mirror of
https://github.com/torvalds/linux.git
synced 2024-12-21 10:31:54 +00:00
14864a52cd
The big chunks here are the updates for oxygen driver for Xonar DG devices, which were slipped from the previous pull request. They are device-specific and thus not too dangerous. Other than that, all patches are small bug fixes, mainly for Samsung build fixes, a few HD-audio enhancements, and other misc ASoC fixes. (And this time ASoC merge is less than Octopus, lucky seven :) -----BEGIN PGP SIGNATURE----- Version: GnuPG v2.0.22 (GNU/Linux) iQIcBAABAgAGBQJS69k+AAoJEGwxgFQ9KSmk6pMQAIbo4mBrMzdkt7elEErpdpDj 4P11/owXL+/gD+fTVXyTubvalXN9MATUWnHbLqi9qTYWx7u/RjnP32PQ0aMSyq1r PJq99Or+H+H2ui1dTsgIg2A8pYvbeuzU+Y7UcTusy9IolZNvKTNHVJRL79QQzNrp JTX220K4wLAjrl96fOtJ2gpABSej2kLdJ8Tj+YE7eMzySw+nS18nwoca2l3GPcR4 qAyDQ0owgOWmBBaExSAgC9ck0l6NVSAba9r1ub156Szf0htmv5+pHqv3JJjKVTc/ NmD/XVZxT7jEucPb6tAvmSfAqQBm97mX3nXVKQd3+QlH3pRI0pifS4ZOgRqJUZr/ XZnM5lB17kd7XCBqnik+Nk9EmBRgF5ASRatVE+Mg469i9GBzqQOv0NTEsqL+Vhmb 6tng5hBOV8o3v4/Z3uPVMtTEP+UYj+d8YseleNV5OI7dfjqQPZHWTeCllKl42Rra Ui5P1V1i1KD2jgiqbLR4XYmkMbXY31o5I6BvKb1iJ2jVn0igtrFpcD28Z+ufENLk /618pjpJH9WswwzYTAB1lijbM2Wuh7KF/UwsA02OyT4glwVYkMjEYQybpeQQ31sA vNiOLiy0epAw/8FBvg2nVl8n5EdFCiLlczqFhcabBEvO/RAqg4w9ipUBlR6OMo0+ JQTwuvLLjyimHkQdUcmO =QB98 -----END PGP SIGNATURE----- Merge tag 'sound-fix-3.14-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tiwai/sound Pull sound fixes from Takashi Iwai: "The big chunks here are the updates for oxygen driver for Xonar DG devices, which were slipped from the previous pull request. They are device-specific and thus not too dangerous. Other than that, all patches are small bug fixes, mainly for Samsung build fixes, a few HD-audio enhancements, and other misc ASoC fixes. (And this time ASoC merge is less than Octopus, lucky seven :)" * tag 'sound-fix-3.14-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tiwai/sound: (42 commits) ALSA: hda/hdmi - allow PIN_OUT to be dynamically enabled ALSA: hda - add headset mic detect quirks for another Dell laptop ALSA: oxygen: Xonar DG(X): cleanup and minor changes ALSA: oxygen: Xonar DG(X): modify high-pass filter control ALSA: oxygen: Xonar DG(X): modify input select functions ALSA: oxygen: Xonar DG(X): modify capture volume functions ALSA: oxygen: Xonar DG(X): use headphone volume control ALSA: oxygen: Xonar DG(X): modify playback output select ALSA: oxygen: Xonar DG(X): capture from I2S channel 1, not 2 ALSA: oxygen: Xonar DG(X): move the mixer code into another file ALSA: oxygen: modify CS4245 register dumping function ALSA: oxygen: modify adjust_dg_dac_routing function ALSA: oxygen: Xonar DG(X): modify DAC/ADC parameters function ALSA: oxygen: Xonar DG(X): modify initialization functions ALSA: oxygen: Xonar DG(X): add new CS4245 SPI functions ALSA: oxygen: additional definitions for the Xonar DG/DGX card ALSA: oxygen: change description of the xonar_dg.c file ALSA: oxygen: export oxygen_update_dac_routing symbol ALSA: oxygen: add mute mask for the OXYGEN_PLAY_ROUTING register ALSA: oxygen: modify the SPI writing function ...
1618 lines
44 KiB
C
1618 lines
44 KiB
C
/*
|
|
* Freescale SSI ALSA SoC Digital Audio Interface (DAI) driver
|
|
*
|
|
* Author: Timur Tabi <timur@freescale.com>
|
|
*
|
|
* Copyright 2007-2010 Freescale Semiconductor, Inc.
|
|
*
|
|
* This file is licensed under the terms of the GNU General Public License
|
|
* version 2. This program is licensed "as is" without any warranty of any
|
|
* kind, whether express or implied.
|
|
*
|
|
*
|
|
* Some notes why imx-pcm-fiq is used instead of DMA on some boards:
|
|
*
|
|
* The i.MX SSI core has some nasty limitations in AC97 mode. While most
|
|
* sane processor vendors have a FIFO per AC97 slot, the i.MX has only
|
|
* one FIFO which combines all valid receive slots. We cannot even select
|
|
* which slots we want to receive. The WM9712 with which this driver
|
|
* was developed with always sends GPIO status data in slot 12 which
|
|
* we receive in our (PCM-) data stream. The only chance we have is to
|
|
* manually skip this data in the FIQ handler. With sampling rates different
|
|
* from 48000Hz not every frame has valid receive data, so the ratio
|
|
* between pcm data and GPIO status data changes. Our FIQ handler is not
|
|
* able to handle this, hence this driver only works with 48000Hz sampling
|
|
* rate.
|
|
* Reading and writing AC97 registers is another challenge. The core
|
|
* provides us status bits when the read register is updated with *another*
|
|
* value. When we read the same register two times (and the register still
|
|
* contains the same value) these status bits are not set. We work
|
|
* around this by not polling these bits but only wait a fixed delay.
|
|
*/
|
|
|
|
#include <linux/init.h>
|
|
#include <linux/io.h>
|
|
#include <linux/module.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/clk.h>
|
|
#include <linux/debugfs.h>
|
|
#include <linux/device.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/of_address.h>
|
|
#include <linux/of_irq.h>
|
|
#include <linux/of_platform.h>
|
|
|
|
#include <sound/core.h>
|
|
#include <sound/pcm.h>
|
|
#include <sound/pcm_params.h>
|
|
#include <sound/initval.h>
|
|
#include <sound/soc.h>
|
|
#include <sound/dmaengine_pcm.h>
|
|
|
|
#include "fsl_ssi.h"
|
|
#include "imx-pcm.h"
|
|
|
|
#ifdef PPC
|
|
#define read_ssi(addr) in_be32(addr)
|
|
#define write_ssi(val, addr) out_be32(addr, val)
|
|
#define write_ssi_mask(addr, clear, set) clrsetbits_be32(addr, clear, set)
|
|
#else
|
|
#define read_ssi(addr) readl(addr)
|
|
#define write_ssi(val, addr) writel(val, addr)
|
|
/*
|
|
* FIXME: Proper locking should be added at write_ssi_mask caller level
|
|
* to ensure this register read/modify/write sequence is race free.
|
|
*/
|
|
static inline void write_ssi_mask(u32 __iomem *addr, u32 clear, u32 set)
|
|
{
|
|
u32 val = readl(addr);
|
|
val = (val & ~clear) | set;
|
|
writel(val, addr);
|
|
}
|
|
#endif
|
|
|
|
/**
|
|
* FSLSSI_I2S_RATES: sample rates supported by the I2S
|
|
*
|
|
* This driver currently only supports the SSI running in I2S slave mode,
|
|
* which means the codec determines the sample rate. Therefore, we tell
|
|
* ALSA that we support all rates and let the codec driver decide what rates
|
|
* are really supported.
|
|
*/
|
|
#define FSLSSI_I2S_RATES SNDRV_PCM_RATE_CONTINUOUS
|
|
|
|
/**
|
|
* FSLSSI_I2S_FORMATS: audio formats supported by the SSI
|
|
*
|
|
* This driver currently only supports the SSI running in I2S slave mode.
|
|
*
|
|
* The SSI has a limitation in that the samples must be in the same byte
|
|
* order as the host CPU. This is because when multiple bytes are written
|
|
* to the STX register, the bytes and bits must be written in the same
|
|
* order. The STX is a shift register, so all the bits need to be aligned
|
|
* (bit-endianness must match byte-endianness). Processors typically write
|
|
* the bits within a byte in the same order that the bytes of a word are
|
|
* written in. So if the host CPU is big-endian, then only big-endian
|
|
* samples will be written to STX properly.
|
|
*/
|
|
#ifdef __BIG_ENDIAN
|
|
#define FSLSSI_I2S_FORMATS (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_S16_BE | \
|
|
SNDRV_PCM_FMTBIT_S18_3BE | SNDRV_PCM_FMTBIT_S20_3BE | \
|
|
SNDRV_PCM_FMTBIT_S24_3BE | SNDRV_PCM_FMTBIT_S24_BE)
|
|
#else
|
|
#define FSLSSI_I2S_FORMATS (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_S16_LE | \
|
|
SNDRV_PCM_FMTBIT_S18_3LE | SNDRV_PCM_FMTBIT_S20_3LE | \
|
|
SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_S24_LE)
|
|
#endif
|
|
|
|
#define FSLSSI_SIER_DBG_RX_FLAGS (CCSR_SSI_SIER_RFF0_EN | \
|
|
CCSR_SSI_SIER_RLS_EN | CCSR_SSI_SIER_RFS_EN | \
|
|
CCSR_SSI_SIER_ROE0_EN | CCSR_SSI_SIER_RFRC_EN)
|
|
#define FSLSSI_SIER_DBG_TX_FLAGS (CCSR_SSI_SIER_TFE0_EN | \
|
|
CCSR_SSI_SIER_TLS_EN | CCSR_SSI_SIER_TFS_EN | \
|
|
CCSR_SSI_SIER_TUE0_EN | CCSR_SSI_SIER_TFRC_EN)
|
|
#define FSLSSI_SISR_MASK (FSLSSI_SIER_DBG_RX_FLAGS | FSLSSI_SIER_DBG_TX_FLAGS)
|
|
|
|
|
|
enum fsl_ssi_type {
|
|
FSL_SSI_MCP8610,
|
|
FSL_SSI_MX21,
|
|
FSL_SSI_MX35,
|
|
FSL_SSI_MX51,
|
|
};
|
|
|
|
struct fsl_ssi_reg_val {
|
|
u32 sier;
|
|
u32 srcr;
|
|
u32 stcr;
|
|
u32 scr;
|
|
};
|
|
|
|
struct fsl_ssi_rxtx_reg_val {
|
|
struct fsl_ssi_reg_val rx;
|
|
struct fsl_ssi_reg_val tx;
|
|
};
|
|
|
|
/**
|
|
* fsl_ssi_private: per-SSI private data
|
|
*
|
|
* @ssi: pointer to the SSI's registers
|
|
* @ssi_phys: physical address of the SSI registers
|
|
* @irq: IRQ of this SSI
|
|
* @playback: the number of playback streams opened
|
|
* @capture: the number of capture streams opened
|
|
* @cpu_dai: the CPU DAI for this device
|
|
* @dev_attr: the sysfs device attribute structure
|
|
* @stats: SSI statistics
|
|
* @name: name for this device
|
|
*/
|
|
struct fsl_ssi_private {
|
|
struct ccsr_ssi __iomem *ssi;
|
|
dma_addr_t ssi_phys;
|
|
unsigned int irq;
|
|
unsigned int fifo_depth;
|
|
struct snd_soc_dai_driver cpu_dai_drv;
|
|
struct platform_device *pdev;
|
|
|
|
enum fsl_ssi_type hw_type;
|
|
bool new_binding;
|
|
bool ssi_on_imx;
|
|
bool imx_ac97;
|
|
bool use_dma;
|
|
bool baudclk_locked;
|
|
bool irq_stats;
|
|
bool offline_config;
|
|
bool use_dual_fifo;
|
|
u8 i2s_mode;
|
|
spinlock_t baudclk_lock;
|
|
struct clk *baudclk;
|
|
struct clk *clk;
|
|
struct snd_dmaengine_dai_dma_data dma_params_tx;
|
|
struct snd_dmaengine_dai_dma_data dma_params_rx;
|
|
struct imx_dma_data filter_data_tx;
|
|
struct imx_dma_data filter_data_rx;
|
|
struct imx_pcm_fiq_params fiq_params;
|
|
/* Register values for rx/tx configuration */
|
|
struct fsl_ssi_rxtx_reg_val rxtx_reg_val;
|
|
|
|
struct {
|
|
unsigned int rfrc;
|
|
unsigned int tfrc;
|
|
unsigned int cmdau;
|
|
unsigned int cmddu;
|
|
unsigned int rxt;
|
|
unsigned int rdr1;
|
|
unsigned int rdr0;
|
|
unsigned int tde1;
|
|
unsigned int tde0;
|
|
unsigned int roe1;
|
|
unsigned int roe0;
|
|
unsigned int tue1;
|
|
unsigned int tue0;
|
|
unsigned int tfs;
|
|
unsigned int rfs;
|
|
unsigned int tls;
|
|
unsigned int rls;
|
|
unsigned int rff1;
|
|
unsigned int rff0;
|
|
unsigned int tfe1;
|
|
unsigned int tfe0;
|
|
} stats;
|
|
struct dentry *dbg_dir;
|
|
struct dentry *dbg_stats;
|
|
|
|
char name[1];
|
|
};
|
|
|
|
static const struct of_device_id fsl_ssi_ids[] = {
|
|
{ .compatible = "fsl,mpc8610-ssi", .data = (void *) FSL_SSI_MCP8610},
|
|
{ .compatible = "fsl,imx51-ssi", .data = (void *) FSL_SSI_MX51},
|
|
{ .compatible = "fsl,imx35-ssi", .data = (void *) FSL_SSI_MX35},
|
|
{ .compatible = "fsl,imx21-ssi", .data = (void *) FSL_SSI_MX21},
|
|
{}
|
|
};
|
|
MODULE_DEVICE_TABLE(of, fsl_ssi_ids);
|
|
|
|
/**
|
|
* fsl_ssi_isr: SSI interrupt handler
|
|
*
|
|
* Although it's possible to use the interrupt handler to send and receive
|
|
* data to/from the SSI, we use the DMA instead. Programming is more
|
|
* complicated, but the performance is much better.
|
|
*
|
|
* This interrupt handler is used only to gather statistics.
|
|
*
|
|
* @irq: IRQ of the SSI device
|
|
* @dev_id: pointer to the ssi_private structure for this SSI device
|
|
*/
|
|
static irqreturn_t fsl_ssi_isr(int irq, void *dev_id)
|
|
{
|
|
struct fsl_ssi_private *ssi_private = dev_id;
|
|
struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
|
|
irqreturn_t ret = IRQ_NONE;
|
|
__be32 sisr;
|
|
__be32 sisr2;
|
|
__be32 sisr_write_mask = 0;
|
|
|
|
switch (ssi_private->hw_type) {
|
|
case FSL_SSI_MX21:
|
|
sisr_write_mask = 0;
|
|
break;
|
|
|
|
case FSL_SSI_MCP8610:
|
|
case FSL_SSI_MX35:
|
|
sisr_write_mask = CCSR_SSI_SISR_RFRC | CCSR_SSI_SISR_TFRC |
|
|
CCSR_SSI_SISR_ROE0 | CCSR_SSI_SISR_ROE1 |
|
|
CCSR_SSI_SISR_TUE0 | CCSR_SSI_SISR_TUE1;
|
|
break;
|
|
|
|
case FSL_SSI_MX51:
|
|
sisr_write_mask = CCSR_SSI_SISR_ROE0 | CCSR_SSI_SISR_ROE1 |
|
|
CCSR_SSI_SISR_TUE0 | CCSR_SSI_SISR_TUE1;
|
|
break;
|
|
}
|
|
|
|
/* We got an interrupt, so read the status register to see what we
|
|
were interrupted for. We mask it with the Interrupt Enable register
|
|
so that we only check for events that we're interested in.
|
|
*/
|
|
sisr = read_ssi(&ssi->sisr) & FSLSSI_SISR_MASK;
|
|
|
|
if (sisr & CCSR_SSI_SISR_RFRC) {
|
|
ssi_private->stats.rfrc++;
|
|
ret = IRQ_HANDLED;
|
|
}
|
|
|
|
if (sisr & CCSR_SSI_SISR_TFRC) {
|
|
ssi_private->stats.tfrc++;
|
|
ret = IRQ_HANDLED;
|
|
}
|
|
|
|
if (sisr & CCSR_SSI_SISR_CMDAU) {
|
|
ssi_private->stats.cmdau++;
|
|
ret = IRQ_HANDLED;
|
|
}
|
|
|
|
if (sisr & CCSR_SSI_SISR_CMDDU) {
|
|
ssi_private->stats.cmddu++;
|
|
ret = IRQ_HANDLED;
|
|
}
|
|
|
|
if (sisr & CCSR_SSI_SISR_RXT) {
|
|
ssi_private->stats.rxt++;
|
|
ret = IRQ_HANDLED;
|
|
}
|
|
|
|
if (sisr & CCSR_SSI_SISR_RDR1) {
|
|
ssi_private->stats.rdr1++;
|
|
ret = IRQ_HANDLED;
|
|
}
|
|
|
|
if (sisr & CCSR_SSI_SISR_RDR0) {
|
|
ssi_private->stats.rdr0++;
|
|
ret = IRQ_HANDLED;
|
|
}
|
|
|
|
if (sisr & CCSR_SSI_SISR_TDE1) {
|
|
ssi_private->stats.tde1++;
|
|
ret = IRQ_HANDLED;
|
|
}
|
|
|
|
if (sisr & CCSR_SSI_SISR_TDE0) {
|
|
ssi_private->stats.tde0++;
|
|
ret = IRQ_HANDLED;
|
|
}
|
|
|
|
if (sisr & CCSR_SSI_SISR_ROE1) {
|
|
ssi_private->stats.roe1++;
|
|
ret = IRQ_HANDLED;
|
|
}
|
|
|
|
if (sisr & CCSR_SSI_SISR_ROE0) {
|
|
ssi_private->stats.roe0++;
|
|
ret = IRQ_HANDLED;
|
|
}
|
|
|
|
if (sisr & CCSR_SSI_SISR_TUE1) {
|
|
ssi_private->stats.tue1++;
|
|
ret = IRQ_HANDLED;
|
|
}
|
|
|
|
if (sisr & CCSR_SSI_SISR_TUE0) {
|
|
ssi_private->stats.tue0++;
|
|
ret = IRQ_HANDLED;
|
|
}
|
|
|
|
if (sisr & CCSR_SSI_SISR_TFS) {
|
|
ssi_private->stats.tfs++;
|
|
ret = IRQ_HANDLED;
|
|
}
|
|
|
|
if (sisr & CCSR_SSI_SISR_RFS) {
|
|
ssi_private->stats.rfs++;
|
|
ret = IRQ_HANDLED;
|
|
}
|
|
|
|
if (sisr & CCSR_SSI_SISR_TLS) {
|
|
ssi_private->stats.tls++;
|
|
ret = IRQ_HANDLED;
|
|
}
|
|
|
|
if (sisr & CCSR_SSI_SISR_RLS) {
|
|
ssi_private->stats.rls++;
|
|
ret = IRQ_HANDLED;
|
|
}
|
|
|
|
if (sisr & CCSR_SSI_SISR_RFF1) {
|
|
ssi_private->stats.rff1++;
|
|
ret = IRQ_HANDLED;
|
|
}
|
|
|
|
if (sisr & CCSR_SSI_SISR_RFF0) {
|
|
ssi_private->stats.rff0++;
|
|
ret = IRQ_HANDLED;
|
|
}
|
|
|
|
if (sisr & CCSR_SSI_SISR_TFE1) {
|
|
ssi_private->stats.tfe1++;
|
|
ret = IRQ_HANDLED;
|
|
}
|
|
|
|
if (sisr & CCSR_SSI_SISR_TFE0) {
|
|
ssi_private->stats.tfe0++;
|
|
ret = IRQ_HANDLED;
|
|
}
|
|
|
|
sisr2 = sisr & sisr_write_mask;
|
|
/* Clear the bits that we set */
|
|
if (sisr2)
|
|
write_ssi(sisr2, &ssi->sisr);
|
|
|
|
return ret;
|
|
}
|
|
|
|
#if IS_ENABLED(CONFIG_DEBUG_FS)
|
|
/* Show the statistics of a flag only if its interrupt is enabled. The
|
|
* compiler will optimze this code to a no-op if the interrupt is not
|
|
* enabled.
|
|
*/
|
|
#define SIER_SHOW(flag, name) \
|
|
do { \
|
|
if (FSLSSI_SISR_MASK & CCSR_SSI_SIER_##flag) \
|
|
seq_printf(s, #name "=%u\n", ssi_private->stats.name); \
|
|
} while (0)
|
|
|
|
|
|
/**
|
|
* fsl_sysfs_ssi_show: display SSI statistics
|
|
*
|
|
* Display the statistics for the current SSI device. To avoid confusion,
|
|
* we only show those counts that are enabled.
|
|
*/
|
|
static int fsl_ssi_stats_show(struct seq_file *s, void *unused)
|
|
{
|
|
struct fsl_ssi_private *ssi_private = s->private;
|
|
|
|
SIER_SHOW(RFRC_EN, rfrc);
|
|
SIER_SHOW(TFRC_EN, tfrc);
|
|
SIER_SHOW(CMDAU_EN, cmdau);
|
|
SIER_SHOW(CMDDU_EN, cmddu);
|
|
SIER_SHOW(RXT_EN, rxt);
|
|
SIER_SHOW(RDR1_EN, rdr1);
|
|
SIER_SHOW(RDR0_EN, rdr0);
|
|
SIER_SHOW(TDE1_EN, tde1);
|
|
SIER_SHOW(TDE0_EN, tde0);
|
|
SIER_SHOW(ROE1_EN, roe1);
|
|
SIER_SHOW(ROE0_EN, roe0);
|
|
SIER_SHOW(TUE1_EN, tue1);
|
|
SIER_SHOW(TUE0_EN, tue0);
|
|
SIER_SHOW(TFS_EN, tfs);
|
|
SIER_SHOW(RFS_EN, rfs);
|
|
SIER_SHOW(TLS_EN, tls);
|
|
SIER_SHOW(RLS_EN, rls);
|
|
SIER_SHOW(RFF1_EN, rff1);
|
|
SIER_SHOW(RFF0_EN, rff0);
|
|
SIER_SHOW(TFE1_EN, tfe1);
|
|
SIER_SHOW(TFE0_EN, tfe0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int fsl_ssi_stats_open(struct inode *inode, struct file *file)
|
|
{
|
|
return single_open(file, fsl_ssi_stats_show, inode->i_private);
|
|
}
|
|
|
|
static const struct file_operations fsl_ssi_stats_ops = {
|
|
.open = fsl_ssi_stats_open,
|
|
.read = seq_read,
|
|
.llseek = seq_lseek,
|
|
.release = single_release,
|
|
};
|
|
|
|
static int fsl_ssi_debugfs_create(struct fsl_ssi_private *ssi_private,
|
|
struct device *dev)
|
|
{
|
|
ssi_private->dbg_dir = debugfs_create_dir(dev_name(dev), NULL);
|
|
if (!ssi_private->dbg_dir)
|
|
return -ENOMEM;
|
|
|
|
ssi_private->dbg_stats = debugfs_create_file("stats", S_IRUGO,
|
|
ssi_private->dbg_dir, ssi_private, &fsl_ssi_stats_ops);
|
|
if (!ssi_private->dbg_stats) {
|
|
debugfs_remove(ssi_private->dbg_dir);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void fsl_ssi_debugfs_remove(struct fsl_ssi_private *ssi_private)
|
|
{
|
|
debugfs_remove(ssi_private->dbg_stats);
|
|
debugfs_remove(ssi_private->dbg_dir);
|
|
}
|
|
|
|
#else
|
|
|
|
static int fsl_ssi_debugfs_create(struct fsl_ssi_private *ssi_private,
|
|
struct device *dev)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static void fsl_ssi_debugfs_remove(struct fsl_ssi_private *ssi_private)
|
|
{
|
|
}
|
|
|
|
#endif /* IS_ENABLED(CONFIG_DEBUG_FS) */
|
|
|
|
/*
|
|
* Enable/Disable all rx/tx config flags at once.
|
|
*/
|
|
static void fsl_ssi_rxtx_config(struct fsl_ssi_private *ssi_private,
|
|
bool enable)
|
|
{
|
|
struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
|
|
struct fsl_ssi_rxtx_reg_val *vals = &ssi_private->rxtx_reg_val;
|
|
|
|
if (enable) {
|
|
write_ssi_mask(&ssi->sier, 0, vals->rx.sier | vals->tx.sier);
|
|
write_ssi_mask(&ssi->srcr, 0, vals->rx.srcr | vals->tx.srcr);
|
|
write_ssi_mask(&ssi->stcr, 0, vals->rx.stcr | vals->tx.stcr);
|
|
} else {
|
|
write_ssi_mask(&ssi->srcr, vals->rx.srcr | vals->tx.srcr, 0);
|
|
write_ssi_mask(&ssi->stcr, vals->rx.stcr | vals->tx.stcr, 0);
|
|
write_ssi_mask(&ssi->sier, vals->rx.sier | vals->tx.sier, 0);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Enable/Disable a ssi configuration. You have to pass either
|
|
* ssi_private->rxtx_reg_val.rx or tx as vals parameter.
|
|
*/
|
|
static void fsl_ssi_config(struct fsl_ssi_private *ssi_private, bool enable,
|
|
struct fsl_ssi_reg_val *vals)
|
|
{
|
|
struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
|
|
struct fsl_ssi_reg_val *avals;
|
|
u32 scr_val = read_ssi(&ssi->scr);
|
|
int nr_active_streams = !!(scr_val & CCSR_SSI_SCR_TE) +
|
|
!!(scr_val & CCSR_SSI_SCR_RE);
|
|
|
|
/* Find the other direction values rx or tx which we do not want to
|
|
* modify */
|
|
if (&ssi_private->rxtx_reg_val.rx == vals)
|
|
avals = &ssi_private->rxtx_reg_val.tx;
|
|
else
|
|
avals = &ssi_private->rxtx_reg_val.rx;
|
|
|
|
/* If vals should be disabled, start with disabling the unit */
|
|
if (!enable) {
|
|
u32 scr = vals->scr & (vals->scr ^ avals->scr);
|
|
write_ssi_mask(&ssi->scr, scr, 0);
|
|
}
|
|
|
|
/*
|
|
* We are running on a SoC which does not support online SSI
|
|
* reconfiguration, so we have to enable all necessary flags at once
|
|
* even if we do not use them later (capture and playback configuration)
|
|
*/
|
|
if (ssi_private->offline_config) {
|
|
if ((enable && !nr_active_streams) ||
|
|
(!enable && nr_active_streams == 1))
|
|
fsl_ssi_rxtx_config(ssi_private, enable);
|
|
|
|
goto config_done;
|
|
}
|
|
|
|
/*
|
|
* Configure single direction units while the SSI unit is running
|
|
* (online configuration)
|
|
*/
|
|
if (enable) {
|
|
write_ssi_mask(&ssi->sier, 0, vals->sier);
|
|
write_ssi_mask(&ssi->srcr, 0, vals->srcr);
|
|
write_ssi_mask(&ssi->stcr, 0, vals->stcr);
|
|
} else {
|
|
u32 sier;
|
|
u32 srcr;
|
|
u32 stcr;
|
|
|
|
/*
|
|
* Disabling the necessary flags for one of rx/tx while the
|
|
* other stream is active is a little bit more difficult. We
|
|
* have to disable only those flags that differ between both
|
|
* streams (rx XOR tx) and that are set in the stream that is
|
|
* disabled now. Otherwise we could alter flags of the other
|
|
* stream
|
|
*/
|
|
|
|
/* These assignments are simply vals without bits set in avals*/
|
|
sier = vals->sier & (vals->sier ^ avals->sier);
|
|
srcr = vals->srcr & (vals->srcr ^ avals->srcr);
|
|
stcr = vals->stcr & (vals->stcr ^ avals->stcr);
|
|
|
|
write_ssi_mask(&ssi->srcr, srcr, 0);
|
|
write_ssi_mask(&ssi->stcr, stcr, 0);
|
|
write_ssi_mask(&ssi->sier, sier, 0);
|
|
}
|
|
|
|
config_done:
|
|
/* Enabling of subunits is done after configuration */
|
|
if (enable)
|
|
write_ssi_mask(&ssi->scr, 0, vals->scr);
|
|
}
|
|
|
|
|
|
static void fsl_ssi_rx_config(struct fsl_ssi_private *ssi_private, bool enable)
|
|
{
|
|
fsl_ssi_config(ssi_private, enable, &ssi_private->rxtx_reg_val.rx);
|
|
}
|
|
|
|
static void fsl_ssi_tx_config(struct fsl_ssi_private *ssi_private, bool enable)
|
|
{
|
|
fsl_ssi_config(ssi_private, enable, &ssi_private->rxtx_reg_val.tx);
|
|
}
|
|
|
|
/*
|
|
* Setup rx/tx register values used to enable/disable the streams. These will
|
|
* be used later in fsl_ssi_config to setup the streams without the need to
|
|
* check for all different SSI modes.
|
|
*/
|
|
static void fsl_ssi_setup_reg_vals(struct fsl_ssi_private *ssi_private)
|
|
{
|
|
struct fsl_ssi_rxtx_reg_val *reg = &ssi_private->rxtx_reg_val;
|
|
|
|
reg->rx.sier = CCSR_SSI_SIER_RFF0_EN;
|
|
reg->rx.srcr = CCSR_SSI_SRCR_RFEN0;
|
|
reg->rx.scr = 0;
|
|
reg->tx.sier = CCSR_SSI_SIER_TFE0_EN;
|
|
reg->tx.stcr = CCSR_SSI_STCR_TFEN0;
|
|
reg->tx.scr = 0;
|
|
|
|
if (!ssi_private->imx_ac97) {
|
|
reg->rx.scr = CCSR_SSI_SCR_SSIEN | CCSR_SSI_SCR_RE;
|
|
reg->rx.sier |= CCSR_SSI_SIER_RFF0_EN;
|
|
reg->tx.scr = CCSR_SSI_SCR_SSIEN | CCSR_SSI_SCR_TE;
|
|
reg->tx.sier |= CCSR_SSI_SIER_TFE0_EN;
|
|
}
|
|
|
|
if (ssi_private->use_dma) {
|
|
reg->rx.sier |= CCSR_SSI_SIER_RDMAE;
|
|
reg->tx.sier |= CCSR_SSI_SIER_TDMAE;
|
|
} else {
|
|
reg->rx.sier |= CCSR_SSI_SIER_RIE;
|
|
reg->tx.sier |= CCSR_SSI_SIER_TIE;
|
|
}
|
|
|
|
reg->rx.sier |= FSLSSI_SIER_DBG_RX_FLAGS;
|
|
reg->tx.sier |= FSLSSI_SIER_DBG_TX_FLAGS;
|
|
}
|
|
|
|
static void fsl_ssi_setup_ac97(struct fsl_ssi_private *ssi_private)
|
|
{
|
|
struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
|
|
|
|
/*
|
|
* Setup the clock control register
|
|
*/
|
|
write_ssi(CCSR_SSI_SxCCR_WL(17) | CCSR_SSI_SxCCR_DC(13),
|
|
&ssi->stccr);
|
|
write_ssi(CCSR_SSI_SxCCR_WL(17) | CCSR_SSI_SxCCR_DC(13),
|
|
&ssi->srccr);
|
|
|
|
/*
|
|
* Enable AC97 mode and startup the SSI
|
|
*/
|
|
write_ssi(CCSR_SSI_SACNT_AC97EN | CCSR_SSI_SACNT_FV,
|
|
&ssi->sacnt);
|
|
write_ssi(0xff, &ssi->saccdis);
|
|
write_ssi(0x300, &ssi->saccen);
|
|
|
|
/*
|
|
* Enable SSI, Transmit and Receive. AC97 has to communicate with the
|
|
* codec before a stream is started.
|
|
*/
|
|
write_ssi_mask(&ssi->scr, 0, CCSR_SSI_SCR_SSIEN |
|
|
CCSR_SSI_SCR_TE | CCSR_SSI_SCR_RE);
|
|
|
|
write_ssi(CCSR_SSI_SOR_WAIT(3), &ssi->sor);
|
|
}
|
|
|
|
static int fsl_ssi_setup(struct fsl_ssi_private *ssi_private)
|
|
{
|
|
struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
|
|
u8 wm;
|
|
int synchronous = ssi_private->cpu_dai_drv.symmetric_rates;
|
|
|
|
fsl_ssi_setup_reg_vals(ssi_private);
|
|
|
|
if (ssi_private->imx_ac97)
|
|
ssi_private->i2s_mode = CCSR_SSI_SCR_I2S_MODE_NORMAL | CCSR_SSI_SCR_NET;
|
|
else
|
|
ssi_private->i2s_mode = CCSR_SSI_SCR_I2S_MODE_SLAVE;
|
|
|
|
/*
|
|
* Section 16.5 of the MPC8610 reference manual says that the SSI needs
|
|
* to be disabled before updating the registers we set here.
|
|
*/
|
|
write_ssi_mask(&ssi->scr, CCSR_SSI_SCR_SSIEN, 0);
|
|
|
|
/*
|
|
* Program the SSI into I2S Slave Non-Network Synchronous mode. Also
|
|
* enable the transmit and receive FIFO.
|
|
*
|
|
* FIXME: Little-endian samples require a different shift dir
|
|
*/
|
|
write_ssi_mask(&ssi->scr,
|
|
CCSR_SSI_SCR_I2S_MODE_MASK | CCSR_SSI_SCR_SYN,
|
|
CCSR_SSI_SCR_TFR_CLK_DIS |
|
|
ssi_private->i2s_mode |
|
|
(synchronous ? CCSR_SSI_SCR_SYN : 0));
|
|
|
|
write_ssi(CCSR_SSI_STCR_TXBIT0 | CCSR_SSI_STCR_TFSI |
|
|
CCSR_SSI_STCR_TEFS | CCSR_SSI_STCR_TSCKP, &ssi->stcr);
|
|
|
|
write_ssi(CCSR_SSI_SRCR_RXBIT0 | CCSR_SSI_SRCR_RFSI |
|
|
CCSR_SSI_SRCR_REFS | CCSR_SSI_SRCR_RSCKP, &ssi->srcr);
|
|
|
|
/*
|
|
* The DC and PM bits are only used if the SSI is the clock master.
|
|
*/
|
|
|
|
/*
|
|
* Set the watermark for transmit FIFI 0 and receive FIFO 0. We don't
|
|
* use FIFO 1. We program the transmit water to signal a DMA transfer
|
|
* if there are only two (or fewer) elements left in the FIFO. Two
|
|
* elements equals one frame (left channel, right channel). This value,
|
|
* however, depends on the depth of the transmit buffer.
|
|
*
|
|
* We set the watermark on the same level as the DMA burstsize. For
|
|
* fiq it is probably better to use the biggest possible watermark
|
|
* size.
|
|
*/
|
|
if (ssi_private->use_dma)
|
|
wm = ssi_private->fifo_depth - 2;
|
|
else
|
|
wm = ssi_private->fifo_depth;
|
|
|
|
write_ssi(CCSR_SSI_SFCSR_TFWM0(wm) | CCSR_SSI_SFCSR_RFWM0(wm) |
|
|
CCSR_SSI_SFCSR_TFWM1(wm) | CCSR_SSI_SFCSR_RFWM1(wm),
|
|
&ssi->sfcsr);
|
|
|
|
/*
|
|
* For ac97 interrupts are enabled with the startup of the substream
|
|
* because it is also running without an active substream. Normally SSI
|
|
* is only enabled when there is a substream.
|
|
*/
|
|
if (ssi_private->imx_ac97)
|
|
fsl_ssi_setup_ac97(ssi_private);
|
|
|
|
/*
|
|
* Set a default slot number so that there is no need for those common
|
|
* cases like I2S mode to call the extra set_tdm_slot() any more.
|
|
*/
|
|
if (!ssi_private->imx_ac97) {
|
|
write_ssi_mask(&ssi->stccr, CCSR_SSI_SxCCR_DC_MASK,
|
|
CCSR_SSI_SxCCR_DC(2));
|
|
write_ssi_mask(&ssi->srccr, CCSR_SSI_SxCCR_DC_MASK,
|
|
CCSR_SSI_SxCCR_DC(2));
|
|
}
|
|
|
|
if (ssi_private->use_dual_fifo) {
|
|
write_ssi_mask(&ssi->srcr, 0, CCSR_SSI_SRCR_RFEN1);
|
|
write_ssi_mask(&ssi->stcr, 0, CCSR_SSI_STCR_TFEN1);
|
|
write_ssi_mask(&ssi->scr, 0, CCSR_SSI_SCR_TCH_EN);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/**
|
|
* fsl_ssi_startup: create a new substream
|
|
*
|
|
* This is the first function called when a stream is opened.
|
|
*
|
|
* If this is the first stream open, then grab the IRQ and program most of
|
|
* the SSI registers.
|
|
*/
|
|
static int fsl_ssi_startup(struct snd_pcm_substream *substream,
|
|
struct snd_soc_dai *dai)
|
|
{
|
|
struct snd_soc_pcm_runtime *rtd = substream->private_data;
|
|
struct fsl_ssi_private *ssi_private =
|
|
snd_soc_dai_get_drvdata(rtd->cpu_dai);
|
|
unsigned long flags;
|
|
|
|
/* First, we only do fsl_ssi_setup() when SSI is going to be active.
|
|
* Second, fsl_ssi_setup was already called by ac97_init earlier if
|
|
* the driver is in ac97 mode.
|
|
*/
|
|
if (!dai->active && !ssi_private->imx_ac97) {
|
|
fsl_ssi_setup(ssi_private);
|
|
spin_lock_irqsave(&ssi_private->baudclk_lock, flags);
|
|
ssi_private->baudclk_locked = false;
|
|
spin_unlock_irqrestore(&ssi_private->baudclk_lock, flags);
|
|
}
|
|
|
|
/* When using dual fifo mode, it is safer to ensure an even period
|
|
* size. If appearing to an odd number while DMA always starts its
|
|
* task from fifo0, fifo1 would be neglected at the end of each
|
|
* period. But SSI would still access fifo1 with an invalid data.
|
|
*/
|
|
if (ssi_private->use_dual_fifo)
|
|
snd_pcm_hw_constraint_step(substream->runtime, 0,
|
|
SNDRV_PCM_HW_PARAM_PERIOD_SIZE, 2);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* fsl_ssi_hw_params - program the sample size
|
|
*
|
|
* Most of the SSI registers have been programmed in the startup function,
|
|
* but the word length must be programmed here. Unfortunately, programming
|
|
* the SxCCR.WL bits requires the SSI to be temporarily disabled. This can
|
|
* cause a problem with supporting simultaneous playback and capture. If
|
|
* the SSI is already playing a stream, then that stream may be temporarily
|
|
* stopped when you start capture.
|
|
*
|
|
* Note: The SxCCR.DC and SxCCR.PM bits are only used if the SSI is the
|
|
* clock master.
|
|
*/
|
|
static int fsl_ssi_hw_params(struct snd_pcm_substream *substream,
|
|
struct snd_pcm_hw_params *hw_params, struct snd_soc_dai *cpu_dai)
|
|
{
|
|
struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(cpu_dai);
|
|
struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
|
|
unsigned int channels = params_channels(hw_params);
|
|
unsigned int sample_size =
|
|
snd_pcm_format_width(params_format(hw_params));
|
|
u32 wl = CCSR_SSI_SxCCR_WL(sample_size);
|
|
int enabled = read_ssi(&ssi->scr) & CCSR_SSI_SCR_SSIEN;
|
|
|
|
/*
|
|
* If we're in synchronous mode, and the SSI is already enabled,
|
|
* then STCCR is already set properly.
|
|
*/
|
|
if (enabled && ssi_private->cpu_dai_drv.symmetric_rates)
|
|
return 0;
|
|
|
|
/*
|
|
* FIXME: The documentation says that SxCCR[WL] should not be
|
|
* modified while the SSI is enabled. The only time this can
|
|
* happen is if we're trying to do simultaneous playback and
|
|
* capture in asynchronous mode. Unfortunately, I have been enable
|
|
* to get that to work at all on the P1022DS. Therefore, we don't
|
|
* bother to disable/enable the SSI when setting SxCCR[WL], because
|
|
* the SSI will stop anyway. Maybe one day, this will get fixed.
|
|
*/
|
|
|
|
/* In synchronous mode, the SSI uses STCCR for capture */
|
|
if ((substream->stream == SNDRV_PCM_STREAM_PLAYBACK) ||
|
|
ssi_private->cpu_dai_drv.symmetric_rates)
|
|
write_ssi_mask(&ssi->stccr, CCSR_SSI_SxCCR_WL_MASK, wl);
|
|
else
|
|
write_ssi_mask(&ssi->srccr, CCSR_SSI_SxCCR_WL_MASK, wl);
|
|
|
|
if (!ssi_private->imx_ac97)
|
|
write_ssi_mask(&ssi->scr,
|
|
CCSR_SSI_SCR_NET | CCSR_SSI_SCR_I2S_MODE_MASK,
|
|
channels == 1 ? 0 : ssi_private->i2s_mode);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* fsl_ssi_set_dai_fmt - configure Digital Audio Interface Format.
|
|
*/
|
|
static int fsl_ssi_set_dai_fmt(struct snd_soc_dai *cpu_dai, unsigned int fmt)
|
|
{
|
|
struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(cpu_dai);
|
|
struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
|
|
u32 strcr = 0, stcr, srcr, scr, mask;
|
|
|
|
scr = read_ssi(&ssi->scr) & ~(CCSR_SSI_SCR_SYN | CCSR_SSI_SCR_I2S_MODE_MASK);
|
|
scr |= CCSR_SSI_SCR_NET;
|
|
|
|
mask = CCSR_SSI_STCR_TXBIT0 | CCSR_SSI_STCR_TFDIR | CCSR_SSI_STCR_TXDIR |
|
|
CCSR_SSI_STCR_TSCKP | CCSR_SSI_STCR_TFSI | CCSR_SSI_STCR_TFSL |
|
|
CCSR_SSI_STCR_TEFS;
|
|
stcr = read_ssi(&ssi->stcr) & ~mask;
|
|
srcr = read_ssi(&ssi->srcr) & ~mask;
|
|
|
|
switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
|
|
case SND_SOC_DAIFMT_I2S:
|
|
switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
|
|
case SND_SOC_DAIFMT_CBS_CFS:
|
|
ssi_private->i2s_mode = CCSR_SSI_SCR_I2S_MODE_MASTER;
|
|
break;
|
|
case SND_SOC_DAIFMT_CBM_CFM:
|
|
ssi_private->i2s_mode = CCSR_SSI_SCR_I2S_MODE_SLAVE;
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
scr |= ssi_private->i2s_mode;
|
|
|
|
/* Data on rising edge of bclk, frame low, 1clk before data */
|
|
strcr |= CCSR_SSI_STCR_TFSI | CCSR_SSI_STCR_TSCKP |
|
|
CCSR_SSI_STCR_TXBIT0 | CCSR_SSI_STCR_TEFS;
|
|
break;
|
|
case SND_SOC_DAIFMT_LEFT_J:
|
|
/* Data on rising edge of bclk, frame high */
|
|
strcr |= CCSR_SSI_STCR_TXBIT0 | CCSR_SSI_STCR_TSCKP;
|
|
break;
|
|
case SND_SOC_DAIFMT_DSP_A:
|
|
/* Data on rising edge of bclk, frame high, 1clk before data */
|
|
strcr |= CCSR_SSI_STCR_TFSL | CCSR_SSI_STCR_TSCKP |
|
|
CCSR_SSI_STCR_TXBIT0 | CCSR_SSI_STCR_TEFS;
|
|
break;
|
|
case SND_SOC_DAIFMT_DSP_B:
|
|
/* Data on rising edge of bclk, frame high */
|
|
strcr |= CCSR_SSI_STCR_TFSL | CCSR_SSI_STCR_TSCKP |
|
|
CCSR_SSI_STCR_TXBIT0;
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* DAI clock inversion */
|
|
switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
|
|
case SND_SOC_DAIFMT_NB_NF:
|
|
/* Nothing to do for both normal cases */
|
|
break;
|
|
case SND_SOC_DAIFMT_IB_NF:
|
|
/* Invert bit clock */
|
|
strcr ^= CCSR_SSI_STCR_TSCKP;
|
|
break;
|
|
case SND_SOC_DAIFMT_NB_IF:
|
|
/* Invert frame clock */
|
|
strcr ^= CCSR_SSI_STCR_TFSI;
|
|
break;
|
|
case SND_SOC_DAIFMT_IB_IF:
|
|
/* Invert both clocks */
|
|
strcr ^= CCSR_SSI_STCR_TSCKP;
|
|
strcr ^= CCSR_SSI_STCR_TFSI;
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* DAI clock master masks */
|
|
switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
|
|
case SND_SOC_DAIFMT_CBS_CFS:
|
|
strcr |= CCSR_SSI_STCR_TFDIR | CCSR_SSI_STCR_TXDIR;
|
|
scr |= CCSR_SSI_SCR_SYS_CLK_EN;
|
|
break;
|
|
case SND_SOC_DAIFMT_CBM_CFM:
|
|
scr &= ~CCSR_SSI_SCR_SYS_CLK_EN;
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
stcr |= strcr;
|
|
srcr |= strcr;
|
|
|
|
if (ssi_private->cpu_dai_drv.symmetric_rates) {
|
|
/* Need to clear RXDIR when using SYNC mode */
|
|
srcr &= ~CCSR_SSI_SRCR_RXDIR;
|
|
scr |= CCSR_SSI_SCR_SYN;
|
|
}
|
|
|
|
write_ssi(stcr, &ssi->stcr);
|
|
write_ssi(srcr, &ssi->srcr);
|
|
write_ssi(scr, &ssi->scr);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* fsl_ssi_set_dai_sysclk - configure Digital Audio Interface bit clock
|
|
*
|
|
* Note: This function can be only called when using SSI as DAI master
|
|
*
|
|
* Quick instruction for parameters:
|
|
* freq: Output BCLK frequency = samplerate * 32 (fixed) * channels
|
|
* dir: SND_SOC_CLOCK_OUT -> TxBCLK, SND_SOC_CLOCK_IN -> RxBCLK.
|
|
*/
|
|
static int fsl_ssi_set_dai_sysclk(struct snd_soc_dai *cpu_dai,
|
|
int clk_id, unsigned int freq, int dir)
|
|
{
|
|
struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(cpu_dai);
|
|
struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
|
|
int synchronous = ssi_private->cpu_dai_drv.symmetric_rates, ret;
|
|
u32 pm = 999, div2, psr, stccr, mask, afreq, factor, i;
|
|
unsigned long flags, clkrate, baudrate, tmprate;
|
|
u64 sub, savesub = 100000;
|
|
|
|
/* Don't apply it to any non-baudclk circumstance */
|
|
if (IS_ERR(ssi_private->baudclk))
|
|
return -EINVAL;
|
|
|
|
/* It should be already enough to divide clock by setting pm alone */
|
|
psr = 0;
|
|
div2 = 0;
|
|
|
|
factor = (div2 + 1) * (7 * psr + 1) * 2;
|
|
|
|
for (i = 0; i < 255; i++) {
|
|
/* The bclk rate must be smaller than 1/5 sysclk rate */
|
|
if (factor * (i + 1) < 5)
|
|
continue;
|
|
|
|
tmprate = freq * factor * (i + 2);
|
|
clkrate = clk_round_rate(ssi_private->baudclk, tmprate);
|
|
|
|
do_div(clkrate, factor);
|
|
afreq = (u32)clkrate / (i + 1);
|
|
|
|
if (freq == afreq)
|
|
sub = 0;
|
|
else if (freq / afreq == 1)
|
|
sub = freq - afreq;
|
|
else if (afreq / freq == 1)
|
|
sub = afreq - freq;
|
|
else
|
|
continue;
|
|
|
|
/* Calculate the fraction */
|
|
sub *= 100000;
|
|
do_div(sub, freq);
|
|
|
|
if (sub < savesub) {
|
|
baudrate = tmprate;
|
|
savesub = sub;
|
|
pm = i;
|
|
}
|
|
|
|
/* We are lucky */
|
|
if (savesub == 0)
|
|
break;
|
|
}
|
|
|
|
/* No proper pm found if it is still remaining the initial value */
|
|
if (pm == 999) {
|
|
dev_err(cpu_dai->dev, "failed to handle the required sysclk\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
stccr = CCSR_SSI_SxCCR_PM(pm + 1) | (div2 ? CCSR_SSI_SxCCR_DIV2 : 0) |
|
|
(psr ? CCSR_SSI_SxCCR_PSR : 0);
|
|
mask = CCSR_SSI_SxCCR_PM_MASK | CCSR_SSI_SxCCR_DIV2 | CCSR_SSI_SxCCR_PSR;
|
|
|
|
if (dir == SND_SOC_CLOCK_OUT || synchronous)
|
|
write_ssi_mask(&ssi->stccr, mask, stccr);
|
|
else
|
|
write_ssi_mask(&ssi->srccr, mask, stccr);
|
|
|
|
spin_lock_irqsave(&ssi_private->baudclk_lock, flags);
|
|
if (!ssi_private->baudclk_locked) {
|
|
ret = clk_set_rate(ssi_private->baudclk, baudrate);
|
|
if (ret) {
|
|
spin_unlock_irqrestore(&ssi_private->baudclk_lock, flags);
|
|
dev_err(cpu_dai->dev, "failed to set baudclk rate\n");
|
|
return -EINVAL;
|
|
}
|
|
ssi_private->baudclk_locked = true;
|
|
}
|
|
spin_unlock_irqrestore(&ssi_private->baudclk_lock, flags);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* fsl_ssi_set_dai_tdm_slot - set TDM slot number
|
|
*
|
|
* Note: This function can be only called when using SSI as DAI master
|
|
*/
|
|
static int fsl_ssi_set_dai_tdm_slot(struct snd_soc_dai *cpu_dai, u32 tx_mask,
|
|
u32 rx_mask, int slots, int slot_width)
|
|
{
|
|
struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(cpu_dai);
|
|
struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
|
|
u32 val;
|
|
|
|
/* The slot number should be >= 2 if using Network mode or I2S mode */
|
|
val = read_ssi(&ssi->scr) & (CCSR_SSI_SCR_I2S_MODE_MASK | CCSR_SSI_SCR_NET);
|
|
if (val && slots < 2) {
|
|
dev_err(cpu_dai->dev, "slot number should be >= 2 in I2S or NET\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
write_ssi_mask(&ssi->stccr, CCSR_SSI_SxCCR_DC_MASK,
|
|
CCSR_SSI_SxCCR_DC(slots));
|
|
write_ssi_mask(&ssi->srccr, CCSR_SSI_SxCCR_DC_MASK,
|
|
CCSR_SSI_SxCCR_DC(slots));
|
|
|
|
/* The register SxMSKs needs SSI to provide essential clock due to
|
|
* hardware design. So we here temporarily enable SSI to set them.
|
|
*/
|
|
val = read_ssi(&ssi->scr) & CCSR_SSI_SCR_SSIEN;
|
|
write_ssi_mask(&ssi->scr, 0, CCSR_SSI_SCR_SSIEN);
|
|
|
|
write_ssi(tx_mask, &ssi->stmsk);
|
|
write_ssi(rx_mask, &ssi->srmsk);
|
|
|
|
write_ssi_mask(&ssi->scr, CCSR_SSI_SCR_SSIEN, val);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* fsl_ssi_trigger: start and stop the DMA transfer.
|
|
*
|
|
* This function is called by ALSA to start, stop, pause, and resume the DMA
|
|
* transfer of data.
|
|
*
|
|
* The DMA channel is in external master start and pause mode, which
|
|
* means the SSI completely controls the flow of data.
|
|
*/
|
|
static int fsl_ssi_trigger(struct snd_pcm_substream *substream, int cmd,
|
|
struct snd_soc_dai *dai)
|
|
{
|
|
struct snd_soc_pcm_runtime *rtd = substream->private_data;
|
|
struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(rtd->cpu_dai);
|
|
struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
|
|
unsigned long flags;
|
|
|
|
switch (cmd) {
|
|
case SNDRV_PCM_TRIGGER_START:
|
|
case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
|
|
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
|
|
fsl_ssi_tx_config(ssi_private, true);
|
|
else
|
|
fsl_ssi_rx_config(ssi_private, true);
|
|
break;
|
|
|
|
case SNDRV_PCM_TRIGGER_STOP:
|
|
case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
|
|
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
|
|
fsl_ssi_tx_config(ssi_private, false);
|
|
else
|
|
fsl_ssi_rx_config(ssi_private, false);
|
|
|
|
if (!ssi_private->imx_ac97 && (read_ssi(&ssi->scr) &
|
|
(CCSR_SSI_SCR_TE | CCSR_SSI_SCR_RE)) == 0) {
|
|
spin_lock_irqsave(&ssi_private->baudclk_lock, flags);
|
|
ssi_private->baudclk_locked = false;
|
|
spin_unlock_irqrestore(&ssi_private->baudclk_lock, flags);
|
|
}
|
|
break;
|
|
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (ssi_private->imx_ac97) {
|
|
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
|
|
write_ssi(CCSR_SSI_SOR_TX_CLR, &ssi->sor);
|
|
else
|
|
write_ssi(CCSR_SSI_SOR_RX_CLR, &ssi->sor);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int fsl_ssi_dai_probe(struct snd_soc_dai *dai)
|
|
{
|
|
struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(dai);
|
|
|
|
if (ssi_private->ssi_on_imx && ssi_private->use_dma) {
|
|
dai->playback_dma_data = &ssi_private->dma_params_tx;
|
|
dai->capture_dma_data = &ssi_private->dma_params_rx;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct snd_soc_dai_ops fsl_ssi_dai_ops = {
|
|
.startup = fsl_ssi_startup,
|
|
.hw_params = fsl_ssi_hw_params,
|
|
.set_fmt = fsl_ssi_set_dai_fmt,
|
|
.set_sysclk = fsl_ssi_set_dai_sysclk,
|
|
.set_tdm_slot = fsl_ssi_set_dai_tdm_slot,
|
|
.trigger = fsl_ssi_trigger,
|
|
};
|
|
|
|
/* Template for the CPU dai driver structure */
|
|
static struct snd_soc_dai_driver fsl_ssi_dai_template = {
|
|
.probe = fsl_ssi_dai_probe,
|
|
.playback = {
|
|
.channels_min = 1,
|
|
.channels_max = 2,
|
|
.rates = FSLSSI_I2S_RATES,
|
|
.formats = FSLSSI_I2S_FORMATS,
|
|
},
|
|
.capture = {
|
|
.channels_min = 1,
|
|
.channels_max = 2,
|
|
.rates = FSLSSI_I2S_RATES,
|
|
.formats = FSLSSI_I2S_FORMATS,
|
|
},
|
|
.ops = &fsl_ssi_dai_ops,
|
|
};
|
|
|
|
static const struct snd_soc_component_driver fsl_ssi_component = {
|
|
.name = "fsl-ssi",
|
|
};
|
|
|
|
static struct snd_soc_dai_driver fsl_ssi_ac97_dai = {
|
|
.ac97_control = 1,
|
|
.playback = {
|
|
.stream_name = "AC97 Playback",
|
|
.channels_min = 2,
|
|
.channels_max = 2,
|
|
.rates = SNDRV_PCM_RATE_8000_48000,
|
|
.formats = SNDRV_PCM_FMTBIT_S16_LE,
|
|
},
|
|
.capture = {
|
|
.stream_name = "AC97 Capture",
|
|
.channels_min = 2,
|
|
.channels_max = 2,
|
|
.rates = SNDRV_PCM_RATE_48000,
|
|
.formats = SNDRV_PCM_FMTBIT_S16_LE,
|
|
},
|
|
.ops = &fsl_ssi_dai_ops,
|
|
};
|
|
|
|
|
|
static struct fsl_ssi_private *fsl_ac97_data;
|
|
|
|
static void fsl_ssi_ac97_init(void)
|
|
{
|
|
fsl_ssi_setup(fsl_ac97_data);
|
|
}
|
|
|
|
static void fsl_ssi_ac97_write(struct snd_ac97 *ac97, unsigned short reg,
|
|
unsigned short val)
|
|
{
|
|
struct ccsr_ssi *ssi = fsl_ac97_data->ssi;
|
|
unsigned int lreg;
|
|
unsigned int lval;
|
|
|
|
if (reg > 0x7f)
|
|
return;
|
|
|
|
|
|
lreg = reg << 12;
|
|
write_ssi(lreg, &ssi->sacadd);
|
|
|
|
lval = val << 4;
|
|
write_ssi(lval , &ssi->sacdat);
|
|
|
|
write_ssi_mask(&ssi->sacnt, CCSR_SSI_SACNT_RDWR_MASK,
|
|
CCSR_SSI_SACNT_WR);
|
|
udelay(100);
|
|
}
|
|
|
|
static unsigned short fsl_ssi_ac97_read(struct snd_ac97 *ac97,
|
|
unsigned short reg)
|
|
{
|
|
struct ccsr_ssi *ssi = fsl_ac97_data->ssi;
|
|
|
|
unsigned short val = -1;
|
|
unsigned int lreg;
|
|
|
|
lreg = (reg & 0x7f) << 12;
|
|
write_ssi(lreg, &ssi->sacadd);
|
|
write_ssi_mask(&ssi->sacnt, CCSR_SSI_SACNT_RDWR_MASK,
|
|
CCSR_SSI_SACNT_RD);
|
|
|
|
udelay(100);
|
|
|
|
val = (read_ssi(&ssi->sacdat) >> 4) & 0xffff;
|
|
|
|
return val;
|
|
}
|
|
|
|
static struct snd_ac97_bus_ops fsl_ssi_ac97_ops = {
|
|
.read = fsl_ssi_ac97_read,
|
|
.write = fsl_ssi_ac97_write,
|
|
};
|
|
|
|
/**
|
|
* Make every character in a string lower-case
|
|
*/
|
|
static void make_lowercase(char *s)
|
|
{
|
|
char *p = s;
|
|
char c;
|
|
|
|
while ((c = *p)) {
|
|
if ((c >= 'A') && (c <= 'Z'))
|
|
*p = c + ('a' - 'A');
|
|
p++;
|
|
}
|
|
}
|
|
|
|
static int fsl_ssi_probe(struct platform_device *pdev)
|
|
{
|
|
struct fsl_ssi_private *ssi_private;
|
|
int ret = 0;
|
|
struct device_attribute *dev_attr = NULL;
|
|
struct device_node *np = pdev->dev.of_node;
|
|
const struct of_device_id *of_id;
|
|
enum fsl_ssi_type hw_type;
|
|
const char *p, *sprop;
|
|
const uint32_t *iprop;
|
|
struct resource res;
|
|
char name[64];
|
|
bool shared;
|
|
bool ac97 = false;
|
|
|
|
/* SSIs that are not connected on the board should have a
|
|
* status = "disabled"
|
|
* property in their device tree nodes.
|
|
*/
|
|
if (!of_device_is_available(np))
|
|
return -ENODEV;
|
|
|
|
of_id = of_match_device(fsl_ssi_ids, &pdev->dev);
|
|
if (!of_id)
|
|
return -EINVAL;
|
|
hw_type = (enum fsl_ssi_type) of_id->data;
|
|
|
|
sprop = of_get_property(np, "fsl,mode", NULL);
|
|
if (!sprop) {
|
|
dev_err(&pdev->dev, "fsl,mode property is necessary\n");
|
|
return -EINVAL;
|
|
}
|
|
if (!strcmp(sprop, "ac97-slave"))
|
|
ac97 = true;
|
|
|
|
/* The DAI name is the last part of the full name of the node. */
|
|
p = strrchr(np->full_name, '/') + 1;
|
|
ssi_private = devm_kzalloc(&pdev->dev, sizeof(*ssi_private) + strlen(p),
|
|
GFP_KERNEL);
|
|
if (!ssi_private) {
|
|
dev_err(&pdev->dev, "could not allocate DAI object\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
strcpy(ssi_private->name, p);
|
|
|
|
ssi_private->use_dma = !of_property_read_bool(np,
|
|
"fsl,fiq-stream-filter");
|
|
ssi_private->hw_type = hw_type;
|
|
|
|
if (ac97) {
|
|
memcpy(&ssi_private->cpu_dai_drv, &fsl_ssi_ac97_dai,
|
|
sizeof(fsl_ssi_ac97_dai));
|
|
|
|
fsl_ac97_data = ssi_private;
|
|
ssi_private->imx_ac97 = true;
|
|
|
|
snd_soc_set_ac97_ops_of_reset(&fsl_ssi_ac97_ops, pdev);
|
|
} else {
|
|
/* Initialize this copy of the CPU DAI driver structure */
|
|
memcpy(&ssi_private->cpu_dai_drv, &fsl_ssi_dai_template,
|
|
sizeof(fsl_ssi_dai_template));
|
|
}
|
|
ssi_private->cpu_dai_drv.name = ssi_private->name;
|
|
|
|
/* Get the addresses and IRQ */
|
|
ret = of_address_to_resource(np, 0, &res);
|
|
if (ret) {
|
|
dev_err(&pdev->dev, "could not determine device resources\n");
|
|
return ret;
|
|
}
|
|
ssi_private->ssi = of_iomap(np, 0);
|
|
if (!ssi_private->ssi) {
|
|
dev_err(&pdev->dev, "could not map device resources\n");
|
|
return -ENOMEM;
|
|
}
|
|
ssi_private->ssi_phys = res.start;
|
|
|
|
ssi_private->irq = irq_of_parse_and_map(np, 0);
|
|
if (!ssi_private->irq) {
|
|
dev_err(&pdev->dev, "no irq for node %s\n", np->full_name);
|
|
return -ENXIO;
|
|
}
|
|
|
|
/* Are the RX and the TX clocks locked? */
|
|
if (!of_find_property(np, "fsl,ssi-asynchronous", NULL)) {
|
|
ssi_private->cpu_dai_drv.symmetric_rates = 1;
|
|
ssi_private->cpu_dai_drv.symmetric_channels = 1;
|
|
ssi_private->cpu_dai_drv.symmetric_samplebits = 1;
|
|
}
|
|
|
|
/* Determine the FIFO depth. */
|
|
iprop = of_get_property(np, "fsl,fifo-depth", NULL);
|
|
if (iprop)
|
|
ssi_private->fifo_depth = be32_to_cpup(iprop);
|
|
else
|
|
/* Older 8610 DTs didn't have the fifo-depth property */
|
|
ssi_private->fifo_depth = 8;
|
|
|
|
ssi_private->baudclk_locked = false;
|
|
spin_lock_init(&ssi_private->baudclk_lock);
|
|
|
|
/*
|
|
* imx51 and later SoCs have a slightly different IP that allows the
|
|
* SSI configuration while the SSI unit is running.
|
|
*
|
|
* More important, it is necessary on those SoCs to configure the
|
|
* sperate TX/RX DMA bits just before starting the stream
|
|
* (fsl_ssi_trigger). The SDMA unit has to be configured before fsl_ssi
|
|
* sends any DMA requests to the SDMA unit, otherwise it is not defined
|
|
* how the SDMA unit handles the DMA request.
|
|
*
|
|
* SDMA units are present on devices starting at imx35 but the imx35
|
|
* reference manual states that the DMA bits should not be changed
|
|
* while the SSI unit is running (SSIEN). So we support the necessary
|
|
* online configuration of fsl-ssi starting at imx51.
|
|
*/
|
|
switch (hw_type) {
|
|
case FSL_SSI_MCP8610:
|
|
case FSL_SSI_MX21:
|
|
case FSL_SSI_MX35:
|
|
ssi_private->offline_config = true;
|
|
break;
|
|
case FSL_SSI_MX51:
|
|
ssi_private->offline_config = false;
|
|
break;
|
|
}
|
|
|
|
if (hw_type == FSL_SSI_MX21 || hw_type == FSL_SSI_MX51 ||
|
|
hw_type == FSL_SSI_MX35) {
|
|
u32 dma_events[2], dmas[4];
|
|
ssi_private->ssi_on_imx = true;
|
|
|
|
ssi_private->clk = devm_clk_get(&pdev->dev, NULL);
|
|
if (IS_ERR(ssi_private->clk)) {
|
|
ret = PTR_ERR(ssi_private->clk);
|
|
dev_err(&pdev->dev, "could not get clock: %d\n", ret);
|
|
goto error_irqmap;
|
|
}
|
|
ret = clk_prepare_enable(ssi_private->clk);
|
|
if (ret) {
|
|
dev_err(&pdev->dev, "clk_prepare_enable failed: %d\n",
|
|
ret);
|
|
goto error_irqmap;
|
|
}
|
|
|
|
/* For those SLAVE implementations, we ingore non-baudclk cases
|
|
* and, instead, abandon MASTER mode that needs baud clock.
|
|
*/
|
|
ssi_private->baudclk = devm_clk_get(&pdev->dev, "baud");
|
|
if (IS_ERR(ssi_private->baudclk))
|
|
dev_dbg(&pdev->dev, "could not get baud clock: %ld\n",
|
|
PTR_ERR(ssi_private->baudclk));
|
|
else
|
|
clk_prepare_enable(ssi_private->baudclk);
|
|
|
|
/*
|
|
* We have burstsize be "fifo_depth - 2" to match the SSI
|
|
* watermark setting in fsl_ssi_startup().
|
|
*/
|
|
ssi_private->dma_params_tx.maxburst =
|
|
ssi_private->fifo_depth - 2;
|
|
ssi_private->dma_params_rx.maxburst =
|
|
ssi_private->fifo_depth - 2;
|
|
ssi_private->dma_params_tx.addr =
|
|
ssi_private->ssi_phys + offsetof(struct ccsr_ssi, stx0);
|
|
ssi_private->dma_params_rx.addr =
|
|
ssi_private->ssi_phys + offsetof(struct ccsr_ssi, srx0);
|
|
ssi_private->dma_params_tx.filter_data =
|
|
&ssi_private->filter_data_tx;
|
|
ssi_private->dma_params_rx.filter_data =
|
|
&ssi_private->filter_data_rx;
|
|
if (!of_property_read_bool(pdev->dev.of_node, "dmas") &&
|
|
ssi_private->use_dma) {
|
|
/*
|
|
* FIXME: This is a temporary solution until all
|
|
* necessary dma drivers support the generic dma
|
|
* bindings.
|
|
*/
|
|
ret = of_property_read_u32_array(pdev->dev.of_node,
|
|
"fsl,ssi-dma-events", dma_events, 2);
|
|
if (ret && ssi_private->use_dma) {
|
|
dev_err(&pdev->dev, "could not get dma events but fsl-ssi is configured to use DMA\n");
|
|
goto error_clk;
|
|
}
|
|
}
|
|
/* Should this be merge with the above? */
|
|
if (!of_property_read_u32_array(pdev->dev.of_node, "dmas", dmas, 4)
|
|
&& dmas[2] == IMX_DMATYPE_SSI_DUAL) {
|
|
ssi_private->use_dual_fifo = true;
|
|
/* When using dual fifo mode, we need to keep watermark
|
|
* as even numbers due to dma script limitation.
|
|
*/
|
|
ssi_private->dma_params_tx.maxburst &= ~0x1;
|
|
ssi_private->dma_params_rx.maxburst &= ~0x1;
|
|
}
|
|
|
|
shared = of_device_is_compatible(of_get_parent(np),
|
|
"fsl,spba-bus");
|
|
|
|
imx_pcm_dma_params_init_data(&ssi_private->filter_data_tx,
|
|
dma_events[0], shared ? IMX_DMATYPE_SSI_SP : IMX_DMATYPE_SSI);
|
|
imx_pcm_dma_params_init_data(&ssi_private->filter_data_rx,
|
|
dma_events[1], shared ? IMX_DMATYPE_SSI_SP : IMX_DMATYPE_SSI);
|
|
}
|
|
|
|
/*
|
|
* Enable interrupts only for MCP8610 and MX51. The other MXs have
|
|
* different writeable interrupt status registers.
|
|
*/
|
|
if (ssi_private->use_dma) {
|
|
/* The 'name' should not have any slashes in it. */
|
|
ret = devm_request_irq(&pdev->dev, ssi_private->irq,
|
|
fsl_ssi_isr, 0, ssi_private->name,
|
|
ssi_private);
|
|
ssi_private->irq_stats = true;
|
|
if (ret < 0) {
|
|
dev_err(&pdev->dev, "could not claim irq %u\n",
|
|
ssi_private->irq);
|
|
goto error_clk;
|
|
}
|
|
}
|
|
|
|
/* Register with ASoC */
|
|
dev_set_drvdata(&pdev->dev, ssi_private);
|
|
|
|
ret = snd_soc_register_component(&pdev->dev, &fsl_ssi_component,
|
|
&ssi_private->cpu_dai_drv, 1);
|
|
if (ret) {
|
|
dev_err(&pdev->dev, "failed to register DAI: %d\n", ret);
|
|
goto error_dev;
|
|
}
|
|
|
|
ret = fsl_ssi_debugfs_create(ssi_private, &pdev->dev);
|
|
if (ret)
|
|
goto error_dbgfs;
|
|
|
|
if (ssi_private->ssi_on_imx) {
|
|
if (!ssi_private->use_dma) {
|
|
|
|
/*
|
|
* Some boards use an incompatible codec. To get it
|
|
* working, we are using imx-fiq-pcm-audio, that
|
|
* can handle those codecs. DMA is not possible in this
|
|
* situation.
|
|
*/
|
|
|
|
ssi_private->fiq_params.irq = ssi_private->irq;
|
|
ssi_private->fiq_params.base = ssi_private->ssi;
|
|
ssi_private->fiq_params.dma_params_rx =
|
|
&ssi_private->dma_params_rx;
|
|
ssi_private->fiq_params.dma_params_tx =
|
|
&ssi_private->dma_params_tx;
|
|
|
|
ret = imx_pcm_fiq_init(pdev, &ssi_private->fiq_params);
|
|
if (ret)
|
|
goto error_pcm;
|
|
} else {
|
|
ret = imx_pcm_dma_init(pdev);
|
|
if (ret)
|
|
goto error_pcm;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If codec-handle property is missing from SSI node, we assume
|
|
* that the machine driver uses new binding which does not require
|
|
* SSI driver to trigger machine driver's probe.
|
|
*/
|
|
if (!of_get_property(np, "codec-handle", NULL)) {
|
|
ssi_private->new_binding = true;
|
|
goto done;
|
|
}
|
|
|
|
/* Trigger the machine driver's probe function. The platform driver
|
|
* name of the machine driver is taken from /compatible property of the
|
|
* device tree. We also pass the address of the CPU DAI driver
|
|
* structure.
|
|
*/
|
|
sprop = of_get_property(of_find_node_by_path("/"), "compatible", NULL);
|
|
/* Sometimes the compatible name has a "fsl," prefix, so we strip it. */
|
|
p = strrchr(sprop, ',');
|
|
if (p)
|
|
sprop = p + 1;
|
|
snprintf(name, sizeof(name), "snd-soc-%s", sprop);
|
|
make_lowercase(name);
|
|
|
|
ssi_private->pdev =
|
|
platform_device_register_data(&pdev->dev, name, 0, NULL, 0);
|
|
if (IS_ERR(ssi_private->pdev)) {
|
|
ret = PTR_ERR(ssi_private->pdev);
|
|
dev_err(&pdev->dev, "failed to register platform: %d\n", ret);
|
|
goto error_dai;
|
|
}
|
|
|
|
done:
|
|
if (ssi_private->imx_ac97)
|
|
fsl_ssi_ac97_init();
|
|
|
|
return 0;
|
|
|
|
error_dai:
|
|
if (ssi_private->ssi_on_imx && !ssi_private->use_dma)
|
|
imx_pcm_fiq_exit(pdev);
|
|
|
|
error_pcm:
|
|
fsl_ssi_debugfs_remove(ssi_private);
|
|
|
|
error_dbgfs:
|
|
snd_soc_unregister_component(&pdev->dev);
|
|
|
|
error_dev:
|
|
device_remove_file(&pdev->dev, dev_attr);
|
|
|
|
error_clk:
|
|
if (ssi_private->ssi_on_imx) {
|
|
if (!IS_ERR(ssi_private->baudclk))
|
|
clk_disable_unprepare(ssi_private->baudclk);
|
|
clk_disable_unprepare(ssi_private->clk);
|
|
}
|
|
|
|
error_irqmap:
|
|
if (ssi_private->irq_stats)
|
|
irq_dispose_mapping(ssi_private->irq);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int fsl_ssi_remove(struct platform_device *pdev)
|
|
{
|
|
struct fsl_ssi_private *ssi_private = dev_get_drvdata(&pdev->dev);
|
|
|
|
fsl_ssi_debugfs_remove(ssi_private);
|
|
|
|
if (!ssi_private->new_binding)
|
|
platform_device_unregister(ssi_private->pdev);
|
|
snd_soc_unregister_component(&pdev->dev);
|
|
if (ssi_private->ssi_on_imx) {
|
|
if (!IS_ERR(ssi_private->baudclk))
|
|
clk_disable_unprepare(ssi_private->baudclk);
|
|
clk_disable_unprepare(ssi_private->clk);
|
|
}
|
|
if (ssi_private->irq_stats)
|
|
irq_dispose_mapping(ssi_private->irq);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct platform_driver fsl_ssi_driver = {
|
|
.driver = {
|
|
.name = "fsl-ssi-dai",
|
|
.owner = THIS_MODULE,
|
|
.of_match_table = fsl_ssi_ids,
|
|
},
|
|
.probe = fsl_ssi_probe,
|
|
.remove = fsl_ssi_remove,
|
|
};
|
|
|
|
module_platform_driver(fsl_ssi_driver);
|
|
|
|
MODULE_ALIAS("platform:fsl-ssi-dai");
|
|
MODULE_AUTHOR("Timur Tabi <timur@freescale.com>");
|
|
MODULE_DESCRIPTION("Freescale Synchronous Serial Interface (SSI) ASoC Driver");
|
|
MODULE_LICENSE("GPL v2");
|