
|
|
|
static noinline int bch2_write_drop_io_error_ptrs(struct bch_write_op *op)
|
|
{
|
|
struct keylist *keys = &op->insert_keys;
|
|
struct bkey_i *src, *dst = keys->keys, *n;
|
|
|
|
for (src = keys->keys; src != keys->top; src = n) {
|
|
n = bkey_next(src);
|
|
|
|
if (bkey_extent_is_direct_data(&src->k)) {
|
|
bch2_bkey_drop_ptrs(bkey_i_to_s(src), ptr,
|
|
test_bit(ptr->dev, op->failed.d));
|
|
|
|
if (!bch2_bkey_nr_ptrs(bkey_i_to_s_c(src)))
|
|
return -EIO;
|
|
}
|
|
|
|
if (dst != src)
|
|
memmove_u64s_down(dst, src, src->k.u64s);
|
|
dst = bkey_next(dst);
|
|
}
|
|
|
|
keys->top = dst;
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* __bch2_write_index - after a write, update index to point to new data
|
|
* @op: bch_write_op to process
|
|
*/
|
|
static void __bch2_write_index(struct bch_write_op *op)
|
|
{
|
|
struct bch_fs *c = op->c;
|
|
struct keylist *keys = &op->insert_keys;
|
|
unsigned dev;
|
|
int ret = 0;
|
|
|
|
if (unlikely(op->flags & BCH_WRITE_IO_ERROR)) {
|
|
ret = bch2_write_drop_io_error_ptrs(op);
|
|
if (ret)
|
|
goto err;
|
|
}
|
|
|
|
if (!bch2_keylist_empty(keys)) {
|
|
u64 sectors_start = keylist_sectors(keys);
|
|
|
|
ret = !(op->flags & BCH_WRITE_MOVE)
|
|
? bch2_write_index_default(op)
|
|
: bch2_data_update_index_update(op);
|
|
|
|
BUG_ON(bch2_err_matches(ret, BCH_ERR_transaction_restart));
|
|
BUG_ON(keylist_sectors(keys) && !ret);
|
|
|
|
op->written += sectors_start - keylist_sectors(keys);
|
|
|
|
if (ret && !bch2_err_matches(ret, EROFS)) {
|
|
struct bkey_i *insert = bch2_keylist_front(&op->insert_keys);
|
|
|
|
bch_err_inum_offset_ratelimited(c,
|
|
insert->k.p.inode, insert->k.p.offset << 9,
|
|
"%s write error while doing btree update: %s",
|
|
op->flags & BCH_WRITE_MOVE ? "move" : "user",
|
|
bch2_err_str(ret));
|
|
}
|
|
|
|
if (ret)
|
|
goto err;
|
|
}
|
|
out:
|
|
/* If some a bucket wasn't written, we can't erasure code it: */
|
|
for_each_set_bit(dev, op->failed.d, BCH_SB_MEMBERS_MAX)
|
|
bch2_open_bucket_write_error(c, &op->open_buckets, dev);
|
|
|
|
bch2_open_buckets_put(c, &op->open_buckets);
|
|
return;
|
|
err:
|
|
keys->top = keys->keys;
|
|
op->error = ret;
|
|
op->flags |= BCH_WRITE_DONE;
|
|
goto out;
|
|
}
|
|
|
|
static inline void __wp_update_state(struct write_point *wp, enum write_point_state state)
|
|
{
|
|
if (state != wp->state) {
|
|
u64 now = ktime_get_ns();
|
|
|
|
if (wp->last_state_change &&
|
|
time_after64(now, wp->last_state_change))
|
|
wp->time[wp->state] += now - wp->last_state_change;
|
|
wp->state = state;
|
|
wp->last_state_change = now;
|
|
}
|
|
}
|
|
|
|
static inline void wp_update_state(struct write_point *wp, bool running)
|
|
{
|
|
enum write_point_state state;
|
|
|
|
state = running ? WRITE_POINT_running :
|
|
!list_empty(&wp->writes) ? WRITE_POINT_waiting_io
|
|
: WRITE_POINT_stopped;
|
|
|
|
__wp_update_state(wp, state);
|
|
}
|
|
|
|
static CLOSURE_CALLBACK(bch2_write_index)
|
|
{
|
|
closure_type(op, struct bch_write_op, cl);
|
|
struct write_point *wp = op->wp;
|
|
struct workqueue_struct *wq = index_update_wq(op);
|
|
unsigned long flags;
|
|
|
|
if ((op->flags & BCH_WRITE_DONE) &&
|
|
(op->flags & BCH_WRITE_MOVE))
|
|
bch2_bio_free_pages_pool(op->c, &op->wbio.bio);
|
|
|
|
spin_lock_irqsave(&wp->writes_lock, flags);
|
|
if (wp->state == WRITE_POINT_waiting_io)
|
|
__wp_update_state(wp, WRITE_POINT_waiting_work);
|
|
list_add_tail(&op->wp_list, &wp->writes);
|
|
spin_unlock_irqrestore (&wp->writes_lock, flags);
|
|
|
|
queue_work(wq, &wp->index_update_work);
|
|
}
|
|
|
|
static inline void bch2_write_queue(struct bch_write_op *op, struct write_point *wp)
|
|
{
|
|
op->wp = wp;
|
|
|
|
if (wp->state == WRITE_POINT_stopped) {
|
|
spin_lock_irq(&wp->writes_lock);
|
|
__wp_update_state(wp, WRITE_POINT_waiting_io);
|
|
spin_unlock_irq(&wp->writes_lock);
|
|
}
|
|
}
|
|
|
|
void bch2_write_point_do_index_updates(struct work_struct *work)
|
|
{
|
|
struct write_point *wp =
|
|
container_of(work, struct write_point, index_update_work);
|
|
struct bch_write_op *op;
|
|
|
|
while (1) {
|
|
spin_lock_irq(&wp->writes_lock);
|
|
op = list_first_entry_or_null(&wp->writes, struct bch_write_op, wp_list);
|
|
if (op)
|
|
list_del(&op->wp_list);
|
|
wp_update_state(wp, op != NULL);
|
|
spin_unlock_irq(&wp->writes_lock);
|
|
|
|
if (!op)
|
|
break;
|
|
|
|
op->flags |= BCH_WRITE_IN_WORKER;
|
|
|
|
__bch2_write_index(op);
|
|
|
|
if (!(op->flags & BCH_WRITE_DONE))
|
|
__bch2_write(op);
|
|
else
|
|
bch2_write_done(&op->cl);
|
|
}
|
|
}
|
|
|
|
static void bch2_write_endio(struct bio *bio)
|
|
{
|
|
struct closure *cl = bio->bi_private;
|
|
struct bch_write_op *op = container_of(cl, struct bch_write_op, cl);
|
|
struct bch_write_bio *wbio = to_wbio(bio);
|
|
struct bch_write_bio *parent = wbio->split ? wbio->parent : NULL;
|
|
struct bch_fs *c = wbio->c;
|
|
struct bch_dev *ca = wbio->have_ioref
|
|
? bch2_dev_have_ref(c, wbio->dev)
|
|
: NULL;
|
|
|
|
if (bch2_dev_inum_io_err_on(bio->bi_status, ca, BCH_MEMBER_ERROR_write,
|
|
op->pos.inode,
|
|
wbio->inode_offset << 9,
|
|
"data write error: %s",
|
|
bch2_blk_status_to_str(bio->bi_status))) {
|
|
set_bit(wbio->dev, op->failed.d);
|
|
op->flags |= BCH_WRITE_IO_ERROR;
|
|
}
|
|
|
|
if (wbio->nocow) {
|
|
bch2_bucket_nocow_unlock(&c->nocow_locks,
|
|
POS(ca->dev_idx, wbio->nocow_bucket),
|
|
BUCKET_NOCOW_LOCK_UPDATE);
|
|
set_bit(wbio->dev, op->devs_need_flush->d);
|
|
}
|
|
|
|
if (wbio->have_ioref) {
|
|
bch2_latency_acct(ca, wbio->submit_time, WRITE);
|
|
percpu_ref_put(&ca->io_ref);
|
|
}
|
|
|
|
if (wbio->bounce)
|
|
bch2_bio_free_pages_pool(c, bio);
|
|
|
|
if (wbio->put_bio)
|
|
bio_put(bio);
|
|
|
|
if (parent)
|
|
bio_endio(&parent->bio);
|
|
else
|
|
closure_put(cl);
|
|
}
|
|
|
|
static void init_append_extent(struct bch_write_op *op,
|
|
struct write_point *wp,
|
|
struct bversion version,
|
|
struct bch_extent_crc_unpacked crc)
|
|
{
|
|
struct bkey_i_extent *e;
|
|
|
|
op->pos.offset += crc.uncompressed_size;
|
|
|
|
e = bkey_extent_init(op->insert_keys.top);
|
|
e->k.p = op->pos;
|
|
e->k.size = crc.uncompressed_size;
|
|
e->k.version = version;
|
|
|
|
if (crc.csum_type ||
|
|
crc.compression_type ||
|
|
crc.nonce)
|
|
bch2_extent_crc_append(&e->k_i, crc);
|
|
|
|
bch2_alloc_sectors_append_ptrs_inlined(op->c, wp, &e->k_i, crc.compressed_size,
|
|
op->flags & BCH_WRITE_CACHED);
|
|
|
|
bch2_keylist_push(&op->insert_keys);
|
|
}
|
|
|
|
static struct bio *bch2_write_bio_alloc(struct bch_fs *c,
|
|
struct write_point *wp,
|
|
struct bio *src,
|
|
bool *page_alloc_failed,
|
|
void *buf)
|
|
{
|
|
struct bch_write_bio *wbio;
|
|
struct bio *bio;
|
|
unsigned output_available =
|
|
min(wp->sectors_free << 9, src->bi_iter.bi_size);
|
|
unsigned pages = DIV_ROUND_UP(output_available +
|
|
(buf
|
|
? ((unsigned long) buf & (PAGE_SIZE - 1))
|
|
: 0), PAGE_SIZE);
|
|
|
|
pages = min(pages, BIO_MAX_VECS);
|
|
|
|
bio = bio_alloc_bioset(NULL, pages, 0,
|
|
GFP_NOFS, &c->bio_write);
|
|
wbio = wbio_init(bio);
|
|
wbio->put_bio = true;
|
|
/* copy WRITE_SYNC flag */
|
|
wbio->bio.bi_opf = src->bi_opf;
|
|
|
|
if (buf) {
|
|
bch2_bio_map(bio, buf, output_available);
|
|
return bio;
|
|
}
|
|
|
|
wbio->bounce = true;
|
|
|
|
/*
|
|
* We can't use mempool for more than c->sb.encoded_extent_max
|
|
* worth of pages, but we'd like to allocate more if we can:
|
|
*/
|
|
bch2_bio_alloc_pages_pool(c, bio,
|
|
min_t(unsigned, output_available,
|
|
c->opts.encoded_extent_max));
|
|
|
|
if (bio->bi_iter.bi_size < output_available)
|
|
*page_alloc_failed =
|
|
bch2_bio_alloc_pages(bio,
|
|
output_available -
|
|
bio->bi_iter.bi_size,
|
|
GFP_NOFS) != 0;
|
|
|
|
return bio;
|
|
}
|
|
|
|
static int bch2_write_rechecksum(struct bch_fs *c,
|
|
struct bch_write_op *op,
|
|
unsigned new_csum_type)
|
|
{
|
|
struct bio *bio = &op->wbio.bio;
|
|
struct bch_extent_crc_unpacked new_crc;
|
|
int ret;
|
|
|
|
/* bch2_rechecksum_bio() can't encrypt or decrypt data: */
|
|
|
|
if (bch2_csum_type_is_encryption(op->crc.csum_type) !=
|
|
bch2_csum_type_is_encryption(new_csum_type))
|
|
new_csum_type = op->crc.csum_type;
|
|
|
|
ret = bch2_rechecksum_bio(c, bio, op->version, op->crc,
|
|
NULL, &new_crc,
|
|
op->crc.offset, op->crc.live_size,
|
|
new_csum_type);
|
|
if (ret)
|
|
return ret;
|
|
|
|
bio_advance(bio, op->crc.offset << 9);
|
|
bio->bi_iter.bi_size = op->crc.live_size << 9;
|
|
op->crc = new_crc;
|
|
return 0;
|
|
}
|
|
|
|
static int bch2_write_decrypt(struct bch_write_op *op)
|
|
{
|
|
struct bch_fs *c = op->c;
|
|
struct nonce nonce = extent_nonce(op->version, op->crc);
|
|
struct bch_csum csum;
|
|
int ret;
|
|
|
|
if (!bch2_csum_type_is_encryption(op->crc.csum_type))
|
|
return 0;
|
|
|
|
/*
|
|
* If we need to decrypt data in the write path, we'll no longer be able
|
|
* to verify the existing checksum (poly1305 mac, in this case) after
|
|
* it's decrypted - this is the last point we'll be able to reverify the
|
|
* checksum:
|
|
*/
|
|
csum = bch2_checksum_bio(c, op->crc.csum_type, nonce, &op->wbio.bio);
|
|
if (bch2_crc_cmp(op->crc.csum, csum) && !c->opts.no_data_io)
|
|
return -EIO;
|
|
|
|
ret = bch2_encrypt_bio(c, op->crc.csum_type, nonce, &op->wbio.bio);
|
|
op->crc.csum_type = 0;
|
|
op->crc.csum = (struct bch_csum) { 0, 0 };
|
|
return ret;
|
|
}
|
|
|
|
static enum prep_encoded_ret {
|
|
PREP_ENCODED_OK,
|
|
PREP_ENCODED_ERR,
|
|
PREP_ENCODED_CHECKSUM_ERR,
|
|
PREP_ENCODED_DO_WRITE,
|
|
} bch2_write_prep_encoded_data(struct bch_write_op *op, struct write_point *wp)
|
|
{
|
|
struct bch_fs *c = op->c;
|
|
struct bio *bio = &op->wbio.bio;
|
|
|
|
if (!(op->flags & BCH_WRITE_DATA_ENCODED))
|
|
return PREP_ENCODED_OK;
|
|
|
|
BUG_ON(bio_sectors(bio) != op->crc.compressed_size);
|
|
|
|
/* Can we just write the entire extent as is? */
|
|
if (op->crc.uncompressed_size == op->crc.live_size &&
|
|
op->crc.uncompressed_size <= c->opts.encoded_extent_max >> 9 &&
|
|
op->crc.compressed_size <= wp->sectors_free &&
|
|
(op->crc.compression_type == bch2_compression_opt_to_type(op->compression_opt) ||
|
|
op->incompressible)) {
|
|
if (!crc_is_compressed(op->crc) &&
|
|
op->csum_type != op->crc.csum_type &&
|
|
bch2_write_rechecksum(c, op, op->csum_type) &&
|
|
!c->opts.no_data_io)
|
|
return PREP_ENCODED_CHECKSUM_ERR;
|
|
|
|
return PREP_ENCODED_DO_WRITE;
|
|
}
|
|
|
|
/*
|
|
* If the data is compressed and we couldn't write the entire extent as
|
|
* is, we have to decompress it:
|
|
*/
|
|
if (crc_is_compressed(op->crc)) {
|
|
struct bch_csum csum;
|
|
|
|
if (bch2_write_decrypt(op))
|
|
return PREP_ENCODED_CHECKSUM_ERR;
|
|
|
|
/* Last point we can still verify checksum: */
|
|
csum = bch2_checksum_bio(c, op->crc.csum_type,
|
|
extent_nonce(op->version, op->crc),
|
|
bio);
|
|
if (bch2_crc_cmp(op->crc.csum, csum) && !c->opts.no_data_io)
|
|
return PREP_ENCODED_CHECKSUM_ERR;
|
|
|
|
if (bch2_bio_uncompress_inplace(c, bio, &op->crc))
|
|
return PREP_ENCODED_ERR;
|
|
}
|
|
|
|
/*
|
|
* No longer have compressed data after this point - data might be
|
|
* encrypted:
|
|
*/
|
|
|
|
/*
|
|
* If the data is checksummed and we're only writing a subset,
|
|
* rechecksum and adjust bio to point to currently live data:
|
|
*/
|
|
if ((op->crc.live_size != op->crc.uncompressed_size ||
|
|
op->crc.csum_type != op->csum_type) &&
|
|
bch2_write_rechecksum(c, op, op->csum_type) &&
|
|
!c->opts.no_data_io)
|
|
return PREP_ENCODED_CHECKSUM_ERR;
|
|
|
|
/*
|
|
* If we want to compress the data, it has to be decrypted:
|
|
*/
|
|
if ((op->compression_opt ||
|
|
bch2_csum_type_is_encryption(op->crc.csum_type) !=
|
|
bch2_csum_type_is_encryption(op->csum_type)) &&
|
|
bch2_write_decrypt(op))
|
|
return PREP_ENCODED_CHECKSUM_ERR;
|
|
|
|
return PREP_ENCODED_OK;
|
|
}
|
|
|
|
static int bch2_write_extent(struct bch_write_op *op, struct write_point *wp,
|
|
struct bio **_dst)
|
|
{
|
|
struct bch_fs *c = op->c;
|
|
struct bio *src = &op->wbio.bio, *dst = src;
|
|
struct bvec_iter saved_iter;
|
|
void *ec_buf;
|
|
unsigned total_output = 0, total_input = 0;
|
|
bool bounce = false;
|
|
bool page_alloc_failed = false;
|
|
int ret, more = 0;
|
|
|
|
BUG_ON(!bio_sectors(src));
|
|
|
|
ec_buf = bch2_writepoint_ec_buf(c, wp);
|
|
|
|
switch (bch2_write_prep_encoded_data(op, wp)) {
|
|
case PREP_ENCODED_OK:
|
|
break;
|
|
case PREP_ENCODED_ERR:
|
|
ret = -EIO;
|
|
goto err;
|
|
case PREP_ENCODED_CHECKSUM_ERR:
|
|
goto csum_err;
|
|
case PREP_ENCODED_DO_WRITE:
|
|
/* XXX look for bug here */
|
|
if (ec_buf) {
|
|
dst = bch2_write_bio_alloc(c, wp, src,
|
|
&page_alloc_failed,
|
|
ec_buf);
|
|
bio_copy_data(dst, src);
|
|
bounce = true;
|
|
}
|
|
init_append_extent(op, wp, op->version, op->crc);
|
|
goto do_write;
|
|
}
|
|
|
|
if (ec_buf ||
|
|
op->compression_opt ||
|
|
(op->csum_type &&
|
|
!(op->flags & BCH_WRITE_PAGES_STABLE)) ||
|
|
(bch2_csum_type_is_encryption(op->csum_type) &&
|
|
!(op->flags & BCH_WRITE_PAGES_OWNED))) {
|
|
dst = bch2_write_bio_alloc(c, wp, src,
|
|
&page_alloc_failed,
|
|
ec_buf);
|
|
bounce = true;
|
|
}
|
|
|
|
saved_iter = dst->bi_iter;
|
|
|
|
do {
|
|
struct bch_extent_crc_unpacked crc = { 0 };
|
|
struct bversion version = op->version;
|
|
size_t dst_len = 0, src_len = 0;
|
|
|
|
if (page_alloc_failed &&
|
|
dst->bi_iter.bi_size < (wp->sectors_free << 9) &&
|
|
dst->bi_iter.bi_size < c->opts.encoded_extent_max)
|
|
break;
|
|
|
|
BUG_ON(op->compression_opt &&
|
|
(op->flags & BCH_WRITE_DATA_ENCODED) &&
|
|
bch2_csum_type_is_encryption(op->crc.csum_type));
|
|
BUG_ON(op->compression_opt && !bounce);
|
|
|
|
crc.compression_type = op->incompressible
|
|
? BCH_COMPRESSION_TYPE_incompressible
|
|
: op->compression_opt
|
|
? bch2_bio_compress(c, dst, &dst_len, src, &src_len,
|
|
op->compression_opt)
|
|
: 0;
|
|
if (!crc_is_compressed(crc)) {
|
|
dst_len = min(dst->bi_iter.bi_size, src->bi_iter.bi_size);
|
|
dst_len = min_t(unsigned, dst_len, wp->sectors_free << 9);
|
|
|
|
if (op->csum_type)
|
|
dst_len = min_t(unsigned, dst_len,
|
|
c->opts.encoded_extent_max);
|
|
|
|
if (bounce) {
|
|
swap(dst->bi_iter.bi_size, dst_len);
|
|
bio_copy_data(dst, src);
|
|
swap(dst->bi_iter.bi_size, dst_len);
|
|
}
|
|
|
|
src_len = dst_len;
|
|
}
|
|
|
|
BUG_ON(!src_len || !dst_len);
|
|
|
|
if (bch2_csum_type_is_encryption(op->csum_type)) {
|
|
if (bversion_zero(version)) {
|
|
version.lo = atomic64_inc_return(&c->key_version);
|
|
} else {
|
|
crc.nonce = op->nonce;
|
|
op->nonce += src_len >> 9;
|
|
}
|
|
}
|
|
|
|
if ((op->flags & BCH_WRITE_DATA_ENCODED) &&
|
|
!crc_is_compressed(crc) &&
|
|
bch2_csum_type_is_encryption(op->crc.csum_type) ==
|
|
bch2_csum_type_is_encryption(op->csum_type)) {
|
|
u8 compression_type = crc.compression_type;
|
|
u16 nonce = crc.nonce;
|
|
/*
|
|
* Note: when we're using rechecksum(), we need to be
|
|
* checksumming @src because it has all the data our
|
|
* existing checksum covers - if we bounced (because we
|
|
* were trying to compress), @dst will only have the
|
|
* part of the data the new checksum will cover.
|
|
*
|
|
* But normally we want to be checksumming post bounce,
|
|
* because part of the reason for bouncing is so the
|
|
* data can't be modified (by userspace) while it's in
|
|
* flight.
|
|
*/
|
|
if (bch2_rechecksum_bio(c, src, version, op->crc,
|
|
&crc, &op->crc,
|
|
src_len >> 9,
|
|
bio_sectors(src) - (src_len >> 9),
|
|
op->csum_type))
|
|
goto csum_err;
|
|
/*
|
|
* rchecksum_bio sets compression_type on crc from op->crc,
|
|
* this isn't always correct as sometimes we're changing
|
|
* an extent from uncompressed to incompressible.
|
|
*/
|
|
crc.compression_type = compression_type;
|
|
crc.nonce = nonce;
|
|
} else {
|
|
if ((op->flags & BCH_WRITE_DATA_ENCODED) &&
|
|
bch2_rechecksum_bio(c, src, version, op->crc,
|
|
NULL, &op->crc,
|
|
src_len >> 9,
|
|
bio_sectors(src) - (src_len >> 9),
|
|
op->crc.csum_type))
|
|
goto csum_err;
|
|
|
|
crc.compressed_size = dst_len >> 9;
|
|
crc.uncompressed_size = src_len >> 9;
|
|
crc.live_size = src_len >> 9;
|
|
|
|
swap(dst->bi_iter.bi_size, dst_len);
|
|
ret = bch2_encrypt_bio(c, op->csum_type,
|
|
extent_nonce(version, crc), dst);
|
|
if (ret)
|
|
goto err;
|
|
|
|
crc.csum = bch2_checksum_bio(c, op->csum_type,
|
|
extent_nonce(version, crc), dst);
|
|
crc.csum_type = op->csum_type;
|
|
swap(dst->bi_iter.bi_size, dst_len);
|
|
}
|
|
|
|
init_append_extent(op, wp, version, crc);
|
|
|
|
if (dst != src)
|
|
bio_advance(dst, dst_len);
|
|
bio_advance(src, src_len);
|
|
total_output += dst_len;
|
|
total_input += src_len;
|
|
} while (dst->bi_iter.bi_size &&
|
|
src->bi_iter.bi_size &&
|
|
wp->sectors_free &&
|
|
!bch2_keylist_realloc(&op->insert_keys,
|
|
op->inline_keys,
|
|
ARRAY_SIZE(op->inline_keys),
|
|
BKEY_EXTENT_U64s_MAX));
|
|
|
|
more = src->bi_iter.bi_size != 0;
|
|
|
|
dst->bi_iter = saved_iter;
|
|
|
|
if (dst == src && more) {
|
|
BUG_ON(total_output != total_input);
|
|
|
|
dst = bio_split(src, total_input >> 9,
|
|
GFP_NOFS, &c->bio_write);
|
|
wbio_init(dst)->put_bio = true;
|
|
/* copy WRITE_SYNC flag */
|
|
dst->bi_opf = src->bi_opf;
|
|
}
|
|
|
|
dst->bi_iter.bi_size = total_output;
|
|
do_write:
|
|
*_dst = dst;
|
|
return more;
|
|
csum_err:
|
|
bch_err(c, "%s writ error: error verifying existing checksum while rewriting existing data (memory corruption?)",
|
|
op->flags & BCH_WRITE_MOVE ? "move" : "user");
|
|
ret = -EIO;
|
|
err:
|
|
if (to_wbio(dst)->bounce)
|
|
bch2_bio_free_pages_pool(c, dst);
|
|
if (to_wbio(dst)->put_bio)
|
|
bio_put(dst);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static bool bch2_extent_is_writeable(struct bch_write_op *op,
|
|
struct bkey_s_c k)
|
|
{
|
|
struct bch_fs *c = op->c;
|
|
struct bkey_s_c_extent e;
|
|
struct extent_ptr_decoded p;
|
|
const union bch_extent_entry *entry;
|
|
unsigned replicas = 0;
|
|
|
|
if (k.k->type != KEY_TYPE_extent)
|
|
return false;
|
|
|
|
e = bkey_s_c_to_extent(k);
|
|
|
|
rcu_read_lock();
|
|
extent_for_each_ptr_decode(e, p, entry) {
|
|
if (crc_is_encoded(p.crc) || p.has_ec) {
|
|
rcu_read_unlock();
|
|
return false;
|
|
}
|
|
|
|
replicas += bch2_extent_ptr_durability(c, &p);
|
|
}
|
|
rcu_read_unlock();
|
|
|
|
return replicas >= op->opts.data_replicas;
|
|
}
|
|
|
|
static int bch2_nocow_write_convert_one_unwritten(struct btree_trans *trans,
|
|
struct btree_iter *iter,
|
|
struct bkey_i *orig,
|
|
struct bkey_s_c k,
|
|
u64 new_i_size)
|
|
{
|
|
if (!bch2_extents_match(bkey_i_to_s_c(orig), k)) {
|
|
/* trace this */
|
|
return 0;
|
|
}
|
|
|
|
struct bkey_i *new = bch2_bkey_make_mut_noupdate(trans, k);
|
|
int ret = PTR_ERR_OR_ZERO(new);
|
|
if (ret)
|
|
return ret;
|
|
|
|
bch2_cut_front(bkey_start_pos(&orig->k), new);
|
|
bch2_cut_back(orig->k.p, new);
|
|
|
|
struct bkey_ptrs ptrs = bch2_bkey_ptrs(bkey_i_to_s(new));
|
|
bkey_for_each_ptr(ptrs, ptr)
|
|
ptr->unwritten = 0;
|
|
|
|
/*
|
|
* Note that we're not calling bch2_subvol_get_snapshot() in this path -
|
|
* that was done when we kicked off the write, and here it's important
|
|
* that we update the extent that we wrote to - even if a snapshot has
|
|
* since been created. The write is still outstanding, so we're ok
|
|
* w.r.t. snapshot atomicity:
|
|
*/
|
|
return bch2_extent_update_i_size_sectors(trans, iter,
|
|
min(new->k.p.offset << 9, new_i_size), 0) ?:
|
|
bch2_trans_update(trans, iter, new,
|
|
BTREE_UPDATE_internal_snapshot_node);
|
|
}
|
|
|
|
static void bch2_nocow_write_convert_unwritten(struct bch_write_op *op)
|
|
{
|
|
struct bch_fs *c = op->c;
|
|
struct btree_trans *trans = bch2_trans_get(c);
|
|
|
|
for_each_keylist_key(&op->insert_keys, orig) {
|
|
int ret = for_each_btree_key_upto_commit(trans, iter, BTREE_ID_extents,
|
|
bkey_start_pos(&orig->k), orig->k.p,
|
|
BTREE_ITER_intent, k,
|
|
NULL, NULL, BCH_TRANS_COMMIT_no_enospc, ({
|
|
bch2_nocow_write_convert_one_unwritten(trans, &iter, orig, k, op->new_i_size);
|
|
}));
|
|
|
|
if (ret && !bch2_err_matches(ret, EROFS)) {
|
|
struct bkey_i *insert = bch2_keylist_front(&op->insert_keys);
|
|
|
|
bch_err_inum_offset_ratelimited(c,
|
|
insert->k.p.inode, insert->k.p.offset << 9,
|
|
"%s write error while doing btree update: %s",
|
|
op->flags & BCH_WRITE_MOVE ? "move" : "user",
|
|
bch2_err_str(ret));
|
|
}
|
|
|
|
if (ret) {
|
|
op->error = ret;
|
|
break;
|
|
}
|
|
}
|
|
|
|
bch2_trans_put(trans);
|
|
}
|
|
|
|
static void __bch2_nocow_write_done(struct bch_write_op *op)
|
|
{
|
|
if (unlikely(op->flags & BCH_WRITE_IO_ERROR)) {
|
|
op->error = -EIO;
|
|
} else if (unlikely(op->flags & BCH_WRITE_CONVERT_UNWRITTEN))
|
|
bch2_nocow_write_convert_unwritten(op);
|
|
}
|
|
|
|
static CLOSURE_CALLBACK(bch2_nocow_write_done)
|
|
{
|
|
closure_type(op, struct bch_write_op, cl);
|
|
|
|
__bch2_nocow_write_done(op);
|
|
bch2_write_done(cl);
|
|
}
|
|
|
|
struct bucket_to_lock {
|
|
struct bpos b;
|
|
unsigned gen;
|
|
struct nocow_lock_bucket *l;
|
|
};
|
|
|
|
static void bch2_nocow_write(struct bch_write_op *op)
|
|
{
|
|
struct bch_fs *c = op->c;
|
|
struct btree_trans *trans;
|
|
struct btree_iter iter;
|
|
struct bkey_s_c k;
|
|
DARRAY_PREALLOCATED(struct bucket_to_lock, 3) buckets;
|
|
u32 snapshot;
|
|
struct bucket_to_lock *stale_at;
|
|
int stale, ret;
|
|
|
|
if (op->flags & BCH_WRITE_MOVE)
|
|
return;
|
|
|
|
darray_init(&buckets);
|
|
trans = bch2_trans_get(c);
|
|
retry:
|
|
bch2_trans_begin(trans);
|
|
|
|
ret = bch2_subvolume_get_snapshot(trans, op->subvol, &snapshot);
|
|
if (unlikely(ret))
|
|
goto err;
|
|
|
|
bch2_trans_iter_init(trans, &iter, BTREE_ID_extents,
|
|
SPOS(op->pos.inode, op->pos.offset, snapshot),
|
|
BTREE_ITER_slots);
|
|
while (1) {
|
|
struct bio *bio = &op->wbio.bio;
|
|
|
|
buckets.nr = 0;
|
|
|
|
ret = bch2_trans_relock(trans);
|
|
if (ret)
|
|
break;
|
|
|
|
k = bch2_btree_iter_peek_slot(&iter);
|
|
ret = bkey_err(k);
|
|
if (ret)
|
|
break;
|
|
|
|
/* fall back to normal cow write path? */
|
|
if (unlikely(k.k->p.snapshot != snapshot ||
|
|
!bch2_extent_is_writeable(op, k)))
|
|
break;
|
|
|
|
if (bch2_keylist_realloc(&op->insert_keys,
|
|
op->inline_keys,
|
|
ARRAY_SIZE(op->inline_keys),
|
|
k.k->u64s))
|
|
break;
|
|
|
|
/* Get iorefs before dropping btree locks: */
|
|
struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
|
|
bkey_for_each_ptr(ptrs, ptr) {
|
|
struct bch_dev *ca = bch2_dev_get_ioref(c, ptr->dev, WRITE);
|
|
if (unlikely(!ca))
|
|
goto err_get_ioref;
|
|
|
|
struct bpos b = PTR_BUCKET_POS(ca, ptr);
|
|
struct nocow_lock_bucket *l =
|
|
bucket_nocow_lock(&c->nocow_locks, bucket_to_u64(b));
|
|
prefetch(l);
|
|
|
|
/* XXX allocating memory with btree locks held - rare */
|
|
darray_push_gfp(&buckets, ((struct bucket_to_lock) {
|
|
.b = b, .gen = ptr->gen, .l = l,
|
|
}), GFP_KERNEL|__GFP_NOFAIL);
|
|
|
|
if (ptr->unwritten)
|
|
op->flags |= BCH_WRITE_CONVERT_UNWRITTEN;
|
|
}
|
|
|
|
/* Unlock before taking nocow locks, doing IO: */
|
|
bkey_reassemble(op->insert_keys.top, k);
|
|
bch2_trans_unlock(trans);
|
|
|
|
bch2_cut_front(op->pos, op->insert_keys.top);
|
|
if (op->flags & BCH_WRITE_CONVERT_UNWRITTEN)
|
|
bch2_cut_back(POS(op->pos.inode, op->pos.offset + bio_sectors(bio)), op->insert_keys.top);
|
|
|
|
darray_for_each(buckets, i) {
|
|
struct bch_dev *ca = bch2_dev_have_ref(c, i->b.inode);
|
|
|
|
__bch2_bucket_nocow_lock(&c->nocow_locks, i->l,
|
|
bucket_to_u64(i->b),
|
|
BUCKET_NOCOW_LOCK_UPDATE);
|
|
|
|
rcu_read_lock();
|
|
u8 *gen = bucket_gen(ca, i->b.offset);
|
|
stale = !gen ? -1 : gen_after(*gen, i->gen);
|
|
rcu_read_unlock();
|
|
|
|
if (unlikely(stale)) {
|
|
stale_at = i;
|
|
goto err_bucket_stale;
|
|
}
|
|
}
|
|
|
|
bio = &op->wbio.bio;
|
|
if (k.k->p.offset < op->pos.offset + bio_sectors(bio)) {
|
|
bio = bio_split(bio, k.k->p.offset - op->pos.offset,
|
|
GFP_KERNEL, &c->bio_write);
|
|
wbio_init(bio)->put_bio = true;
|
|
bio->bi_opf = op->wbio.bio.bi_opf;
|
|
} else {
|
|
op->flags |= BCH_WRITE_DONE;
|
|
}
|
|
|
|
op->pos.offset += bio_sectors(bio);
|
|
op->written += bio_sectors(bio);
|
|
|
|
bio->bi_end_io = bch2_write_endio;
|
|
bio->bi_private = &op->cl;
|
|
bio->bi_opf |= REQ_OP_WRITE;
|
|
closure_get(&op->cl);
|
|
bch2_submit_wbio_replicas(to_wbio(bio), c, BCH_DATA_user,
|
|
op->insert_keys.top, true);
|
|
|
|
bch2_keylist_push(&op->insert_keys);
|
|
if (op->flags & BCH_WRITE_DONE)
|
|
break;
|
|
bch2_btree_iter_advance(&iter);
|
|
}
|
|
out:
|
|
bch2_trans_iter_exit(trans, &iter);
|
|
err:
|
|
if (bch2_err_matches(ret, BCH_ERR_transaction_restart))
|
|
goto retry;
|
|
|
|
if (ret) {
|
|
bch_err_inum_offset_ratelimited(c,
|
|
op->pos.inode, op->pos.offset << 9,
|
|
"%s: btree lookup error %s", __func__, bch2_err_str(ret));
|
|
op->error = ret;
|
|
op->flags |= BCH_WRITE_DONE;
|
|
}
|
|
|
|
bch2_trans_put(trans);
|
|
darray_exit(&buckets);
|
|
|
|
/* fallback to cow write path? */
|
|
if (!(op->flags & BCH_WRITE_DONE)) {
|
|
closure_sync(&op->cl);
|
|
__bch2_nocow_write_done(op);
|
|
op->insert_keys.top = op->insert_keys.keys;
|
|
} else if (op->flags & BCH_WRITE_SYNC) {
|
|
closure_sync(&op->cl);
|
|
bch2_nocow_write_done(&op->cl.work);
|
|
} else {
|
|
/*
|
|
* XXX
|
|
* needs to run out of process context because ei_quota_lock is
|
|
* a mutex
|
|
*/
|
|
continue_at(&op->cl, bch2_nocow_write_done, index_update_wq(op));
|
|
}
|
|
return;
|
|
err_get_ioref:
|
|
darray_for_each(buckets, i)
|
|
percpu_ref_put(&bch2_dev_have_ref(c, i->b.inode)->io_ref);
|
|
|
|
/* Fall back to COW path: */
|
|
goto out;
|
|
err_bucket_stale:
|
|
darray_for_each(buckets, i) {
|
|
bch2_bucket_nocow_unlock(&c->nocow_locks, i->b, BUCKET_NOCOW_LOCK_UPDATE);
|
|
if (i == stale_at)
|
|
break;
|
|
}
|
|
|
|
struct printbuf buf = PRINTBUF;
|
|
if (bch2_fs_inconsistent_on(stale < 0, c,
|
|
"pointer to invalid bucket in nocow path on device %llu\n %s",
|
|
stale_at->b.inode,
|
|
(bch2_bkey_val_to_text(&buf, c, k), buf.buf))) {
|
|
ret = -EIO;
|
|
} else {
|
|
/* We can retry this: */
|
|
ret = -BCH_ERR_transaction_restart;
|
|
}
|
|
printbuf_exit(&buf);
|
|
|
|
goto err_get_ioref;
|
|
}
|
|
|
|
static void __bch2_write(struct bch_write_op *op)
|
|
{
|
|
struct bch_fs *c = op->c;
|
|
struct write_point *wp = NULL;
|
|
struct bio *bio = NULL;
|
|
unsigned nofs_flags;
|
|
int ret;
|
|
|
|
nofs_flags = memalloc_nofs_save();
|
|
|
|
if (unlikely(op->opts.nocow && c->opts.nocow_enabled)) {
|
|
bch2_nocow_write(op);
|
|
if (op->flags & BCH_WRITE_DONE)
|
|
goto out_nofs_restore;
|
|
}
|
|
again:
|
|
memset(&op->failed, 0, sizeof(op->failed));
|
|
|
|
do {
|
|
struct bkey_i *key_to_write;
|
|
unsigned key_to_write_offset = op->insert_keys.top_p -
|
|
op->insert_keys.keys_p;
|
|
|
|
/* +1 for possible cache device: */
|
|
if (op->open_buckets.nr + op->nr_replicas + 1 >
|
|
ARRAY_SIZE(op->open_buckets.v))
|
|
break;
|
|
|
|
if (bch2_keylist_realloc(&op->insert_keys,
|
|
op->inline_keys,
|
|
ARRAY_SIZE(op->inline_keys),
|
|
BKEY_EXTENT_U64s_MAX))
|
|
break;
|
|
|
|
/*
|
|
* The copygc thread is now global, which means it's no longer
|
|
* freeing up space on specific disks, which means that
|
|
* allocations for specific disks may hang arbitrarily long:
|
|
*/
|
|
ret = bch2_trans_do(c, NULL, NULL, 0,
|
|
bch2_alloc_sectors_start_trans(trans,
|
|
op->target,
|
|
op->opts.erasure_code && !(op->flags & BCH_WRITE_CACHED),
|
|
op->write_point,
|
|
&op->devs_have,
|
|
op->nr_replicas,
|
|
op->nr_replicas_required,
|
|
op->watermark,
|
|
op->flags,
|
|
(op->flags & (BCH_WRITE_ALLOC_NOWAIT|
|
|
BCH_WRITE_ONLY_SPECIFIED_DEVS))
|
|
? NULL : &op->cl, &wp));
|
|
if (unlikely(ret)) {
|
|
if (bch2_err_matches(ret, BCH_ERR_operation_blocked))
|
|
break;
|
|
|
|
goto err;
|
|
}
|
|
|
|
EBUG_ON(!wp);
|
|
|
|
bch2_open_bucket_get(c, wp, &op->open_buckets);
|
|
ret = bch2_write_extent(op, wp, &bio);
|
|
|
|
bch2_alloc_sectors_done_inlined(c, wp);
|
|
err:
|
|
if (ret <= 0) {
|
|
op->flags |= BCH_WRITE_DONE;
|
|
|
|
if (ret < 0) {
|
|
if (!(op->flags & BCH_WRITE_ALLOC_NOWAIT))
|
|
bch_err_inum_offset_ratelimited(c,
|
|
op->pos.inode,
|
|
op->pos.offset << 9,
|
|
"%s(): %s error: %s", __func__,
|
|
op->flags & BCH_WRITE_MOVE ? "move" : "user",
|
|
bch2_err_str(ret));
|
|
op->error = ret;
|
|
break;
|
|
}
|
|
}
|
|
|
|
bio->bi_end_io = bch2_write_endio;
|
|
bio->bi_private = &op->cl;
|
|
bio->bi_opf |= REQ_OP_WRITE;
|
|
|
|
closure_get(bio->bi_private);
|
|
|
|
key_to_write = (void *) (op->insert_keys.keys_p +
|
|
key_to_write_offset);
|
|
|
|
bch2_submit_wbio_replicas(to_wbio(bio), c, BCH_DATA_user,
|
|
key_to_write, false);
|
|
} while (ret);
|
|
|
|
/*
|
|
* Sync or no?
|
|
*
|
|
* If we're running asynchronously, wne may still want to block
|
|
* synchronously here if we weren't able to submit all of the IO at
|
|
* once, as that signals backpressure to the caller.
|
|
*/
|
|
if ((op->flags & BCH_WRITE_SYNC) ||
|
|
(!(op->flags & BCH_WRITE_DONE) &&
|
|
!(op->flags & BCH_WRITE_IN_WORKER))) {
|
|
if (closure_sync_timeout(&op->cl, HZ * 10)) {
|
|
bch2_print_allocator_stuck(c);
|
|
closure_sync(&op->cl);
|
|
}
|
|
|
|
__bch2_write_index(op);
|
|
|
|
if (!(op->flags & BCH_WRITE_DONE))
|
|
goto again;
|
|
bch2_write_done(&op->cl);
|
|
} else {
|
|
bch2_write_queue(op, wp);
|
|
continue_at(&op->cl, bch2_write_index, NULL);
|
|
}
|
|
out_nofs_restore:
|
|
memalloc_nofs_restore(nofs_flags);
|
|
}
|
|
|
|
static void bch2_write_data_inline(struct bch_write_op *op, unsigned data_len)
|
|
{
|
|
struct bio *bio = &op->wbio.bio;
|
|
struct bvec_iter iter;
|
|
struct bkey_i_inline_data *id;
|
|
unsigned sectors;
|
|
int ret;
|
|
|
|
memset(&op->failed, 0, sizeof(op->failed));
|
|
|
|
op->flags |= BCH_WRITE_WROTE_DATA_INLINE;
|
|
op->flags |= BCH_WRITE_DONE;
|
|
|
|
bch2_check_set_feature(op->c, BCH_FEATURE_inline_data);
|
|
|
|
ret = bch2_keylist_realloc(&op->insert_keys, op->inline_keys,
|
|
ARRAY_SIZE(op->inline_keys),
|
|
BKEY_U64s + DIV_ROUND_UP(data_len, 8));
|
|
if (ret) {
|
|
op->error = ret;
|
|
goto err;
|
|
}
|
|
|
|
sectors = bio_sectors(bio);
|
|
op->pos.offset += sectors;
|
|
|
|
id = bkey_inline_data_init(op->insert_keys.top);
|
|
id->k.p = op->pos;
|
|
id->k.version = op->version;
|
|
id->k.size = sectors;
|
|
|
|
iter = bio->bi_iter;
|
|
iter.bi_size = data_len;
|
|
memcpy_from_bio(id->v.data, bio, iter);
|
|
|
|
while (data_len & 7)
|
|
id->v.data[data_len++] = '\0';
|
|
set_bkey_val_bytes(&id->k, data_len);
|
|
bch2_keylist_push(&op->insert_keys);
|
|
|
|
__bch2_write_index(op);
|
|
err:
|
|
bch2_write_done(&op->cl);
|
|
}
|
|
|
|
/**
|
|
* bch2_write() - handle a write to a cache device or flash only volume
|
|
* @cl: &bch_write_op->cl
|
|
*
|
|
* This is the starting point for any data to end up in a cache device; it could
|
|
* be from a normal write, or a writeback write, or a write to a flash only
|
|
* volume - it's also used by the moving garbage collector to compact data in
|
|
* mostly empty buckets.
|
|
*
|
|
* It first writes the data to the cache, creating a list of keys to be inserted
|
|
* (if the data won't fit in a single open bucket, there will be multiple keys);
|
|
* after the data is written it calls bch_journal, and after the keys have been
|
|
* added to the next journal write they're inserted into the btree.
|
|
*
|
|
* If op->discard is true, instead of inserting the data it invalidates the
|
|
* region of the cache represented by op->bio and op->inode.
|
|
*/
|
|
CLOSURE_CALLBACK(bch2_write)
|
|
{
|
|
closure_type(op, struct bch_write_op, cl);
|
|
struct bio *bio = &op->wbio.bio;
|
|
struct bch_fs *c = op->c;
|
|
unsigned data_len;
|
|
|
|
EBUG_ON(op->cl.parent);
|
|
BUG_ON(!op->nr_replicas);
|
|
BUG_ON(!op->write_point.v);
|
|
BUG_ON(bkey_eq(op->pos, POS_MAX));
|
|
|
|
op->nr_replicas_required = min_t(unsigned, op->nr_replicas_required, op->nr_replicas);
|
|
op->start_time = local_clock();
|
|
bch2_keylist_init(&op->insert_keys, op->inline_keys);
|
|
wbio_init(bio)->put_bio = false;
|
|
|
|
if (bio->bi_iter.bi_size & (c->opts.block_size - 1)) {
|
|
bch_err_inum_offset_ratelimited(c,
|
|
op->pos.inode,
|
|
op->pos.offset << 9,
|
|
"%s write error: misaligned write",
|
|
op->flags & BCH_WRITE_MOVE ? "move" : "user");
|
|
op->error = -EIO;
|
|
goto err;
|
|
}
|
|
|
|
if (c->opts.nochanges) {
|
|
op->error = -BCH_ERR_erofs_no_writes;
|
|
goto err;
|
|
}
|
|
|
|
if (!(op->flags & BCH_WRITE_MOVE) &&
|
|
!bch2_write_ref_tryget(c, BCH_WRITE_REF_write)) {
|
|
op->error = -BCH_ERR_erofs_no_writes;
|
|
goto err;
|
|
}
|
|
|
|
this_cpu_add(c->counters[BCH_COUNTER_io_write], bio_sectors(bio));
|
|
bch2_increment_clock(c, bio_sectors(bio), WRITE);
|
|
|
|
data_len = min_t(u64, bio->bi_iter.bi_size,
|
|
op->new_i_size - (op->pos.offset << 9));
|
|
|
|
if (c->opts.inline_data &&
|
|
data_len <= min(block_bytes(c) / 2, 1024U)) {
|
|
bch2_write_data_inline(op, data_len);
|
|
return;
|
|
}
|
|
|
|
__bch2_write(op);
|
|
return;
|
|
err:
|
|
bch2_disk_reservation_put(c, &op->res);
|
|
|
|
closure_debug_destroy(&op->cl);
|
|
if (op->end_io)
|
|
op->end_io(op);
|
|
}
|
|
|
|
static const char * const bch2_write_flags[] = {
|
|
#define x(f) #f,
|
|
BCH_WRITE_FLAGS()
|
|
#undef x
|
|
NULL
|
|
};
|
|
|
|
void bch2_write_op_to_text(struct printbuf *out, struct bch_write_op *op)
|
|
{
|
|
prt_str(out, "pos: ");
|
|
bch2_bpos_to_text(out, op->pos);
|
|
prt_newline(out);
|
|
printbuf_indent_add(out, 2);
|
|
|
|
prt_str(out, "started: ");
|
|
bch2_pr_time_units(out, local_clock() - op->start_time);
|
|
prt_newline(out);
|
|
|
|
prt_str(out, "flags: ");
|
|
prt_bitflags(out, bch2_write_flags, op->flags);
|
|
prt_newline(out);
|
|
|
|
prt_printf(out, "ref: %u\n", closure_nr_remaining(&op->cl));
|
|
|
|
printbuf_indent_sub(out, 2);
|
|
}
|
|
|
|
void bch2_fs_io_write_exit(struct bch_fs *c)
|
|
{
|
|
mempool_exit(&c->bio_bounce_pages);
|
|
bioset_exit(&c->replica_set);
|
|
bioset_exit(&c->bio_write);
|
|
}
|
|
|
|
int bch2_fs_io_write_init(struct bch_fs *c)
|
|
{
|
|
if (bioset_init(&c->bio_write, 1, offsetof(struct bch_write_bio, bio), BIOSET_NEED_BVECS) ||
|
|
bioset_init(&c->replica_set, 4, offsetof(struct bch_write_bio, bio), 0))
|
|
return -BCH_ERR_ENOMEM_bio_write_init;
|
|
|
|
if (mempool_init_page_pool(&c->bio_bounce_pages,
|
|
max_t(unsigned,
|
|
c->opts.btree_node_size,
|
|
c->opts.encoded_extent_max) /
|
|
PAGE_SIZE, 0))
|
|
return -BCH_ERR_ENOMEM_bio_bounce_pages_init;
|
|
|
|
return 0;
|
|
}
|