mirror of
https://github.com/torvalds/linux.git
synced 2024-11-23 04:31:50 +00:00
de20511477
Remove the last user of ->bdev in dax.c by requiring the file system to pass in an address that already includes the DAX offset. As part of the only set ->bdev or ->daxdev when actually required in the ->iomap_begin methods. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Gao Xiang <hsiangkao@linux.alibaba.com> [erofs] Reviewed-by: Darrick J. Wong <djwong@kernel.org> Link: https://lore.kernel.org/r/20211129102203.2243509-27-hch@lst.de Signed-off-by: Dan Williams <dan.j.williams@intel.com>
1356 lines
36 KiB
C
1356 lines
36 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Copyright (c) 2000-2006 Silicon Graphics, Inc.
|
|
* Copyright (c) 2016-2018 Christoph Hellwig.
|
|
* All Rights Reserved.
|
|
*/
|
|
#include "xfs.h"
|
|
#include "xfs_fs.h"
|
|
#include "xfs_shared.h"
|
|
#include "xfs_format.h"
|
|
#include "xfs_log_format.h"
|
|
#include "xfs_trans_resv.h"
|
|
#include "xfs_mount.h"
|
|
#include "xfs_inode.h"
|
|
#include "xfs_btree.h"
|
|
#include "xfs_bmap_btree.h"
|
|
#include "xfs_bmap.h"
|
|
#include "xfs_bmap_util.h"
|
|
#include "xfs_errortag.h"
|
|
#include "xfs_error.h"
|
|
#include "xfs_trans.h"
|
|
#include "xfs_trans_space.h"
|
|
#include "xfs_inode_item.h"
|
|
#include "xfs_iomap.h"
|
|
#include "xfs_trace.h"
|
|
#include "xfs_quota.h"
|
|
#include "xfs_dquot_item.h"
|
|
#include "xfs_dquot.h"
|
|
#include "xfs_reflink.h"
|
|
|
|
#define XFS_ALLOC_ALIGN(mp, off) \
|
|
(((off) >> mp->m_allocsize_log) << mp->m_allocsize_log)
|
|
|
|
static int
|
|
xfs_alert_fsblock_zero(
|
|
xfs_inode_t *ip,
|
|
xfs_bmbt_irec_t *imap)
|
|
{
|
|
xfs_alert_tag(ip->i_mount, XFS_PTAG_FSBLOCK_ZERO,
|
|
"Access to block zero in inode %llu "
|
|
"start_block: %llx start_off: %llx "
|
|
"blkcnt: %llx extent-state: %x",
|
|
(unsigned long long)ip->i_ino,
|
|
(unsigned long long)imap->br_startblock,
|
|
(unsigned long long)imap->br_startoff,
|
|
(unsigned long long)imap->br_blockcount,
|
|
imap->br_state);
|
|
return -EFSCORRUPTED;
|
|
}
|
|
|
|
int
|
|
xfs_bmbt_to_iomap(
|
|
struct xfs_inode *ip,
|
|
struct iomap *iomap,
|
|
struct xfs_bmbt_irec *imap,
|
|
unsigned int mapping_flags,
|
|
u16 iomap_flags)
|
|
{
|
|
struct xfs_mount *mp = ip->i_mount;
|
|
struct xfs_buftarg *target = xfs_inode_buftarg(ip);
|
|
|
|
if (unlikely(!xfs_valid_startblock(ip, imap->br_startblock)))
|
|
return xfs_alert_fsblock_zero(ip, imap);
|
|
|
|
if (imap->br_startblock == HOLESTARTBLOCK) {
|
|
iomap->addr = IOMAP_NULL_ADDR;
|
|
iomap->type = IOMAP_HOLE;
|
|
} else if (imap->br_startblock == DELAYSTARTBLOCK ||
|
|
isnullstartblock(imap->br_startblock)) {
|
|
iomap->addr = IOMAP_NULL_ADDR;
|
|
iomap->type = IOMAP_DELALLOC;
|
|
} else {
|
|
iomap->addr = BBTOB(xfs_fsb_to_db(ip, imap->br_startblock));
|
|
if (mapping_flags & IOMAP_DAX)
|
|
iomap->addr += target->bt_dax_part_off;
|
|
|
|
if (imap->br_state == XFS_EXT_UNWRITTEN)
|
|
iomap->type = IOMAP_UNWRITTEN;
|
|
else
|
|
iomap->type = IOMAP_MAPPED;
|
|
|
|
}
|
|
iomap->offset = XFS_FSB_TO_B(mp, imap->br_startoff);
|
|
iomap->length = XFS_FSB_TO_B(mp, imap->br_blockcount);
|
|
if (mapping_flags & IOMAP_DAX)
|
|
iomap->dax_dev = target->bt_daxdev;
|
|
else
|
|
iomap->bdev = target->bt_bdev;
|
|
iomap->flags = iomap_flags;
|
|
|
|
if (xfs_ipincount(ip) &&
|
|
(ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP))
|
|
iomap->flags |= IOMAP_F_DIRTY;
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
xfs_hole_to_iomap(
|
|
struct xfs_inode *ip,
|
|
struct iomap *iomap,
|
|
xfs_fileoff_t offset_fsb,
|
|
xfs_fileoff_t end_fsb)
|
|
{
|
|
struct xfs_buftarg *target = xfs_inode_buftarg(ip);
|
|
|
|
iomap->addr = IOMAP_NULL_ADDR;
|
|
iomap->type = IOMAP_HOLE;
|
|
iomap->offset = XFS_FSB_TO_B(ip->i_mount, offset_fsb);
|
|
iomap->length = XFS_FSB_TO_B(ip->i_mount, end_fsb - offset_fsb);
|
|
iomap->bdev = target->bt_bdev;
|
|
iomap->dax_dev = target->bt_daxdev;
|
|
}
|
|
|
|
static inline xfs_fileoff_t
|
|
xfs_iomap_end_fsb(
|
|
struct xfs_mount *mp,
|
|
loff_t offset,
|
|
loff_t count)
|
|
{
|
|
ASSERT(offset <= mp->m_super->s_maxbytes);
|
|
return min(XFS_B_TO_FSB(mp, offset + count),
|
|
XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes));
|
|
}
|
|
|
|
static xfs_extlen_t
|
|
xfs_eof_alignment(
|
|
struct xfs_inode *ip)
|
|
{
|
|
struct xfs_mount *mp = ip->i_mount;
|
|
xfs_extlen_t align = 0;
|
|
|
|
if (!XFS_IS_REALTIME_INODE(ip)) {
|
|
/*
|
|
* Round up the allocation request to a stripe unit
|
|
* (m_dalign) boundary if the file size is >= stripe unit
|
|
* size, and we are allocating past the allocation eof.
|
|
*
|
|
* If mounted with the "-o swalloc" option the alignment is
|
|
* increased from the strip unit size to the stripe width.
|
|
*/
|
|
if (mp->m_swidth && xfs_has_swalloc(mp))
|
|
align = mp->m_swidth;
|
|
else if (mp->m_dalign)
|
|
align = mp->m_dalign;
|
|
|
|
if (align && XFS_ISIZE(ip) < XFS_FSB_TO_B(mp, align))
|
|
align = 0;
|
|
}
|
|
|
|
return align;
|
|
}
|
|
|
|
/*
|
|
* Check if last_fsb is outside the last extent, and if so grow it to the next
|
|
* stripe unit boundary.
|
|
*/
|
|
xfs_fileoff_t
|
|
xfs_iomap_eof_align_last_fsb(
|
|
struct xfs_inode *ip,
|
|
xfs_fileoff_t end_fsb)
|
|
{
|
|
struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, XFS_DATA_FORK);
|
|
xfs_extlen_t extsz = xfs_get_extsz_hint(ip);
|
|
xfs_extlen_t align = xfs_eof_alignment(ip);
|
|
struct xfs_bmbt_irec irec;
|
|
struct xfs_iext_cursor icur;
|
|
|
|
ASSERT(!xfs_need_iread_extents(ifp));
|
|
|
|
/*
|
|
* Always round up the allocation request to the extent hint boundary.
|
|
*/
|
|
if (extsz) {
|
|
if (align)
|
|
align = roundup_64(align, extsz);
|
|
else
|
|
align = extsz;
|
|
}
|
|
|
|
if (align) {
|
|
xfs_fileoff_t aligned_end_fsb = roundup_64(end_fsb, align);
|
|
|
|
xfs_iext_last(ifp, &icur);
|
|
if (!xfs_iext_get_extent(ifp, &icur, &irec) ||
|
|
aligned_end_fsb >= irec.br_startoff + irec.br_blockcount)
|
|
return aligned_end_fsb;
|
|
}
|
|
|
|
return end_fsb;
|
|
}
|
|
|
|
int
|
|
xfs_iomap_write_direct(
|
|
struct xfs_inode *ip,
|
|
xfs_fileoff_t offset_fsb,
|
|
xfs_fileoff_t count_fsb,
|
|
unsigned int flags,
|
|
struct xfs_bmbt_irec *imap)
|
|
{
|
|
struct xfs_mount *mp = ip->i_mount;
|
|
struct xfs_trans *tp;
|
|
xfs_filblks_t resaligned;
|
|
int nimaps;
|
|
unsigned int dblocks, rblocks;
|
|
bool force = false;
|
|
int error;
|
|
int bmapi_flags = XFS_BMAPI_PREALLOC;
|
|
int nr_exts = XFS_IEXT_ADD_NOSPLIT_CNT;
|
|
|
|
ASSERT(count_fsb > 0);
|
|
|
|
resaligned = xfs_aligned_fsb_count(offset_fsb, count_fsb,
|
|
xfs_get_extsz_hint(ip));
|
|
if (unlikely(XFS_IS_REALTIME_INODE(ip))) {
|
|
dblocks = XFS_DIOSTRAT_SPACE_RES(mp, 0);
|
|
rblocks = resaligned;
|
|
} else {
|
|
dblocks = XFS_DIOSTRAT_SPACE_RES(mp, resaligned);
|
|
rblocks = 0;
|
|
}
|
|
|
|
error = xfs_qm_dqattach(ip);
|
|
if (error)
|
|
return error;
|
|
|
|
/*
|
|
* For DAX, we do not allocate unwritten extents, but instead we zero
|
|
* the block before we commit the transaction. Ideally we'd like to do
|
|
* this outside the transaction context, but if we commit and then crash
|
|
* we may not have zeroed the blocks and this will be exposed on
|
|
* recovery of the allocation. Hence we must zero before commit.
|
|
*
|
|
* Further, if we are mapping unwritten extents here, we need to zero
|
|
* and convert them to written so that we don't need an unwritten extent
|
|
* callback for DAX. This also means that we need to be able to dip into
|
|
* the reserve block pool for bmbt block allocation if there is no space
|
|
* left but we need to do unwritten extent conversion.
|
|
*/
|
|
if (flags & IOMAP_DAX) {
|
|
bmapi_flags = XFS_BMAPI_CONVERT | XFS_BMAPI_ZERO;
|
|
if (imap->br_state == XFS_EXT_UNWRITTEN) {
|
|
force = true;
|
|
nr_exts = XFS_IEXT_WRITE_UNWRITTEN_CNT;
|
|
dblocks = XFS_DIOSTRAT_SPACE_RES(mp, 0) << 1;
|
|
}
|
|
}
|
|
|
|
error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write, dblocks,
|
|
rblocks, force, &tp);
|
|
if (error)
|
|
return error;
|
|
|
|
error = xfs_iext_count_may_overflow(ip, XFS_DATA_FORK, nr_exts);
|
|
if (error)
|
|
goto out_trans_cancel;
|
|
|
|
/*
|
|
* From this point onwards we overwrite the imap pointer that the
|
|
* caller gave to us.
|
|
*/
|
|
nimaps = 1;
|
|
error = xfs_bmapi_write(tp, ip, offset_fsb, count_fsb, bmapi_flags, 0,
|
|
imap, &nimaps);
|
|
if (error)
|
|
goto out_trans_cancel;
|
|
|
|
/*
|
|
* Complete the transaction
|
|
*/
|
|
error = xfs_trans_commit(tp);
|
|
if (error)
|
|
goto out_unlock;
|
|
|
|
/*
|
|
* Copy any maps to caller's array and return any error.
|
|
*/
|
|
if (nimaps == 0) {
|
|
error = -ENOSPC;
|
|
goto out_unlock;
|
|
}
|
|
|
|
if (unlikely(!xfs_valid_startblock(ip, imap->br_startblock)))
|
|
error = xfs_alert_fsblock_zero(ip, imap);
|
|
|
|
out_unlock:
|
|
xfs_iunlock(ip, XFS_ILOCK_EXCL);
|
|
return error;
|
|
|
|
out_trans_cancel:
|
|
xfs_trans_cancel(tp);
|
|
goto out_unlock;
|
|
}
|
|
|
|
STATIC bool
|
|
xfs_quota_need_throttle(
|
|
struct xfs_inode *ip,
|
|
xfs_dqtype_t type,
|
|
xfs_fsblock_t alloc_blocks)
|
|
{
|
|
struct xfs_dquot *dq = xfs_inode_dquot(ip, type);
|
|
|
|
if (!dq || !xfs_this_quota_on(ip->i_mount, type))
|
|
return false;
|
|
|
|
/* no hi watermark, no throttle */
|
|
if (!dq->q_prealloc_hi_wmark)
|
|
return false;
|
|
|
|
/* under the lo watermark, no throttle */
|
|
if (dq->q_blk.reserved + alloc_blocks < dq->q_prealloc_lo_wmark)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
STATIC void
|
|
xfs_quota_calc_throttle(
|
|
struct xfs_inode *ip,
|
|
xfs_dqtype_t type,
|
|
xfs_fsblock_t *qblocks,
|
|
int *qshift,
|
|
int64_t *qfreesp)
|
|
{
|
|
struct xfs_dquot *dq = xfs_inode_dquot(ip, type);
|
|
int64_t freesp;
|
|
int shift = 0;
|
|
|
|
/* no dq, or over hi wmark, squash the prealloc completely */
|
|
if (!dq || dq->q_blk.reserved >= dq->q_prealloc_hi_wmark) {
|
|
*qblocks = 0;
|
|
*qfreesp = 0;
|
|
return;
|
|
}
|
|
|
|
freesp = dq->q_prealloc_hi_wmark - dq->q_blk.reserved;
|
|
if (freesp < dq->q_low_space[XFS_QLOWSP_5_PCNT]) {
|
|
shift = 2;
|
|
if (freesp < dq->q_low_space[XFS_QLOWSP_3_PCNT])
|
|
shift += 2;
|
|
if (freesp < dq->q_low_space[XFS_QLOWSP_1_PCNT])
|
|
shift += 2;
|
|
}
|
|
|
|
if (freesp < *qfreesp)
|
|
*qfreesp = freesp;
|
|
|
|
/* only overwrite the throttle values if we are more aggressive */
|
|
if ((freesp >> shift) < (*qblocks >> *qshift)) {
|
|
*qblocks = freesp;
|
|
*qshift = shift;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If we don't have a user specified preallocation size, dynamically increase
|
|
* the preallocation size as the size of the file grows. Cap the maximum size
|
|
* at a single extent or less if the filesystem is near full. The closer the
|
|
* filesystem is to being full, the smaller the maximum preallocation.
|
|
*/
|
|
STATIC xfs_fsblock_t
|
|
xfs_iomap_prealloc_size(
|
|
struct xfs_inode *ip,
|
|
int whichfork,
|
|
loff_t offset,
|
|
loff_t count,
|
|
struct xfs_iext_cursor *icur)
|
|
{
|
|
struct xfs_iext_cursor ncur = *icur;
|
|
struct xfs_bmbt_irec prev, got;
|
|
struct xfs_mount *mp = ip->i_mount;
|
|
struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, whichfork);
|
|
xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset);
|
|
int64_t freesp;
|
|
xfs_fsblock_t qblocks;
|
|
xfs_fsblock_t alloc_blocks = 0;
|
|
xfs_extlen_t plen;
|
|
int shift = 0;
|
|
int qshift = 0;
|
|
|
|
/*
|
|
* As an exception we don't do any preallocation at all if the file is
|
|
* smaller than the minimum preallocation and we are using the default
|
|
* dynamic preallocation scheme, as it is likely this is the only write
|
|
* to the file that is going to be done.
|
|
*/
|
|
if (XFS_ISIZE(ip) < XFS_FSB_TO_B(mp, mp->m_allocsize_blocks))
|
|
return 0;
|
|
|
|
/*
|
|
* Use the minimum preallocation size for small files or if we are
|
|
* writing right after a hole.
|
|
*/
|
|
if (XFS_ISIZE(ip) < XFS_FSB_TO_B(mp, mp->m_dalign) ||
|
|
!xfs_iext_prev_extent(ifp, &ncur, &prev) ||
|
|
prev.br_startoff + prev.br_blockcount < offset_fsb)
|
|
return mp->m_allocsize_blocks;
|
|
|
|
/*
|
|
* Take the size of the preceding data extents as the basis for the
|
|
* preallocation size. Note that we don't care if the previous extents
|
|
* are written or not.
|
|
*/
|
|
plen = prev.br_blockcount;
|
|
while (xfs_iext_prev_extent(ifp, &ncur, &got)) {
|
|
if (plen > MAXEXTLEN / 2 ||
|
|
isnullstartblock(got.br_startblock) ||
|
|
got.br_startoff + got.br_blockcount != prev.br_startoff ||
|
|
got.br_startblock + got.br_blockcount != prev.br_startblock)
|
|
break;
|
|
plen += got.br_blockcount;
|
|
prev = got;
|
|
}
|
|
|
|
/*
|
|
* If the size of the extents is greater than half the maximum extent
|
|
* length, then use the current offset as the basis. This ensures that
|
|
* for large files the preallocation size always extends to MAXEXTLEN
|
|
* rather than falling short due to things like stripe unit/width
|
|
* alignment of real extents.
|
|
*/
|
|
alloc_blocks = plen * 2;
|
|
if (alloc_blocks > MAXEXTLEN)
|
|
alloc_blocks = XFS_B_TO_FSB(mp, offset);
|
|
qblocks = alloc_blocks;
|
|
|
|
/*
|
|
* MAXEXTLEN is not a power of two value but we round the prealloc down
|
|
* to the nearest power of two value after throttling. To prevent the
|
|
* round down from unconditionally reducing the maximum supported
|
|
* prealloc size, we round up first, apply appropriate throttling,
|
|
* round down and cap the value to MAXEXTLEN.
|
|
*/
|
|
alloc_blocks = XFS_FILEOFF_MIN(roundup_pow_of_two(MAXEXTLEN),
|
|
alloc_blocks);
|
|
|
|
freesp = percpu_counter_read_positive(&mp->m_fdblocks);
|
|
if (freesp < mp->m_low_space[XFS_LOWSP_5_PCNT]) {
|
|
shift = 2;
|
|
if (freesp < mp->m_low_space[XFS_LOWSP_4_PCNT])
|
|
shift++;
|
|
if (freesp < mp->m_low_space[XFS_LOWSP_3_PCNT])
|
|
shift++;
|
|
if (freesp < mp->m_low_space[XFS_LOWSP_2_PCNT])
|
|
shift++;
|
|
if (freesp < mp->m_low_space[XFS_LOWSP_1_PCNT])
|
|
shift++;
|
|
}
|
|
|
|
/*
|
|
* Check each quota to cap the prealloc size, provide a shift value to
|
|
* throttle with and adjust amount of available space.
|
|
*/
|
|
if (xfs_quota_need_throttle(ip, XFS_DQTYPE_USER, alloc_blocks))
|
|
xfs_quota_calc_throttle(ip, XFS_DQTYPE_USER, &qblocks, &qshift,
|
|
&freesp);
|
|
if (xfs_quota_need_throttle(ip, XFS_DQTYPE_GROUP, alloc_blocks))
|
|
xfs_quota_calc_throttle(ip, XFS_DQTYPE_GROUP, &qblocks, &qshift,
|
|
&freesp);
|
|
if (xfs_quota_need_throttle(ip, XFS_DQTYPE_PROJ, alloc_blocks))
|
|
xfs_quota_calc_throttle(ip, XFS_DQTYPE_PROJ, &qblocks, &qshift,
|
|
&freesp);
|
|
|
|
/*
|
|
* The final prealloc size is set to the minimum of free space available
|
|
* in each of the quotas and the overall filesystem.
|
|
*
|
|
* The shift throttle value is set to the maximum value as determined by
|
|
* the global low free space values and per-quota low free space values.
|
|
*/
|
|
alloc_blocks = min(alloc_blocks, qblocks);
|
|
shift = max(shift, qshift);
|
|
|
|
if (shift)
|
|
alloc_blocks >>= shift;
|
|
/*
|
|
* rounddown_pow_of_two() returns an undefined result if we pass in
|
|
* alloc_blocks = 0.
|
|
*/
|
|
if (alloc_blocks)
|
|
alloc_blocks = rounddown_pow_of_two(alloc_blocks);
|
|
if (alloc_blocks > MAXEXTLEN)
|
|
alloc_blocks = MAXEXTLEN;
|
|
|
|
/*
|
|
* If we are still trying to allocate more space than is
|
|
* available, squash the prealloc hard. This can happen if we
|
|
* have a large file on a small filesystem and the above
|
|
* lowspace thresholds are smaller than MAXEXTLEN.
|
|
*/
|
|
while (alloc_blocks && alloc_blocks >= freesp)
|
|
alloc_blocks >>= 4;
|
|
if (alloc_blocks < mp->m_allocsize_blocks)
|
|
alloc_blocks = mp->m_allocsize_blocks;
|
|
trace_xfs_iomap_prealloc_size(ip, alloc_blocks, shift,
|
|
mp->m_allocsize_blocks);
|
|
return alloc_blocks;
|
|
}
|
|
|
|
int
|
|
xfs_iomap_write_unwritten(
|
|
xfs_inode_t *ip,
|
|
xfs_off_t offset,
|
|
xfs_off_t count,
|
|
bool update_isize)
|
|
{
|
|
xfs_mount_t *mp = ip->i_mount;
|
|
xfs_fileoff_t offset_fsb;
|
|
xfs_filblks_t count_fsb;
|
|
xfs_filblks_t numblks_fsb;
|
|
int nimaps;
|
|
xfs_trans_t *tp;
|
|
xfs_bmbt_irec_t imap;
|
|
struct inode *inode = VFS_I(ip);
|
|
xfs_fsize_t i_size;
|
|
uint resblks;
|
|
int error;
|
|
|
|
trace_xfs_unwritten_convert(ip, offset, count);
|
|
|
|
offset_fsb = XFS_B_TO_FSBT(mp, offset);
|
|
count_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count);
|
|
count_fsb = (xfs_filblks_t)(count_fsb - offset_fsb);
|
|
|
|
/*
|
|
* Reserve enough blocks in this transaction for two complete extent
|
|
* btree splits. We may be converting the middle part of an unwritten
|
|
* extent and in this case we will insert two new extents in the btree
|
|
* each of which could cause a full split.
|
|
*
|
|
* This reservation amount will be used in the first call to
|
|
* xfs_bmbt_split() to select an AG with enough space to satisfy the
|
|
* rest of the operation.
|
|
*/
|
|
resblks = XFS_DIOSTRAT_SPACE_RES(mp, 0) << 1;
|
|
|
|
/* Attach dquots so that bmbt splits are accounted correctly. */
|
|
error = xfs_qm_dqattach(ip);
|
|
if (error)
|
|
return error;
|
|
|
|
do {
|
|
/*
|
|
* Set up a transaction to convert the range of extents
|
|
* from unwritten to real. Do allocations in a loop until
|
|
* we have covered the range passed in.
|
|
*
|
|
* Note that we can't risk to recursing back into the filesystem
|
|
* here as we might be asked to write out the same inode that we
|
|
* complete here and might deadlock on the iolock.
|
|
*/
|
|
error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write, resblks,
|
|
0, true, &tp);
|
|
if (error)
|
|
return error;
|
|
|
|
error = xfs_iext_count_may_overflow(ip, XFS_DATA_FORK,
|
|
XFS_IEXT_WRITE_UNWRITTEN_CNT);
|
|
if (error)
|
|
goto error_on_bmapi_transaction;
|
|
|
|
/*
|
|
* Modify the unwritten extent state of the buffer.
|
|
*/
|
|
nimaps = 1;
|
|
error = xfs_bmapi_write(tp, ip, offset_fsb, count_fsb,
|
|
XFS_BMAPI_CONVERT, resblks, &imap,
|
|
&nimaps);
|
|
if (error)
|
|
goto error_on_bmapi_transaction;
|
|
|
|
/*
|
|
* Log the updated inode size as we go. We have to be careful
|
|
* to only log it up to the actual write offset if it is
|
|
* halfway into a block.
|
|
*/
|
|
i_size = XFS_FSB_TO_B(mp, offset_fsb + count_fsb);
|
|
if (i_size > offset + count)
|
|
i_size = offset + count;
|
|
if (update_isize && i_size > i_size_read(inode))
|
|
i_size_write(inode, i_size);
|
|
i_size = xfs_new_eof(ip, i_size);
|
|
if (i_size) {
|
|
ip->i_disk_size = i_size;
|
|
xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
|
|
}
|
|
|
|
error = xfs_trans_commit(tp);
|
|
xfs_iunlock(ip, XFS_ILOCK_EXCL);
|
|
if (error)
|
|
return error;
|
|
|
|
if (unlikely(!xfs_valid_startblock(ip, imap.br_startblock)))
|
|
return xfs_alert_fsblock_zero(ip, &imap);
|
|
|
|
if ((numblks_fsb = imap.br_blockcount) == 0) {
|
|
/*
|
|
* The numblks_fsb value should always get
|
|
* smaller, otherwise the loop is stuck.
|
|
*/
|
|
ASSERT(imap.br_blockcount);
|
|
break;
|
|
}
|
|
offset_fsb += numblks_fsb;
|
|
count_fsb -= numblks_fsb;
|
|
} while (count_fsb > 0);
|
|
|
|
return 0;
|
|
|
|
error_on_bmapi_transaction:
|
|
xfs_trans_cancel(tp);
|
|
xfs_iunlock(ip, XFS_ILOCK_EXCL);
|
|
return error;
|
|
}
|
|
|
|
static inline bool
|
|
imap_needs_alloc(
|
|
struct inode *inode,
|
|
unsigned flags,
|
|
struct xfs_bmbt_irec *imap,
|
|
int nimaps)
|
|
{
|
|
/* don't allocate blocks when just zeroing */
|
|
if (flags & IOMAP_ZERO)
|
|
return false;
|
|
if (!nimaps ||
|
|
imap->br_startblock == HOLESTARTBLOCK ||
|
|
imap->br_startblock == DELAYSTARTBLOCK)
|
|
return true;
|
|
/* we convert unwritten extents before copying the data for DAX */
|
|
if ((flags & IOMAP_DAX) && imap->br_state == XFS_EXT_UNWRITTEN)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
static inline bool
|
|
imap_needs_cow(
|
|
struct xfs_inode *ip,
|
|
unsigned int flags,
|
|
struct xfs_bmbt_irec *imap,
|
|
int nimaps)
|
|
{
|
|
if (!xfs_is_cow_inode(ip))
|
|
return false;
|
|
|
|
/* when zeroing we don't have to COW holes or unwritten extents */
|
|
if (flags & IOMAP_ZERO) {
|
|
if (!nimaps ||
|
|
imap->br_startblock == HOLESTARTBLOCK ||
|
|
imap->br_state == XFS_EXT_UNWRITTEN)
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static int
|
|
xfs_ilock_for_iomap(
|
|
struct xfs_inode *ip,
|
|
unsigned flags,
|
|
unsigned *lockmode)
|
|
{
|
|
unsigned mode = XFS_ILOCK_SHARED;
|
|
bool is_write = flags & (IOMAP_WRITE | IOMAP_ZERO);
|
|
|
|
/*
|
|
* COW writes may allocate delalloc space or convert unwritten COW
|
|
* extents, so we need to make sure to take the lock exclusively here.
|
|
*/
|
|
if (xfs_is_cow_inode(ip) && is_write)
|
|
mode = XFS_ILOCK_EXCL;
|
|
|
|
/*
|
|
* Extents not yet cached requires exclusive access, don't block. This
|
|
* is an opencoded xfs_ilock_data_map_shared() call but with
|
|
* non-blocking behaviour.
|
|
*/
|
|
if (xfs_need_iread_extents(&ip->i_df)) {
|
|
if (flags & IOMAP_NOWAIT)
|
|
return -EAGAIN;
|
|
mode = XFS_ILOCK_EXCL;
|
|
}
|
|
|
|
relock:
|
|
if (flags & IOMAP_NOWAIT) {
|
|
if (!xfs_ilock_nowait(ip, mode))
|
|
return -EAGAIN;
|
|
} else {
|
|
xfs_ilock(ip, mode);
|
|
}
|
|
|
|
/*
|
|
* The reflink iflag could have changed since the earlier unlocked
|
|
* check, so if we got ILOCK_SHARED for a write and but we're now a
|
|
* reflink inode we have to switch to ILOCK_EXCL and relock.
|
|
*/
|
|
if (mode == XFS_ILOCK_SHARED && is_write && xfs_is_cow_inode(ip)) {
|
|
xfs_iunlock(ip, mode);
|
|
mode = XFS_ILOCK_EXCL;
|
|
goto relock;
|
|
}
|
|
|
|
*lockmode = mode;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Check that the imap we are going to return to the caller spans the entire
|
|
* range that the caller requested for the IO.
|
|
*/
|
|
static bool
|
|
imap_spans_range(
|
|
struct xfs_bmbt_irec *imap,
|
|
xfs_fileoff_t offset_fsb,
|
|
xfs_fileoff_t end_fsb)
|
|
{
|
|
if (imap->br_startoff > offset_fsb)
|
|
return false;
|
|
if (imap->br_startoff + imap->br_blockcount < end_fsb)
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
static int
|
|
xfs_direct_write_iomap_begin(
|
|
struct inode *inode,
|
|
loff_t offset,
|
|
loff_t length,
|
|
unsigned flags,
|
|
struct iomap *iomap,
|
|
struct iomap *srcmap)
|
|
{
|
|
struct xfs_inode *ip = XFS_I(inode);
|
|
struct xfs_mount *mp = ip->i_mount;
|
|
struct xfs_bmbt_irec imap, cmap;
|
|
xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset);
|
|
xfs_fileoff_t end_fsb = xfs_iomap_end_fsb(mp, offset, length);
|
|
int nimaps = 1, error = 0;
|
|
bool shared = false;
|
|
u16 iomap_flags = 0;
|
|
unsigned lockmode;
|
|
|
|
ASSERT(flags & (IOMAP_WRITE | IOMAP_ZERO));
|
|
|
|
if (xfs_is_shutdown(mp))
|
|
return -EIO;
|
|
|
|
/*
|
|
* Writes that span EOF might trigger an IO size update on completion,
|
|
* so consider them to be dirty for the purposes of O_DSYNC even if
|
|
* there is no other metadata changes pending or have been made here.
|
|
*/
|
|
if (offset + length > i_size_read(inode))
|
|
iomap_flags |= IOMAP_F_DIRTY;
|
|
|
|
error = xfs_ilock_for_iomap(ip, flags, &lockmode);
|
|
if (error)
|
|
return error;
|
|
|
|
error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb, &imap,
|
|
&nimaps, 0);
|
|
if (error)
|
|
goto out_unlock;
|
|
|
|
if (imap_needs_cow(ip, flags, &imap, nimaps)) {
|
|
error = -EAGAIN;
|
|
if (flags & IOMAP_NOWAIT)
|
|
goto out_unlock;
|
|
|
|
/* may drop and re-acquire the ilock */
|
|
error = xfs_reflink_allocate_cow(ip, &imap, &cmap, &shared,
|
|
&lockmode, flags & IOMAP_DIRECT);
|
|
if (error)
|
|
goto out_unlock;
|
|
if (shared)
|
|
goto out_found_cow;
|
|
end_fsb = imap.br_startoff + imap.br_blockcount;
|
|
length = XFS_FSB_TO_B(mp, end_fsb) - offset;
|
|
}
|
|
|
|
if (imap_needs_alloc(inode, flags, &imap, nimaps))
|
|
goto allocate_blocks;
|
|
|
|
/*
|
|
* NOWAIT and OVERWRITE I/O needs to span the entire requested I/O with
|
|
* a single map so that we avoid partial IO failures due to the rest of
|
|
* the I/O range not covered by this map triggering an EAGAIN condition
|
|
* when it is subsequently mapped and aborting the I/O.
|
|
*/
|
|
if (flags & (IOMAP_NOWAIT | IOMAP_OVERWRITE_ONLY)) {
|
|
error = -EAGAIN;
|
|
if (!imap_spans_range(&imap, offset_fsb, end_fsb))
|
|
goto out_unlock;
|
|
}
|
|
|
|
/*
|
|
* For overwrite only I/O, we cannot convert unwritten extents without
|
|
* requiring sub-block zeroing. This can only be done under an
|
|
* exclusive IOLOCK, hence return -EAGAIN if this is not a written
|
|
* extent to tell the caller to try again.
|
|
*/
|
|
if (flags & IOMAP_OVERWRITE_ONLY) {
|
|
error = -EAGAIN;
|
|
if (imap.br_state != XFS_EXT_NORM &&
|
|
((offset | length) & mp->m_blockmask))
|
|
goto out_unlock;
|
|
}
|
|
|
|
xfs_iunlock(ip, lockmode);
|
|
trace_xfs_iomap_found(ip, offset, length, XFS_DATA_FORK, &imap);
|
|
return xfs_bmbt_to_iomap(ip, iomap, &imap, flags, iomap_flags);
|
|
|
|
allocate_blocks:
|
|
error = -EAGAIN;
|
|
if (flags & (IOMAP_NOWAIT | IOMAP_OVERWRITE_ONLY))
|
|
goto out_unlock;
|
|
|
|
/*
|
|
* We cap the maximum length we map to a sane size to keep the chunks
|
|
* of work done where somewhat symmetric with the work writeback does.
|
|
* This is a completely arbitrary number pulled out of thin air as a
|
|
* best guess for initial testing.
|
|
*
|
|
* Note that the values needs to be less than 32-bits wide until the
|
|
* lower level functions are updated.
|
|
*/
|
|
length = min_t(loff_t, length, 1024 * PAGE_SIZE);
|
|
end_fsb = xfs_iomap_end_fsb(mp, offset, length);
|
|
|
|
if (offset + length > XFS_ISIZE(ip))
|
|
end_fsb = xfs_iomap_eof_align_last_fsb(ip, end_fsb);
|
|
else if (nimaps && imap.br_startblock == HOLESTARTBLOCK)
|
|
end_fsb = min(end_fsb, imap.br_startoff + imap.br_blockcount);
|
|
xfs_iunlock(ip, lockmode);
|
|
|
|
error = xfs_iomap_write_direct(ip, offset_fsb, end_fsb - offset_fsb,
|
|
flags, &imap);
|
|
if (error)
|
|
return error;
|
|
|
|
trace_xfs_iomap_alloc(ip, offset, length, XFS_DATA_FORK, &imap);
|
|
return xfs_bmbt_to_iomap(ip, iomap, &imap, flags,
|
|
iomap_flags | IOMAP_F_NEW);
|
|
|
|
out_found_cow:
|
|
xfs_iunlock(ip, lockmode);
|
|
length = XFS_FSB_TO_B(mp, cmap.br_startoff + cmap.br_blockcount);
|
|
trace_xfs_iomap_found(ip, offset, length - offset, XFS_COW_FORK, &cmap);
|
|
if (imap.br_startblock != HOLESTARTBLOCK) {
|
|
error = xfs_bmbt_to_iomap(ip, srcmap, &imap, flags, 0);
|
|
if (error)
|
|
return error;
|
|
}
|
|
return xfs_bmbt_to_iomap(ip, iomap, &cmap, flags, IOMAP_F_SHARED);
|
|
|
|
out_unlock:
|
|
if (lockmode)
|
|
xfs_iunlock(ip, lockmode);
|
|
return error;
|
|
}
|
|
|
|
const struct iomap_ops xfs_direct_write_iomap_ops = {
|
|
.iomap_begin = xfs_direct_write_iomap_begin,
|
|
};
|
|
|
|
static int
|
|
xfs_buffered_write_iomap_begin(
|
|
struct inode *inode,
|
|
loff_t offset,
|
|
loff_t count,
|
|
unsigned flags,
|
|
struct iomap *iomap,
|
|
struct iomap *srcmap)
|
|
{
|
|
struct xfs_inode *ip = XFS_I(inode);
|
|
struct xfs_mount *mp = ip->i_mount;
|
|
xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset);
|
|
xfs_fileoff_t end_fsb = xfs_iomap_end_fsb(mp, offset, count);
|
|
struct xfs_bmbt_irec imap, cmap;
|
|
struct xfs_iext_cursor icur, ccur;
|
|
xfs_fsblock_t prealloc_blocks = 0;
|
|
bool eof = false, cow_eof = false, shared = false;
|
|
int allocfork = XFS_DATA_FORK;
|
|
int error = 0;
|
|
|
|
if (xfs_is_shutdown(mp))
|
|
return -EIO;
|
|
|
|
/* we can't use delayed allocations when using extent size hints */
|
|
if (xfs_get_extsz_hint(ip))
|
|
return xfs_direct_write_iomap_begin(inode, offset, count,
|
|
flags, iomap, srcmap);
|
|
|
|
ASSERT(!XFS_IS_REALTIME_INODE(ip));
|
|
|
|
xfs_ilock(ip, XFS_ILOCK_EXCL);
|
|
|
|
if (XFS_IS_CORRUPT(mp, !xfs_ifork_has_extents(&ip->i_df)) ||
|
|
XFS_TEST_ERROR(false, mp, XFS_ERRTAG_BMAPIFORMAT)) {
|
|
error = -EFSCORRUPTED;
|
|
goto out_unlock;
|
|
}
|
|
|
|
XFS_STATS_INC(mp, xs_blk_mapw);
|
|
|
|
error = xfs_iread_extents(NULL, ip, XFS_DATA_FORK);
|
|
if (error)
|
|
goto out_unlock;
|
|
|
|
/*
|
|
* Search the data fork first to look up our source mapping. We
|
|
* always need the data fork map, as we have to return it to the
|
|
* iomap code so that the higher level write code can read data in to
|
|
* perform read-modify-write cycles for unaligned writes.
|
|
*/
|
|
eof = !xfs_iext_lookup_extent(ip, &ip->i_df, offset_fsb, &icur, &imap);
|
|
if (eof)
|
|
imap.br_startoff = end_fsb; /* fake hole until the end */
|
|
|
|
/* We never need to allocate blocks for zeroing a hole. */
|
|
if ((flags & IOMAP_ZERO) && imap.br_startoff > offset_fsb) {
|
|
xfs_hole_to_iomap(ip, iomap, offset_fsb, imap.br_startoff);
|
|
goto out_unlock;
|
|
}
|
|
|
|
/*
|
|
* Search the COW fork extent list even if we did not find a data fork
|
|
* extent. This serves two purposes: first this implements the
|
|
* speculative preallocation using cowextsize, so that we also unshare
|
|
* block adjacent to shared blocks instead of just the shared blocks
|
|
* themselves. Second the lookup in the extent list is generally faster
|
|
* than going out to the shared extent tree.
|
|
*/
|
|
if (xfs_is_cow_inode(ip)) {
|
|
if (!ip->i_cowfp) {
|
|
ASSERT(!xfs_is_reflink_inode(ip));
|
|
xfs_ifork_init_cow(ip);
|
|
}
|
|
cow_eof = !xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb,
|
|
&ccur, &cmap);
|
|
if (!cow_eof && cmap.br_startoff <= offset_fsb) {
|
|
trace_xfs_reflink_cow_found(ip, &cmap);
|
|
goto found_cow;
|
|
}
|
|
}
|
|
|
|
if (imap.br_startoff <= offset_fsb) {
|
|
/*
|
|
* For reflink files we may need a delalloc reservation when
|
|
* overwriting shared extents. This includes zeroing of
|
|
* existing extents that contain data.
|
|
*/
|
|
if (!xfs_is_cow_inode(ip) ||
|
|
((flags & IOMAP_ZERO) && imap.br_state != XFS_EXT_NORM)) {
|
|
trace_xfs_iomap_found(ip, offset, count, XFS_DATA_FORK,
|
|
&imap);
|
|
goto found_imap;
|
|
}
|
|
|
|
xfs_trim_extent(&imap, offset_fsb, end_fsb - offset_fsb);
|
|
|
|
/* Trim the mapping to the nearest shared extent boundary. */
|
|
error = xfs_bmap_trim_cow(ip, &imap, &shared);
|
|
if (error)
|
|
goto out_unlock;
|
|
|
|
/* Not shared? Just report the (potentially capped) extent. */
|
|
if (!shared) {
|
|
trace_xfs_iomap_found(ip, offset, count, XFS_DATA_FORK,
|
|
&imap);
|
|
goto found_imap;
|
|
}
|
|
|
|
/*
|
|
* Fork all the shared blocks from our write offset until the
|
|
* end of the extent.
|
|
*/
|
|
allocfork = XFS_COW_FORK;
|
|
end_fsb = imap.br_startoff + imap.br_blockcount;
|
|
} else {
|
|
/*
|
|
* We cap the maximum length we map here to MAX_WRITEBACK_PAGES
|
|
* pages to keep the chunks of work done where somewhat
|
|
* symmetric with the work writeback does. This is a completely
|
|
* arbitrary number pulled out of thin air.
|
|
*
|
|
* Note that the values needs to be less than 32-bits wide until
|
|
* the lower level functions are updated.
|
|
*/
|
|
count = min_t(loff_t, count, 1024 * PAGE_SIZE);
|
|
end_fsb = xfs_iomap_end_fsb(mp, offset, count);
|
|
|
|
if (xfs_is_always_cow_inode(ip))
|
|
allocfork = XFS_COW_FORK;
|
|
}
|
|
|
|
error = xfs_qm_dqattach_locked(ip, false);
|
|
if (error)
|
|
goto out_unlock;
|
|
|
|
if (eof && offset + count > XFS_ISIZE(ip)) {
|
|
/*
|
|
* Determine the initial size of the preallocation.
|
|
* We clean up any extra preallocation when the file is closed.
|
|
*/
|
|
if (xfs_has_allocsize(mp))
|
|
prealloc_blocks = mp->m_allocsize_blocks;
|
|
else
|
|
prealloc_blocks = xfs_iomap_prealloc_size(ip, allocfork,
|
|
offset, count, &icur);
|
|
if (prealloc_blocks) {
|
|
xfs_extlen_t align;
|
|
xfs_off_t end_offset;
|
|
xfs_fileoff_t p_end_fsb;
|
|
|
|
end_offset = XFS_ALLOC_ALIGN(mp, offset + count - 1);
|
|
p_end_fsb = XFS_B_TO_FSBT(mp, end_offset) +
|
|
prealloc_blocks;
|
|
|
|
align = xfs_eof_alignment(ip);
|
|
if (align)
|
|
p_end_fsb = roundup_64(p_end_fsb, align);
|
|
|
|
p_end_fsb = min(p_end_fsb,
|
|
XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes));
|
|
ASSERT(p_end_fsb > offset_fsb);
|
|
prealloc_blocks = p_end_fsb - end_fsb;
|
|
}
|
|
}
|
|
|
|
retry:
|
|
error = xfs_bmapi_reserve_delalloc(ip, allocfork, offset_fsb,
|
|
end_fsb - offset_fsb, prealloc_blocks,
|
|
allocfork == XFS_DATA_FORK ? &imap : &cmap,
|
|
allocfork == XFS_DATA_FORK ? &icur : &ccur,
|
|
allocfork == XFS_DATA_FORK ? eof : cow_eof);
|
|
switch (error) {
|
|
case 0:
|
|
break;
|
|
case -ENOSPC:
|
|
case -EDQUOT:
|
|
/* retry without any preallocation */
|
|
trace_xfs_delalloc_enospc(ip, offset, count);
|
|
if (prealloc_blocks) {
|
|
prealloc_blocks = 0;
|
|
goto retry;
|
|
}
|
|
fallthrough;
|
|
default:
|
|
goto out_unlock;
|
|
}
|
|
|
|
if (allocfork == XFS_COW_FORK) {
|
|
trace_xfs_iomap_alloc(ip, offset, count, allocfork, &cmap);
|
|
goto found_cow;
|
|
}
|
|
|
|
/*
|
|
* Flag newly allocated delalloc blocks with IOMAP_F_NEW so we punch
|
|
* them out if the write happens to fail.
|
|
*/
|
|
xfs_iunlock(ip, XFS_ILOCK_EXCL);
|
|
trace_xfs_iomap_alloc(ip, offset, count, allocfork, &imap);
|
|
return xfs_bmbt_to_iomap(ip, iomap, &imap, flags, IOMAP_F_NEW);
|
|
|
|
found_imap:
|
|
xfs_iunlock(ip, XFS_ILOCK_EXCL);
|
|
return xfs_bmbt_to_iomap(ip, iomap, &imap, flags, 0);
|
|
|
|
found_cow:
|
|
xfs_iunlock(ip, XFS_ILOCK_EXCL);
|
|
if (imap.br_startoff <= offset_fsb) {
|
|
error = xfs_bmbt_to_iomap(ip, srcmap, &imap, flags, 0);
|
|
if (error)
|
|
return error;
|
|
return xfs_bmbt_to_iomap(ip, iomap, &cmap, flags,
|
|
IOMAP_F_SHARED);
|
|
}
|
|
|
|
xfs_trim_extent(&cmap, offset_fsb, imap.br_startoff - offset_fsb);
|
|
return xfs_bmbt_to_iomap(ip, iomap, &cmap, flags, 0);
|
|
|
|
out_unlock:
|
|
xfs_iunlock(ip, XFS_ILOCK_EXCL);
|
|
return error;
|
|
}
|
|
|
|
static int
|
|
xfs_buffered_write_iomap_end(
|
|
struct inode *inode,
|
|
loff_t offset,
|
|
loff_t length,
|
|
ssize_t written,
|
|
unsigned flags,
|
|
struct iomap *iomap)
|
|
{
|
|
struct xfs_inode *ip = XFS_I(inode);
|
|
struct xfs_mount *mp = ip->i_mount;
|
|
xfs_fileoff_t start_fsb;
|
|
xfs_fileoff_t end_fsb;
|
|
int error = 0;
|
|
|
|
if (iomap->type != IOMAP_DELALLOC)
|
|
return 0;
|
|
|
|
/*
|
|
* Behave as if the write failed if drop writes is enabled. Set the NEW
|
|
* flag to force delalloc cleanup.
|
|
*/
|
|
if (XFS_TEST_ERROR(false, mp, XFS_ERRTAG_DROP_WRITES)) {
|
|
iomap->flags |= IOMAP_F_NEW;
|
|
written = 0;
|
|
}
|
|
|
|
/*
|
|
* start_fsb refers to the first unused block after a short write. If
|
|
* nothing was written, round offset down to point at the first block in
|
|
* the range.
|
|
*/
|
|
if (unlikely(!written))
|
|
start_fsb = XFS_B_TO_FSBT(mp, offset);
|
|
else
|
|
start_fsb = XFS_B_TO_FSB(mp, offset + written);
|
|
end_fsb = XFS_B_TO_FSB(mp, offset + length);
|
|
|
|
/*
|
|
* Trim delalloc blocks if they were allocated by this write and we
|
|
* didn't manage to write the whole range.
|
|
*
|
|
* We don't need to care about racing delalloc as we hold i_mutex
|
|
* across the reserve/allocate/unreserve calls. If there are delalloc
|
|
* blocks in the range, they are ours.
|
|
*/
|
|
if ((iomap->flags & IOMAP_F_NEW) && start_fsb < end_fsb) {
|
|
truncate_pagecache_range(VFS_I(ip), XFS_FSB_TO_B(mp, start_fsb),
|
|
XFS_FSB_TO_B(mp, end_fsb) - 1);
|
|
|
|
error = xfs_bmap_punch_delalloc_range(ip, start_fsb,
|
|
end_fsb - start_fsb);
|
|
if (error && !xfs_is_shutdown(mp)) {
|
|
xfs_alert(mp, "%s: unable to clean up ino %lld",
|
|
__func__, ip->i_ino);
|
|
return error;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
const struct iomap_ops xfs_buffered_write_iomap_ops = {
|
|
.iomap_begin = xfs_buffered_write_iomap_begin,
|
|
.iomap_end = xfs_buffered_write_iomap_end,
|
|
};
|
|
|
|
static int
|
|
xfs_read_iomap_begin(
|
|
struct inode *inode,
|
|
loff_t offset,
|
|
loff_t length,
|
|
unsigned flags,
|
|
struct iomap *iomap,
|
|
struct iomap *srcmap)
|
|
{
|
|
struct xfs_inode *ip = XFS_I(inode);
|
|
struct xfs_mount *mp = ip->i_mount;
|
|
struct xfs_bmbt_irec imap;
|
|
xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset);
|
|
xfs_fileoff_t end_fsb = xfs_iomap_end_fsb(mp, offset, length);
|
|
int nimaps = 1, error = 0;
|
|
bool shared = false;
|
|
unsigned lockmode;
|
|
|
|
ASSERT(!(flags & (IOMAP_WRITE | IOMAP_ZERO)));
|
|
|
|
if (xfs_is_shutdown(mp))
|
|
return -EIO;
|
|
|
|
error = xfs_ilock_for_iomap(ip, flags, &lockmode);
|
|
if (error)
|
|
return error;
|
|
error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb, &imap,
|
|
&nimaps, 0);
|
|
if (!error && (flags & IOMAP_REPORT))
|
|
error = xfs_reflink_trim_around_shared(ip, &imap, &shared);
|
|
xfs_iunlock(ip, lockmode);
|
|
|
|
if (error)
|
|
return error;
|
|
trace_xfs_iomap_found(ip, offset, length, XFS_DATA_FORK, &imap);
|
|
return xfs_bmbt_to_iomap(ip, iomap, &imap, flags,
|
|
shared ? IOMAP_F_SHARED : 0);
|
|
}
|
|
|
|
const struct iomap_ops xfs_read_iomap_ops = {
|
|
.iomap_begin = xfs_read_iomap_begin,
|
|
};
|
|
|
|
static int
|
|
xfs_seek_iomap_begin(
|
|
struct inode *inode,
|
|
loff_t offset,
|
|
loff_t length,
|
|
unsigned flags,
|
|
struct iomap *iomap,
|
|
struct iomap *srcmap)
|
|
{
|
|
struct xfs_inode *ip = XFS_I(inode);
|
|
struct xfs_mount *mp = ip->i_mount;
|
|
xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset);
|
|
xfs_fileoff_t end_fsb = XFS_B_TO_FSB(mp, offset + length);
|
|
xfs_fileoff_t cow_fsb = NULLFILEOFF, data_fsb = NULLFILEOFF;
|
|
struct xfs_iext_cursor icur;
|
|
struct xfs_bmbt_irec imap, cmap;
|
|
int error = 0;
|
|
unsigned lockmode;
|
|
|
|
if (xfs_is_shutdown(mp))
|
|
return -EIO;
|
|
|
|
lockmode = xfs_ilock_data_map_shared(ip);
|
|
error = xfs_iread_extents(NULL, ip, XFS_DATA_FORK);
|
|
if (error)
|
|
goto out_unlock;
|
|
|
|
if (xfs_iext_lookup_extent(ip, &ip->i_df, offset_fsb, &icur, &imap)) {
|
|
/*
|
|
* If we found a data extent we are done.
|
|
*/
|
|
if (imap.br_startoff <= offset_fsb)
|
|
goto done;
|
|
data_fsb = imap.br_startoff;
|
|
} else {
|
|
/*
|
|
* Fake a hole until the end of the file.
|
|
*/
|
|
data_fsb = xfs_iomap_end_fsb(mp, offset, length);
|
|
}
|
|
|
|
/*
|
|
* If a COW fork extent covers the hole, report it - capped to the next
|
|
* data fork extent:
|
|
*/
|
|
if (xfs_inode_has_cow_data(ip) &&
|
|
xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &cmap))
|
|
cow_fsb = cmap.br_startoff;
|
|
if (cow_fsb != NULLFILEOFF && cow_fsb <= offset_fsb) {
|
|
if (data_fsb < cow_fsb + cmap.br_blockcount)
|
|
end_fsb = min(end_fsb, data_fsb);
|
|
xfs_trim_extent(&cmap, offset_fsb, end_fsb);
|
|
error = xfs_bmbt_to_iomap(ip, iomap, &cmap, flags,
|
|
IOMAP_F_SHARED);
|
|
/*
|
|
* This is a COW extent, so we must probe the page cache
|
|
* because there could be dirty page cache being backed
|
|
* by this extent.
|
|
*/
|
|
iomap->type = IOMAP_UNWRITTEN;
|
|
goto out_unlock;
|
|
}
|
|
|
|
/*
|
|
* Else report a hole, capped to the next found data or COW extent.
|
|
*/
|
|
if (cow_fsb != NULLFILEOFF && cow_fsb < data_fsb)
|
|
imap.br_blockcount = cow_fsb - offset_fsb;
|
|
else
|
|
imap.br_blockcount = data_fsb - offset_fsb;
|
|
imap.br_startoff = offset_fsb;
|
|
imap.br_startblock = HOLESTARTBLOCK;
|
|
imap.br_state = XFS_EXT_NORM;
|
|
done:
|
|
xfs_trim_extent(&imap, offset_fsb, end_fsb);
|
|
error = xfs_bmbt_to_iomap(ip, iomap, &imap, flags, 0);
|
|
out_unlock:
|
|
xfs_iunlock(ip, lockmode);
|
|
return error;
|
|
}
|
|
|
|
const struct iomap_ops xfs_seek_iomap_ops = {
|
|
.iomap_begin = xfs_seek_iomap_begin,
|
|
};
|
|
|
|
static int
|
|
xfs_xattr_iomap_begin(
|
|
struct inode *inode,
|
|
loff_t offset,
|
|
loff_t length,
|
|
unsigned flags,
|
|
struct iomap *iomap,
|
|
struct iomap *srcmap)
|
|
{
|
|
struct xfs_inode *ip = XFS_I(inode);
|
|
struct xfs_mount *mp = ip->i_mount;
|
|
xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset);
|
|
xfs_fileoff_t end_fsb = XFS_B_TO_FSB(mp, offset + length);
|
|
struct xfs_bmbt_irec imap;
|
|
int nimaps = 1, error = 0;
|
|
unsigned lockmode;
|
|
|
|
if (xfs_is_shutdown(mp))
|
|
return -EIO;
|
|
|
|
lockmode = xfs_ilock_attr_map_shared(ip);
|
|
|
|
/* if there are no attribute fork or extents, return ENOENT */
|
|
if (!XFS_IFORK_Q(ip) || !ip->i_afp->if_nextents) {
|
|
error = -ENOENT;
|
|
goto out_unlock;
|
|
}
|
|
|
|
ASSERT(ip->i_afp->if_format != XFS_DINODE_FMT_LOCAL);
|
|
error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb, &imap,
|
|
&nimaps, XFS_BMAPI_ATTRFORK);
|
|
out_unlock:
|
|
xfs_iunlock(ip, lockmode);
|
|
|
|
if (error)
|
|
return error;
|
|
ASSERT(nimaps);
|
|
return xfs_bmbt_to_iomap(ip, iomap, &imap, flags, 0);
|
|
}
|
|
|
|
const struct iomap_ops xfs_xattr_iomap_ops = {
|
|
.iomap_begin = xfs_xattr_iomap_begin,
|
|
};
|
|
|
|
int
|
|
xfs_zero_range(
|
|
struct xfs_inode *ip,
|
|
loff_t pos,
|
|
loff_t len,
|
|
bool *did_zero)
|
|
{
|
|
struct inode *inode = VFS_I(ip);
|
|
|
|
if (IS_DAX(inode))
|
|
return dax_zero_range(inode, pos, len, did_zero,
|
|
&xfs_direct_write_iomap_ops);
|
|
return iomap_zero_range(inode, pos, len, did_zero,
|
|
&xfs_buffered_write_iomap_ops);
|
|
}
|
|
|
|
int
|
|
xfs_truncate_page(
|
|
struct xfs_inode *ip,
|
|
loff_t pos,
|
|
bool *did_zero)
|
|
{
|
|
struct inode *inode = VFS_I(ip);
|
|
|
|
if (IS_DAX(inode))
|
|
return dax_truncate_page(inode, pos, did_zero,
|
|
&xfs_direct_write_iomap_ops);
|
|
return iomap_truncate_page(inode, pos, did_zero,
|
|
&xfs_buffered_write_iomap_ops);
|
|
}
|