mirror of
https://github.com/torvalds/linux.git
synced 2024-12-27 13:22:23 +00:00
8e2318521b
Currently we call the (optional) enable function for CPU _features_ only. As CPU _errata_ descriptions share the same data structure and having an enable function is useful for errata as well (for instance to set bits in SCTLR), lets call it when enumerating erratas too. Signed-off-by: Andre Przywara <andre.przywara@arm.com> Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
1065 lines
35 KiB
C
1065 lines
35 KiB
C
/*
|
|
* Contains CPU feature definitions
|
|
*
|
|
* Copyright (C) 2015 ARM Ltd.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#define pr_fmt(fmt) "CPU features: " fmt
|
|
|
|
#include <linux/bsearch.h>
|
|
#include <linux/sort.h>
|
|
#include <linux/types.h>
|
|
#include <asm/cpu.h>
|
|
#include <asm/cpufeature.h>
|
|
#include <asm/cpu_ops.h>
|
|
#include <asm/mmu_context.h>
|
|
#include <asm/processor.h>
|
|
#include <asm/sysreg.h>
|
|
#include <asm/virt.h>
|
|
|
|
unsigned long elf_hwcap __read_mostly;
|
|
EXPORT_SYMBOL_GPL(elf_hwcap);
|
|
|
|
#ifdef CONFIG_COMPAT
|
|
#define COMPAT_ELF_HWCAP_DEFAULT \
|
|
(COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\
|
|
COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\
|
|
COMPAT_HWCAP_TLS|COMPAT_HWCAP_VFP|\
|
|
COMPAT_HWCAP_VFPv3|COMPAT_HWCAP_VFPv4|\
|
|
COMPAT_HWCAP_NEON|COMPAT_HWCAP_IDIV|\
|
|
COMPAT_HWCAP_LPAE)
|
|
unsigned int compat_elf_hwcap __read_mostly = COMPAT_ELF_HWCAP_DEFAULT;
|
|
unsigned int compat_elf_hwcap2 __read_mostly;
|
|
#endif
|
|
|
|
DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS);
|
|
|
|
#define __ARM64_FTR_BITS(SIGNED, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
|
|
{ \
|
|
.sign = SIGNED, \
|
|
.strict = STRICT, \
|
|
.type = TYPE, \
|
|
.shift = SHIFT, \
|
|
.width = WIDTH, \
|
|
.safe_val = SAFE_VAL, \
|
|
}
|
|
|
|
/* Define a feature with unsigned values */
|
|
#define ARM64_FTR_BITS(STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
|
|
__ARM64_FTR_BITS(FTR_UNSIGNED, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
|
|
|
|
/* Define a feature with a signed value */
|
|
#define S_ARM64_FTR_BITS(STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
|
|
__ARM64_FTR_BITS(FTR_SIGNED, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
|
|
|
|
#define ARM64_FTR_END \
|
|
{ \
|
|
.width = 0, \
|
|
}
|
|
|
|
/* meta feature for alternatives */
|
|
static bool __maybe_unused
|
|
cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry, int __unused);
|
|
|
|
|
|
static struct arm64_ftr_bits ftr_id_aa64isar0[] = {
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64ISAR0_RDM_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 24, 4, 0),
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_ATOMICS_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_CRC32_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA2_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA1_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_AES_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0), /* RAZ */
|
|
ARM64_FTR_END,
|
|
};
|
|
|
|
static struct arm64_ftr_bits ftr_id_aa64pfr0[] = {
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 28, 4, 0),
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_GIC_SHIFT, 4, 0),
|
|
S_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_ASIMD_SHIFT, 4, ID_AA64PFR0_ASIMD_NI),
|
|
S_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_FP_SHIFT, 4, ID_AA64PFR0_FP_NI),
|
|
/* Linux doesn't care about the EL3 */
|
|
ARM64_FTR_BITS(FTR_NONSTRICT, FTR_EXACT, ID_AA64PFR0_EL3_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL2_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL1_SHIFT, 4, ID_AA64PFR0_EL1_64BIT_ONLY),
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL0_SHIFT, 4, ID_AA64PFR0_EL0_64BIT_ONLY),
|
|
ARM64_FTR_END,
|
|
};
|
|
|
|
static struct arm64_ftr_bits ftr_id_aa64mmfr0[] = {
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
|
|
S_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN4_SHIFT, 4, ID_AA64MMFR0_TGRAN4_NI),
|
|
S_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN64_SHIFT, 4, ID_AA64MMFR0_TGRAN64_NI),
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN16_SHIFT, 4, ID_AA64MMFR0_TGRAN16_NI),
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_BIGENDEL0_SHIFT, 4, 0),
|
|
/* Linux shouldn't care about secure memory */
|
|
ARM64_FTR_BITS(FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_SNSMEM_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_BIGENDEL_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_ASID_SHIFT, 4, 0),
|
|
/*
|
|
* Differing PARange is fine as long as all peripherals and memory are mapped
|
|
* within the minimum PARange of all CPUs
|
|
*/
|
|
ARM64_FTR_BITS(FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_PARANGE_SHIFT, 4, 0),
|
|
ARM64_FTR_END,
|
|
};
|
|
|
|
static struct arm64_ftr_bits ftr_id_aa64mmfr1[] = {
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_PAN_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_LOR_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_HPD_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_VHE_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_VMIDBITS_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_HADBS_SHIFT, 4, 0),
|
|
ARM64_FTR_END,
|
|
};
|
|
|
|
static struct arm64_ftr_bits ftr_id_aa64mmfr2[] = {
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_LVA_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_IESB_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_LSM_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_UAO_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_CNP_SHIFT, 4, 0),
|
|
ARM64_FTR_END,
|
|
};
|
|
|
|
static struct arm64_ftr_bits ftr_ctr[] = {
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 31, 1, 1), /* RAO */
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 28, 3, 0),
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_HIGHER_SAFE, 24, 4, 0), /* CWG */
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0), /* ERG */
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 1), /* DminLine */
|
|
/*
|
|
* Linux can handle differing I-cache policies. Userspace JITs will
|
|
* make use of *minLine
|
|
*/
|
|
ARM64_FTR_BITS(FTR_NONSTRICT, FTR_EXACT, 14, 2, 0), /* L1Ip */
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 10, 0), /* RAZ */
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0), /* IminLine */
|
|
ARM64_FTR_END,
|
|
};
|
|
|
|
static struct arm64_ftr_bits ftr_id_mmfr0[] = {
|
|
S_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 28, 4, 0xf), /* InnerShr */
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 24, 4, 0), /* FCSE */
|
|
ARM64_FTR_BITS(FTR_NONSTRICT, FTR_LOWER_SAFE, 20, 4, 0), /* AuxReg */
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 16, 4, 0), /* TCM */
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 12, 4, 0), /* ShareLvl */
|
|
S_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 4, 0xf), /* OuterShr */
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0), /* PMSA */
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0), /* VMSA */
|
|
ARM64_FTR_END,
|
|
};
|
|
|
|
static struct arm64_ftr_bits ftr_id_aa64dfr0[] = {
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_CTX_CMPS_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_WRPS_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_BRPS_SHIFT, 4, 0),
|
|
S_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64DFR0_PMUVER_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64DFR0_TRACEVER_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64DFR0_DEBUGVER_SHIFT, 4, 0x6),
|
|
ARM64_FTR_END,
|
|
};
|
|
|
|
static struct arm64_ftr_bits ftr_mvfr2[] = {
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 24, 0), /* RAZ */
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0), /* FPMisc */
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0), /* SIMDMisc */
|
|
ARM64_FTR_END,
|
|
};
|
|
|
|
static struct arm64_ftr_bits ftr_dczid[] = {
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 5, 27, 0), /* RAZ */
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 1, 1), /* DZP */
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0), /* BS */
|
|
ARM64_FTR_END,
|
|
};
|
|
|
|
|
|
static struct arm64_ftr_bits ftr_id_isar5[] = {
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_RDM_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 20, 4, 0), /* RAZ */
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_CRC32_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_SHA2_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_SHA1_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_AES_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_SEVL_SHIFT, 4, 0),
|
|
ARM64_FTR_END,
|
|
};
|
|
|
|
static struct arm64_ftr_bits ftr_id_mmfr4[] = {
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 24, 0), /* RAZ */
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0), /* ac2 */
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0), /* RAZ */
|
|
ARM64_FTR_END,
|
|
};
|
|
|
|
static struct arm64_ftr_bits ftr_id_pfr0[] = {
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 16, 16, 0), /* RAZ */
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 12, 4, 0), /* State3 */
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 4, 0), /* State2 */
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0), /* State1 */
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0), /* State0 */
|
|
ARM64_FTR_END,
|
|
};
|
|
|
|
static struct arm64_ftr_bits ftr_id_dfr0[] = {
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
|
|
S_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0xf), /* PerfMon */
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
|
|
ARM64_FTR_END,
|
|
};
|
|
|
|
/*
|
|
* Common ftr bits for a 32bit register with all hidden, strict
|
|
* attributes, with 4bit feature fields and a default safe value of
|
|
* 0. Covers the following 32bit registers:
|
|
* id_isar[0-4], id_mmfr[1-3], id_pfr1, mvfr[0-1]
|
|
*/
|
|
static struct arm64_ftr_bits ftr_generic_32bits[] = {
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
|
|
ARM64_FTR_END,
|
|
};
|
|
|
|
static struct arm64_ftr_bits ftr_generic[] = {
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 64, 0),
|
|
ARM64_FTR_END,
|
|
};
|
|
|
|
static struct arm64_ftr_bits ftr_generic32[] = {
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 32, 0),
|
|
ARM64_FTR_END,
|
|
};
|
|
|
|
static struct arm64_ftr_bits ftr_aa64raz[] = {
|
|
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 64, 0),
|
|
ARM64_FTR_END,
|
|
};
|
|
|
|
#define ARM64_FTR_REG(id, table) \
|
|
{ \
|
|
.sys_id = id, \
|
|
.name = #id, \
|
|
.ftr_bits = &((table)[0]), \
|
|
}
|
|
|
|
static struct arm64_ftr_reg arm64_ftr_regs[] = {
|
|
|
|
/* Op1 = 0, CRn = 0, CRm = 1 */
|
|
ARM64_FTR_REG(SYS_ID_PFR0_EL1, ftr_id_pfr0),
|
|
ARM64_FTR_REG(SYS_ID_PFR1_EL1, ftr_generic_32bits),
|
|
ARM64_FTR_REG(SYS_ID_DFR0_EL1, ftr_id_dfr0),
|
|
ARM64_FTR_REG(SYS_ID_MMFR0_EL1, ftr_id_mmfr0),
|
|
ARM64_FTR_REG(SYS_ID_MMFR1_EL1, ftr_generic_32bits),
|
|
ARM64_FTR_REG(SYS_ID_MMFR2_EL1, ftr_generic_32bits),
|
|
ARM64_FTR_REG(SYS_ID_MMFR3_EL1, ftr_generic_32bits),
|
|
|
|
/* Op1 = 0, CRn = 0, CRm = 2 */
|
|
ARM64_FTR_REG(SYS_ID_ISAR0_EL1, ftr_generic_32bits),
|
|
ARM64_FTR_REG(SYS_ID_ISAR1_EL1, ftr_generic_32bits),
|
|
ARM64_FTR_REG(SYS_ID_ISAR2_EL1, ftr_generic_32bits),
|
|
ARM64_FTR_REG(SYS_ID_ISAR3_EL1, ftr_generic_32bits),
|
|
ARM64_FTR_REG(SYS_ID_ISAR4_EL1, ftr_generic_32bits),
|
|
ARM64_FTR_REG(SYS_ID_ISAR5_EL1, ftr_id_isar5),
|
|
ARM64_FTR_REG(SYS_ID_MMFR4_EL1, ftr_id_mmfr4),
|
|
|
|
/* Op1 = 0, CRn = 0, CRm = 3 */
|
|
ARM64_FTR_REG(SYS_MVFR0_EL1, ftr_generic_32bits),
|
|
ARM64_FTR_REG(SYS_MVFR1_EL1, ftr_generic_32bits),
|
|
ARM64_FTR_REG(SYS_MVFR2_EL1, ftr_mvfr2),
|
|
|
|
/* Op1 = 0, CRn = 0, CRm = 4 */
|
|
ARM64_FTR_REG(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0),
|
|
ARM64_FTR_REG(SYS_ID_AA64PFR1_EL1, ftr_aa64raz),
|
|
|
|
/* Op1 = 0, CRn = 0, CRm = 5 */
|
|
ARM64_FTR_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0),
|
|
ARM64_FTR_REG(SYS_ID_AA64DFR1_EL1, ftr_generic),
|
|
|
|
/* Op1 = 0, CRn = 0, CRm = 6 */
|
|
ARM64_FTR_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0),
|
|
ARM64_FTR_REG(SYS_ID_AA64ISAR1_EL1, ftr_aa64raz),
|
|
|
|
/* Op1 = 0, CRn = 0, CRm = 7 */
|
|
ARM64_FTR_REG(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0),
|
|
ARM64_FTR_REG(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1),
|
|
ARM64_FTR_REG(SYS_ID_AA64MMFR2_EL1, ftr_id_aa64mmfr2),
|
|
|
|
/* Op1 = 3, CRn = 0, CRm = 0 */
|
|
ARM64_FTR_REG(SYS_CTR_EL0, ftr_ctr),
|
|
ARM64_FTR_REG(SYS_DCZID_EL0, ftr_dczid),
|
|
|
|
/* Op1 = 3, CRn = 14, CRm = 0 */
|
|
ARM64_FTR_REG(SYS_CNTFRQ_EL0, ftr_generic32),
|
|
};
|
|
|
|
static int search_cmp_ftr_reg(const void *id, const void *regp)
|
|
{
|
|
return (int)(unsigned long)id - (int)((const struct arm64_ftr_reg *)regp)->sys_id;
|
|
}
|
|
|
|
/*
|
|
* get_arm64_ftr_reg - Lookup a feature register entry using its
|
|
* sys_reg() encoding. With the array arm64_ftr_regs sorted in the
|
|
* ascending order of sys_id , we use binary search to find a matching
|
|
* entry.
|
|
*
|
|
* returns - Upon success, matching ftr_reg entry for id.
|
|
* - NULL on failure. It is upto the caller to decide
|
|
* the impact of a failure.
|
|
*/
|
|
static struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id)
|
|
{
|
|
return bsearch((const void *)(unsigned long)sys_id,
|
|
arm64_ftr_regs,
|
|
ARRAY_SIZE(arm64_ftr_regs),
|
|
sizeof(arm64_ftr_regs[0]),
|
|
search_cmp_ftr_reg);
|
|
}
|
|
|
|
static u64 arm64_ftr_set_value(struct arm64_ftr_bits *ftrp, s64 reg, s64 ftr_val)
|
|
{
|
|
u64 mask = arm64_ftr_mask(ftrp);
|
|
|
|
reg &= ~mask;
|
|
reg |= (ftr_val << ftrp->shift) & mask;
|
|
return reg;
|
|
}
|
|
|
|
static s64 arm64_ftr_safe_value(struct arm64_ftr_bits *ftrp, s64 new, s64 cur)
|
|
{
|
|
s64 ret = 0;
|
|
|
|
switch (ftrp->type) {
|
|
case FTR_EXACT:
|
|
ret = ftrp->safe_val;
|
|
break;
|
|
case FTR_LOWER_SAFE:
|
|
ret = new < cur ? new : cur;
|
|
break;
|
|
case FTR_HIGHER_SAFE:
|
|
ret = new > cur ? new : cur;
|
|
break;
|
|
default:
|
|
BUG();
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int __init sort_cmp_ftr_regs(const void *a, const void *b)
|
|
{
|
|
return ((const struct arm64_ftr_reg *)a)->sys_id -
|
|
((const struct arm64_ftr_reg *)b)->sys_id;
|
|
}
|
|
|
|
static void __init swap_ftr_regs(void *a, void *b, int size)
|
|
{
|
|
struct arm64_ftr_reg tmp = *(struct arm64_ftr_reg *)a;
|
|
*(struct arm64_ftr_reg *)a = *(struct arm64_ftr_reg *)b;
|
|
*(struct arm64_ftr_reg *)b = tmp;
|
|
}
|
|
|
|
static void __init sort_ftr_regs(void)
|
|
{
|
|
/* Keep the array sorted so that we can do the binary search */
|
|
sort(arm64_ftr_regs,
|
|
ARRAY_SIZE(arm64_ftr_regs),
|
|
sizeof(arm64_ftr_regs[0]),
|
|
sort_cmp_ftr_regs,
|
|
swap_ftr_regs);
|
|
}
|
|
|
|
/*
|
|
* Initialise the CPU feature register from Boot CPU values.
|
|
* Also initiliases the strict_mask for the register.
|
|
*/
|
|
static void __init init_cpu_ftr_reg(u32 sys_reg, u64 new)
|
|
{
|
|
u64 val = 0;
|
|
u64 strict_mask = ~0x0ULL;
|
|
struct arm64_ftr_bits *ftrp;
|
|
struct arm64_ftr_reg *reg = get_arm64_ftr_reg(sys_reg);
|
|
|
|
BUG_ON(!reg);
|
|
|
|
for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
|
|
s64 ftr_new = arm64_ftr_value(ftrp, new);
|
|
|
|
val = arm64_ftr_set_value(ftrp, val, ftr_new);
|
|
if (!ftrp->strict)
|
|
strict_mask &= ~arm64_ftr_mask(ftrp);
|
|
}
|
|
reg->sys_val = val;
|
|
reg->strict_mask = strict_mask;
|
|
}
|
|
|
|
void __init init_cpu_features(struct cpuinfo_arm64 *info)
|
|
{
|
|
/* Before we start using the tables, make sure it is sorted */
|
|
sort_ftr_regs();
|
|
|
|
init_cpu_ftr_reg(SYS_CTR_EL0, info->reg_ctr);
|
|
init_cpu_ftr_reg(SYS_DCZID_EL0, info->reg_dczid);
|
|
init_cpu_ftr_reg(SYS_CNTFRQ_EL0, info->reg_cntfrq);
|
|
init_cpu_ftr_reg(SYS_ID_AA64DFR0_EL1, info->reg_id_aa64dfr0);
|
|
init_cpu_ftr_reg(SYS_ID_AA64DFR1_EL1, info->reg_id_aa64dfr1);
|
|
init_cpu_ftr_reg(SYS_ID_AA64ISAR0_EL1, info->reg_id_aa64isar0);
|
|
init_cpu_ftr_reg(SYS_ID_AA64ISAR1_EL1, info->reg_id_aa64isar1);
|
|
init_cpu_ftr_reg(SYS_ID_AA64MMFR0_EL1, info->reg_id_aa64mmfr0);
|
|
init_cpu_ftr_reg(SYS_ID_AA64MMFR1_EL1, info->reg_id_aa64mmfr1);
|
|
init_cpu_ftr_reg(SYS_ID_AA64MMFR2_EL1, info->reg_id_aa64mmfr2);
|
|
init_cpu_ftr_reg(SYS_ID_AA64PFR0_EL1, info->reg_id_aa64pfr0);
|
|
init_cpu_ftr_reg(SYS_ID_AA64PFR1_EL1, info->reg_id_aa64pfr1);
|
|
|
|
if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
|
|
init_cpu_ftr_reg(SYS_ID_DFR0_EL1, info->reg_id_dfr0);
|
|
init_cpu_ftr_reg(SYS_ID_ISAR0_EL1, info->reg_id_isar0);
|
|
init_cpu_ftr_reg(SYS_ID_ISAR1_EL1, info->reg_id_isar1);
|
|
init_cpu_ftr_reg(SYS_ID_ISAR2_EL1, info->reg_id_isar2);
|
|
init_cpu_ftr_reg(SYS_ID_ISAR3_EL1, info->reg_id_isar3);
|
|
init_cpu_ftr_reg(SYS_ID_ISAR4_EL1, info->reg_id_isar4);
|
|
init_cpu_ftr_reg(SYS_ID_ISAR5_EL1, info->reg_id_isar5);
|
|
init_cpu_ftr_reg(SYS_ID_MMFR0_EL1, info->reg_id_mmfr0);
|
|
init_cpu_ftr_reg(SYS_ID_MMFR1_EL1, info->reg_id_mmfr1);
|
|
init_cpu_ftr_reg(SYS_ID_MMFR2_EL1, info->reg_id_mmfr2);
|
|
init_cpu_ftr_reg(SYS_ID_MMFR3_EL1, info->reg_id_mmfr3);
|
|
init_cpu_ftr_reg(SYS_ID_PFR0_EL1, info->reg_id_pfr0);
|
|
init_cpu_ftr_reg(SYS_ID_PFR1_EL1, info->reg_id_pfr1);
|
|
init_cpu_ftr_reg(SYS_MVFR0_EL1, info->reg_mvfr0);
|
|
init_cpu_ftr_reg(SYS_MVFR1_EL1, info->reg_mvfr1);
|
|
init_cpu_ftr_reg(SYS_MVFR2_EL1, info->reg_mvfr2);
|
|
}
|
|
|
|
}
|
|
|
|
static void update_cpu_ftr_reg(struct arm64_ftr_reg *reg, u64 new)
|
|
{
|
|
struct arm64_ftr_bits *ftrp;
|
|
|
|
for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
|
|
s64 ftr_cur = arm64_ftr_value(ftrp, reg->sys_val);
|
|
s64 ftr_new = arm64_ftr_value(ftrp, new);
|
|
|
|
if (ftr_cur == ftr_new)
|
|
continue;
|
|
/* Find a safe value */
|
|
ftr_new = arm64_ftr_safe_value(ftrp, ftr_new, ftr_cur);
|
|
reg->sys_val = arm64_ftr_set_value(ftrp, reg->sys_val, ftr_new);
|
|
}
|
|
|
|
}
|
|
|
|
static int check_update_ftr_reg(u32 sys_id, int cpu, u64 val, u64 boot)
|
|
{
|
|
struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
|
|
|
|
BUG_ON(!regp);
|
|
update_cpu_ftr_reg(regp, val);
|
|
if ((boot & regp->strict_mask) == (val & regp->strict_mask))
|
|
return 0;
|
|
pr_warn("SANITY CHECK: Unexpected variation in %s. Boot CPU: %#016llx, CPU%d: %#016llx\n",
|
|
regp->name, boot, cpu, val);
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Update system wide CPU feature registers with the values from a
|
|
* non-boot CPU. Also performs SANITY checks to make sure that there
|
|
* aren't any insane variations from that of the boot CPU.
|
|
*/
|
|
void update_cpu_features(int cpu,
|
|
struct cpuinfo_arm64 *info,
|
|
struct cpuinfo_arm64 *boot)
|
|
{
|
|
int taint = 0;
|
|
|
|
/*
|
|
* The kernel can handle differing I-cache policies, but otherwise
|
|
* caches should look identical. Userspace JITs will make use of
|
|
* *minLine.
|
|
*/
|
|
taint |= check_update_ftr_reg(SYS_CTR_EL0, cpu,
|
|
info->reg_ctr, boot->reg_ctr);
|
|
|
|
/*
|
|
* Userspace may perform DC ZVA instructions. Mismatched block sizes
|
|
* could result in too much or too little memory being zeroed if a
|
|
* process is preempted and migrated between CPUs.
|
|
*/
|
|
taint |= check_update_ftr_reg(SYS_DCZID_EL0, cpu,
|
|
info->reg_dczid, boot->reg_dczid);
|
|
|
|
/* If different, timekeeping will be broken (especially with KVM) */
|
|
taint |= check_update_ftr_reg(SYS_CNTFRQ_EL0, cpu,
|
|
info->reg_cntfrq, boot->reg_cntfrq);
|
|
|
|
/*
|
|
* The kernel uses self-hosted debug features and expects CPUs to
|
|
* support identical debug features. We presently need CTX_CMPs, WRPs,
|
|
* and BRPs to be identical.
|
|
* ID_AA64DFR1 is currently RES0.
|
|
*/
|
|
taint |= check_update_ftr_reg(SYS_ID_AA64DFR0_EL1, cpu,
|
|
info->reg_id_aa64dfr0, boot->reg_id_aa64dfr0);
|
|
taint |= check_update_ftr_reg(SYS_ID_AA64DFR1_EL1, cpu,
|
|
info->reg_id_aa64dfr1, boot->reg_id_aa64dfr1);
|
|
/*
|
|
* Even in big.LITTLE, processors should be identical instruction-set
|
|
* wise.
|
|
*/
|
|
taint |= check_update_ftr_reg(SYS_ID_AA64ISAR0_EL1, cpu,
|
|
info->reg_id_aa64isar0, boot->reg_id_aa64isar0);
|
|
taint |= check_update_ftr_reg(SYS_ID_AA64ISAR1_EL1, cpu,
|
|
info->reg_id_aa64isar1, boot->reg_id_aa64isar1);
|
|
|
|
/*
|
|
* Differing PARange support is fine as long as all peripherals and
|
|
* memory are mapped within the minimum PARange of all CPUs.
|
|
* Linux should not care about secure memory.
|
|
*/
|
|
taint |= check_update_ftr_reg(SYS_ID_AA64MMFR0_EL1, cpu,
|
|
info->reg_id_aa64mmfr0, boot->reg_id_aa64mmfr0);
|
|
taint |= check_update_ftr_reg(SYS_ID_AA64MMFR1_EL1, cpu,
|
|
info->reg_id_aa64mmfr1, boot->reg_id_aa64mmfr1);
|
|
taint |= check_update_ftr_reg(SYS_ID_AA64MMFR2_EL1, cpu,
|
|
info->reg_id_aa64mmfr2, boot->reg_id_aa64mmfr2);
|
|
|
|
/*
|
|
* EL3 is not our concern.
|
|
* ID_AA64PFR1 is currently RES0.
|
|
*/
|
|
taint |= check_update_ftr_reg(SYS_ID_AA64PFR0_EL1, cpu,
|
|
info->reg_id_aa64pfr0, boot->reg_id_aa64pfr0);
|
|
taint |= check_update_ftr_reg(SYS_ID_AA64PFR1_EL1, cpu,
|
|
info->reg_id_aa64pfr1, boot->reg_id_aa64pfr1);
|
|
|
|
/*
|
|
* If we have AArch32, we care about 32-bit features for compat.
|
|
* If the system doesn't support AArch32, don't update them.
|
|
*/
|
|
if (id_aa64pfr0_32bit_el0(read_system_reg(SYS_ID_AA64PFR0_EL1)) &&
|
|
id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
|
|
|
|
taint |= check_update_ftr_reg(SYS_ID_DFR0_EL1, cpu,
|
|
info->reg_id_dfr0, boot->reg_id_dfr0);
|
|
taint |= check_update_ftr_reg(SYS_ID_ISAR0_EL1, cpu,
|
|
info->reg_id_isar0, boot->reg_id_isar0);
|
|
taint |= check_update_ftr_reg(SYS_ID_ISAR1_EL1, cpu,
|
|
info->reg_id_isar1, boot->reg_id_isar1);
|
|
taint |= check_update_ftr_reg(SYS_ID_ISAR2_EL1, cpu,
|
|
info->reg_id_isar2, boot->reg_id_isar2);
|
|
taint |= check_update_ftr_reg(SYS_ID_ISAR3_EL1, cpu,
|
|
info->reg_id_isar3, boot->reg_id_isar3);
|
|
taint |= check_update_ftr_reg(SYS_ID_ISAR4_EL1, cpu,
|
|
info->reg_id_isar4, boot->reg_id_isar4);
|
|
taint |= check_update_ftr_reg(SYS_ID_ISAR5_EL1, cpu,
|
|
info->reg_id_isar5, boot->reg_id_isar5);
|
|
|
|
/*
|
|
* Regardless of the value of the AuxReg field, the AIFSR, ADFSR, and
|
|
* ACTLR formats could differ across CPUs and therefore would have to
|
|
* be trapped for virtualization anyway.
|
|
*/
|
|
taint |= check_update_ftr_reg(SYS_ID_MMFR0_EL1, cpu,
|
|
info->reg_id_mmfr0, boot->reg_id_mmfr0);
|
|
taint |= check_update_ftr_reg(SYS_ID_MMFR1_EL1, cpu,
|
|
info->reg_id_mmfr1, boot->reg_id_mmfr1);
|
|
taint |= check_update_ftr_reg(SYS_ID_MMFR2_EL1, cpu,
|
|
info->reg_id_mmfr2, boot->reg_id_mmfr2);
|
|
taint |= check_update_ftr_reg(SYS_ID_MMFR3_EL1, cpu,
|
|
info->reg_id_mmfr3, boot->reg_id_mmfr3);
|
|
taint |= check_update_ftr_reg(SYS_ID_PFR0_EL1, cpu,
|
|
info->reg_id_pfr0, boot->reg_id_pfr0);
|
|
taint |= check_update_ftr_reg(SYS_ID_PFR1_EL1, cpu,
|
|
info->reg_id_pfr1, boot->reg_id_pfr1);
|
|
taint |= check_update_ftr_reg(SYS_MVFR0_EL1, cpu,
|
|
info->reg_mvfr0, boot->reg_mvfr0);
|
|
taint |= check_update_ftr_reg(SYS_MVFR1_EL1, cpu,
|
|
info->reg_mvfr1, boot->reg_mvfr1);
|
|
taint |= check_update_ftr_reg(SYS_MVFR2_EL1, cpu,
|
|
info->reg_mvfr2, boot->reg_mvfr2);
|
|
}
|
|
|
|
/*
|
|
* Mismatched CPU features are a recipe for disaster. Don't even
|
|
* pretend to support them.
|
|
*/
|
|
WARN_TAINT_ONCE(taint, TAINT_CPU_OUT_OF_SPEC,
|
|
"Unsupported CPU feature variation.\n");
|
|
}
|
|
|
|
u64 read_system_reg(u32 id)
|
|
{
|
|
struct arm64_ftr_reg *regp = get_arm64_ftr_reg(id);
|
|
|
|
/* We shouldn't get a request for an unsupported register */
|
|
BUG_ON(!regp);
|
|
return regp->sys_val;
|
|
}
|
|
|
|
/*
|
|
* __raw_read_system_reg() - Used by a STARTING cpu before cpuinfo is populated.
|
|
* Read the system register on the current CPU
|
|
*/
|
|
static u64 __raw_read_system_reg(u32 sys_id)
|
|
{
|
|
switch (sys_id) {
|
|
case SYS_ID_PFR0_EL1: return read_cpuid(ID_PFR0_EL1);
|
|
case SYS_ID_PFR1_EL1: return read_cpuid(ID_PFR1_EL1);
|
|
case SYS_ID_DFR0_EL1: return read_cpuid(ID_DFR0_EL1);
|
|
case SYS_ID_MMFR0_EL1: return read_cpuid(ID_MMFR0_EL1);
|
|
case SYS_ID_MMFR1_EL1: return read_cpuid(ID_MMFR1_EL1);
|
|
case SYS_ID_MMFR2_EL1: return read_cpuid(ID_MMFR2_EL1);
|
|
case SYS_ID_MMFR3_EL1: return read_cpuid(ID_MMFR3_EL1);
|
|
case SYS_ID_ISAR0_EL1: return read_cpuid(ID_ISAR0_EL1);
|
|
case SYS_ID_ISAR1_EL1: return read_cpuid(ID_ISAR1_EL1);
|
|
case SYS_ID_ISAR2_EL1: return read_cpuid(ID_ISAR2_EL1);
|
|
case SYS_ID_ISAR3_EL1: return read_cpuid(ID_ISAR3_EL1);
|
|
case SYS_ID_ISAR4_EL1: return read_cpuid(ID_ISAR4_EL1);
|
|
case SYS_ID_ISAR5_EL1: return read_cpuid(ID_ISAR4_EL1);
|
|
case SYS_MVFR0_EL1: return read_cpuid(MVFR0_EL1);
|
|
case SYS_MVFR1_EL1: return read_cpuid(MVFR1_EL1);
|
|
case SYS_MVFR2_EL1: return read_cpuid(MVFR2_EL1);
|
|
|
|
case SYS_ID_AA64PFR0_EL1: return read_cpuid(ID_AA64PFR0_EL1);
|
|
case SYS_ID_AA64PFR1_EL1: return read_cpuid(ID_AA64PFR0_EL1);
|
|
case SYS_ID_AA64DFR0_EL1: return read_cpuid(ID_AA64DFR0_EL1);
|
|
case SYS_ID_AA64DFR1_EL1: return read_cpuid(ID_AA64DFR0_EL1);
|
|
case SYS_ID_AA64MMFR0_EL1: return read_cpuid(ID_AA64MMFR0_EL1);
|
|
case SYS_ID_AA64MMFR1_EL1: return read_cpuid(ID_AA64MMFR1_EL1);
|
|
case SYS_ID_AA64MMFR2_EL1: return read_cpuid(ID_AA64MMFR2_EL1);
|
|
case SYS_ID_AA64ISAR0_EL1: return read_cpuid(ID_AA64ISAR0_EL1);
|
|
case SYS_ID_AA64ISAR1_EL1: return read_cpuid(ID_AA64ISAR1_EL1);
|
|
|
|
case SYS_CNTFRQ_EL0: return read_cpuid(CNTFRQ_EL0);
|
|
case SYS_CTR_EL0: return read_cpuid(CTR_EL0);
|
|
case SYS_DCZID_EL0: return read_cpuid(DCZID_EL0);
|
|
default:
|
|
BUG();
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
#include <linux/irqchip/arm-gic-v3.h>
|
|
|
|
static bool
|
|
feature_matches(u64 reg, const struct arm64_cpu_capabilities *entry)
|
|
{
|
|
int val = cpuid_feature_extract_field(reg, entry->field_pos, entry->sign);
|
|
|
|
return val >= entry->min_field_value;
|
|
}
|
|
|
|
static bool
|
|
has_cpuid_feature(const struct arm64_cpu_capabilities *entry, int scope)
|
|
{
|
|
u64 val;
|
|
|
|
WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
|
|
if (scope == SCOPE_SYSTEM)
|
|
val = read_system_reg(entry->sys_reg);
|
|
else
|
|
val = __raw_read_system_reg(entry->sys_reg);
|
|
|
|
return feature_matches(val, entry);
|
|
}
|
|
|
|
static bool has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities *entry, int scope)
|
|
{
|
|
bool has_sre;
|
|
|
|
if (!has_cpuid_feature(entry, scope))
|
|
return false;
|
|
|
|
has_sre = gic_enable_sre();
|
|
if (!has_sre)
|
|
pr_warn_once("%s present but disabled by higher exception level\n",
|
|
entry->desc);
|
|
|
|
return has_sre;
|
|
}
|
|
|
|
static bool has_no_hw_prefetch(const struct arm64_cpu_capabilities *entry, int __unused)
|
|
{
|
|
u32 midr = read_cpuid_id();
|
|
u32 rv_min, rv_max;
|
|
|
|
/* Cavium ThunderX pass 1.x and 2.x */
|
|
rv_min = 0;
|
|
rv_max = (1 << MIDR_VARIANT_SHIFT) | MIDR_REVISION_MASK;
|
|
|
|
return MIDR_IS_CPU_MODEL_RANGE(midr, MIDR_THUNDERX, rv_min, rv_max);
|
|
}
|
|
|
|
static bool runs_at_el2(const struct arm64_cpu_capabilities *entry, int __unused)
|
|
{
|
|
return is_kernel_in_hyp_mode();
|
|
}
|
|
|
|
static const struct arm64_cpu_capabilities arm64_features[] = {
|
|
{
|
|
.desc = "GIC system register CPU interface",
|
|
.capability = ARM64_HAS_SYSREG_GIC_CPUIF,
|
|
.def_scope = SCOPE_SYSTEM,
|
|
.matches = has_useable_gicv3_cpuif,
|
|
.sys_reg = SYS_ID_AA64PFR0_EL1,
|
|
.field_pos = ID_AA64PFR0_GIC_SHIFT,
|
|
.sign = FTR_UNSIGNED,
|
|
.min_field_value = 1,
|
|
},
|
|
#ifdef CONFIG_ARM64_PAN
|
|
{
|
|
.desc = "Privileged Access Never",
|
|
.capability = ARM64_HAS_PAN,
|
|
.def_scope = SCOPE_SYSTEM,
|
|
.matches = has_cpuid_feature,
|
|
.sys_reg = SYS_ID_AA64MMFR1_EL1,
|
|
.field_pos = ID_AA64MMFR1_PAN_SHIFT,
|
|
.sign = FTR_UNSIGNED,
|
|
.min_field_value = 1,
|
|
.enable = cpu_enable_pan,
|
|
},
|
|
#endif /* CONFIG_ARM64_PAN */
|
|
#if defined(CONFIG_AS_LSE) && defined(CONFIG_ARM64_LSE_ATOMICS)
|
|
{
|
|
.desc = "LSE atomic instructions",
|
|
.capability = ARM64_HAS_LSE_ATOMICS,
|
|
.def_scope = SCOPE_SYSTEM,
|
|
.matches = has_cpuid_feature,
|
|
.sys_reg = SYS_ID_AA64ISAR0_EL1,
|
|
.field_pos = ID_AA64ISAR0_ATOMICS_SHIFT,
|
|
.sign = FTR_UNSIGNED,
|
|
.min_field_value = 2,
|
|
},
|
|
#endif /* CONFIG_AS_LSE && CONFIG_ARM64_LSE_ATOMICS */
|
|
{
|
|
.desc = "Software prefetching using PRFM",
|
|
.capability = ARM64_HAS_NO_HW_PREFETCH,
|
|
.def_scope = SCOPE_SYSTEM,
|
|
.matches = has_no_hw_prefetch,
|
|
},
|
|
#ifdef CONFIG_ARM64_UAO
|
|
{
|
|
.desc = "User Access Override",
|
|
.capability = ARM64_HAS_UAO,
|
|
.def_scope = SCOPE_SYSTEM,
|
|
.matches = has_cpuid_feature,
|
|
.sys_reg = SYS_ID_AA64MMFR2_EL1,
|
|
.field_pos = ID_AA64MMFR2_UAO_SHIFT,
|
|
.min_field_value = 1,
|
|
.enable = cpu_enable_uao,
|
|
},
|
|
#endif /* CONFIG_ARM64_UAO */
|
|
#ifdef CONFIG_ARM64_PAN
|
|
{
|
|
.capability = ARM64_ALT_PAN_NOT_UAO,
|
|
.def_scope = SCOPE_SYSTEM,
|
|
.matches = cpufeature_pan_not_uao,
|
|
},
|
|
#endif /* CONFIG_ARM64_PAN */
|
|
{
|
|
.desc = "Virtualization Host Extensions",
|
|
.capability = ARM64_HAS_VIRT_HOST_EXTN,
|
|
.def_scope = SCOPE_SYSTEM,
|
|
.matches = runs_at_el2,
|
|
},
|
|
{
|
|
.desc = "32-bit EL0 Support",
|
|
.capability = ARM64_HAS_32BIT_EL0,
|
|
.def_scope = SCOPE_SYSTEM,
|
|
.matches = has_cpuid_feature,
|
|
.sys_reg = SYS_ID_AA64PFR0_EL1,
|
|
.sign = FTR_UNSIGNED,
|
|
.field_pos = ID_AA64PFR0_EL0_SHIFT,
|
|
.min_field_value = ID_AA64PFR0_EL0_32BIT_64BIT,
|
|
},
|
|
{},
|
|
};
|
|
|
|
#define HWCAP_CAP(reg, field, s, min_value, type, cap) \
|
|
{ \
|
|
.desc = #cap, \
|
|
.def_scope = SCOPE_SYSTEM, \
|
|
.matches = has_cpuid_feature, \
|
|
.sys_reg = reg, \
|
|
.field_pos = field, \
|
|
.sign = s, \
|
|
.min_field_value = min_value, \
|
|
.hwcap_type = type, \
|
|
.hwcap = cap, \
|
|
}
|
|
|
|
static const struct arm64_cpu_capabilities arm64_elf_hwcaps[] = {
|
|
HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_PMULL),
|
|
HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_AES),
|
|
HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA1),
|
|
HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA2),
|
|
HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_CRC32),
|
|
HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_ATOMICS_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_ATOMICS),
|
|
HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, HWCAP_FP),
|
|
HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, HWCAP_FPHP),
|
|
HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, HWCAP_ASIMD),
|
|
HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, HWCAP_ASIMDHP),
|
|
{},
|
|
};
|
|
|
|
static const struct arm64_cpu_capabilities compat_elf_hwcaps[] = {
|
|
#ifdef CONFIG_COMPAT
|
|
HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_PMULL),
|
|
HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_AES),
|
|
HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA1),
|
|
HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA2),
|
|
HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_CRC32),
|
|
#endif
|
|
{},
|
|
};
|
|
|
|
static void __init cap_set_elf_hwcap(const struct arm64_cpu_capabilities *cap)
|
|
{
|
|
switch (cap->hwcap_type) {
|
|
case CAP_HWCAP:
|
|
elf_hwcap |= cap->hwcap;
|
|
break;
|
|
#ifdef CONFIG_COMPAT
|
|
case CAP_COMPAT_HWCAP:
|
|
compat_elf_hwcap |= (u32)cap->hwcap;
|
|
break;
|
|
case CAP_COMPAT_HWCAP2:
|
|
compat_elf_hwcap2 |= (u32)cap->hwcap;
|
|
break;
|
|
#endif
|
|
default:
|
|
WARN_ON(1);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Check if we have a particular HWCAP enabled */
|
|
static bool cpus_have_elf_hwcap(const struct arm64_cpu_capabilities *cap)
|
|
{
|
|
bool rc;
|
|
|
|
switch (cap->hwcap_type) {
|
|
case CAP_HWCAP:
|
|
rc = (elf_hwcap & cap->hwcap) != 0;
|
|
break;
|
|
#ifdef CONFIG_COMPAT
|
|
case CAP_COMPAT_HWCAP:
|
|
rc = (compat_elf_hwcap & (u32)cap->hwcap) != 0;
|
|
break;
|
|
case CAP_COMPAT_HWCAP2:
|
|
rc = (compat_elf_hwcap2 & (u32)cap->hwcap) != 0;
|
|
break;
|
|
#endif
|
|
default:
|
|
WARN_ON(1);
|
|
rc = false;
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
static void __init setup_elf_hwcaps(const struct arm64_cpu_capabilities *hwcaps)
|
|
{
|
|
for (; hwcaps->matches; hwcaps++)
|
|
if (hwcaps->matches(hwcaps, hwcaps->def_scope))
|
|
cap_set_elf_hwcap(hwcaps);
|
|
}
|
|
|
|
void update_cpu_capabilities(const struct arm64_cpu_capabilities *caps,
|
|
const char *info)
|
|
{
|
|
for (; caps->matches; caps++) {
|
|
if (!caps->matches(caps, caps->def_scope))
|
|
continue;
|
|
|
|
if (!cpus_have_cap(caps->capability) && caps->desc)
|
|
pr_info("%s %s\n", info, caps->desc);
|
|
cpus_set_cap(caps->capability);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Run through the enabled capabilities and enable() it on all active
|
|
* CPUs
|
|
*/
|
|
void __init enable_cpu_capabilities(const struct arm64_cpu_capabilities *caps)
|
|
{
|
|
for (; caps->matches; caps++)
|
|
if (caps->enable && cpus_have_cap(caps->capability))
|
|
on_each_cpu(caps->enable, NULL, true);
|
|
}
|
|
|
|
/*
|
|
* Flag to indicate if we have computed the system wide
|
|
* capabilities based on the boot time active CPUs. This
|
|
* will be used to determine if a new booting CPU should
|
|
* go through the verification process to make sure that it
|
|
* supports the system capabilities, without using a hotplug
|
|
* notifier.
|
|
*/
|
|
static bool sys_caps_initialised;
|
|
|
|
static inline void set_sys_caps_initialised(void)
|
|
{
|
|
sys_caps_initialised = true;
|
|
}
|
|
|
|
/*
|
|
* Check for CPU features that are used in early boot
|
|
* based on the Boot CPU value.
|
|
*/
|
|
static void check_early_cpu_features(void)
|
|
{
|
|
verify_cpu_run_el();
|
|
verify_cpu_asid_bits();
|
|
}
|
|
|
|
static void
|
|
verify_local_elf_hwcaps(const struct arm64_cpu_capabilities *caps)
|
|
{
|
|
|
|
for (; caps->matches; caps++)
|
|
if (cpus_have_elf_hwcap(caps) && !caps->matches(caps, SCOPE_LOCAL_CPU)) {
|
|
pr_crit("CPU%d: missing HWCAP: %s\n",
|
|
smp_processor_id(), caps->desc);
|
|
cpu_die_early();
|
|
}
|
|
}
|
|
|
|
static void
|
|
verify_local_cpu_features(const struct arm64_cpu_capabilities *caps)
|
|
{
|
|
for (; caps->matches; caps++) {
|
|
if (!cpus_have_cap(caps->capability))
|
|
continue;
|
|
/*
|
|
* If the new CPU misses an advertised feature, we cannot proceed
|
|
* further, park the cpu.
|
|
*/
|
|
if (!caps->matches(caps, SCOPE_LOCAL_CPU)) {
|
|
pr_crit("CPU%d: missing feature: %s\n",
|
|
smp_processor_id(), caps->desc);
|
|
cpu_die_early();
|
|
}
|
|
if (caps->enable)
|
|
caps->enable(NULL);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Run through the enabled system capabilities and enable() it on this CPU.
|
|
* The capabilities were decided based on the available CPUs at the boot time.
|
|
* Any new CPU should match the system wide status of the capability. If the
|
|
* new CPU doesn't have a capability which the system now has enabled, we
|
|
* cannot do anything to fix it up and could cause unexpected failures. So
|
|
* we park the CPU.
|
|
*/
|
|
void verify_local_cpu_capabilities(void)
|
|
{
|
|
|
|
check_early_cpu_features();
|
|
|
|
/*
|
|
* If we haven't computed the system capabilities, there is nothing
|
|
* to verify.
|
|
*/
|
|
if (!sys_caps_initialised)
|
|
return;
|
|
|
|
verify_local_cpu_errata();
|
|
verify_local_cpu_features(arm64_features);
|
|
verify_local_elf_hwcaps(arm64_elf_hwcaps);
|
|
if (system_supports_32bit_el0())
|
|
verify_local_elf_hwcaps(compat_elf_hwcaps);
|
|
}
|
|
|
|
static void __init setup_feature_capabilities(void)
|
|
{
|
|
update_cpu_capabilities(arm64_features, "detected feature:");
|
|
enable_cpu_capabilities(arm64_features);
|
|
}
|
|
|
|
/*
|
|
* Check if the current CPU has a given feature capability.
|
|
* Should be called from non-preemptible context.
|
|
*/
|
|
bool this_cpu_has_cap(unsigned int cap)
|
|
{
|
|
const struct arm64_cpu_capabilities *caps;
|
|
|
|
if (WARN_ON(preemptible()))
|
|
return false;
|
|
|
|
for (caps = arm64_features; caps->desc; caps++)
|
|
if (caps->capability == cap && caps->matches)
|
|
return caps->matches(caps, SCOPE_LOCAL_CPU);
|
|
|
|
return false;
|
|
}
|
|
|
|
void __init setup_cpu_features(void)
|
|
{
|
|
u32 cwg;
|
|
int cls;
|
|
|
|
/* Set the CPU feature capabilies */
|
|
setup_feature_capabilities();
|
|
enable_errata_workarounds();
|
|
setup_elf_hwcaps(arm64_elf_hwcaps);
|
|
|
|
if (system_supports_32bit_el0())
|
|
setup_elf_hwcaps(compat_elf_hwcaps);
|
|
|
|
/* Advertise that we have computed the system capabilities */
|
|
set_sys_caps_initialised();
|
|
|
|
/*
|
|
* Check for sane CTR_EL0.CWG value.
|
|
*/
|
|
cwg = cache_type_cwg();
|
|
cls = cache_line_size();
|
|
if (!cwg)
|
|
pr_warn("No Cache Writeback Granule information, assuming cache line size %d\n",
|
|
cls);
|
|
if (L1_CACHE_BYTES < cls)
|
|
pr_warn("L1_CACHE_BYTES smaller than the Cache Writeback Granule (%d < %d)\n",
|
|
L1_CACHE_BYTES, cls);
|
|
}
|
|
|
|
static bool __maybe_unused
|
|
cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry, int __unused)
|
|
{
|
|
return (cpus_have_cap(ARM64_HAS_PAN) && !cpus_have_cap(ARM64_HAS_UAO));
|
|
}
|