linux/arch/s390/pci/pci_irq.c
Niklas Schnelle 86dbf32da1 s390/pci: do not set affinity for floating irqs
with the introduction of CPU directed interrupts the kernel
parameter pci=force_floating was introduced to fall back
to the previous behavior using floating irqs.

However we were still setting the affinity in that case,
both in __irq_alloc_descs() and via the irq_set_affinity
callback in struct irq_chip.

For the former only set the affinity in the directed case.

The latter is explicitly set in zpci_directed_irq_init()
so we can just leave it unset for the floating case.

Fixes: e979ce7bce ("s390/pci: provide support for CPU directed interrupts")
Co-developed-by: Alexander Schmidt <alexs@linux.ibm.com>
Signed-off-by: Alexander Schmidt <alexs@linux.ibm.com>
Signed-off-by: Niklas Schnelle <schnelle@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
2020-04-22 16:20:55 +02:00

488 lines
11 KiB
C

// SPDX-License-Identifier: GPL-2.0
#define KMSG_COMPONENT "zpci"
#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
#include <linux/kernel.h>
#include <linux/irq.h>
#include <linux/kernel_stat.h>
#include <linux/pci.h>
#include <linux/msi.h>
#include <linux/smp.h>
#include <asm/isc.h>
#include <asm/airq.h>
static enum {FLOATING, DIRECTED} irq_delivery;
#define SIC_IRQ_MODE_ALL 0
#define SIC_IRQ_MODE_SINGLE 1
#define SIC_IRQ_MODE_DIRECT 4
#define SIC_IRQ_MODE_D_ALL 16
#define SIC_IRQ_MODE_D_SINGLE 17
#define SIC_IRQ_MODE_SET_CPU 18
/*
* summary bit vector
* FLOATING - summary bit per function
* DIRECTED - summary bit per cpu (only used in fallback path)
*/
static struct airq_iv *zpci_sbv;
/*
* interrupt bit vectors
* FLOATING - interrupt bit vector per function
* DIRECTED - interrupt bit vector per cpu
*/
static struct airq_iv **zpci_ibv;
/* Modify PCI: Register adapter interruptions */
static int zpci_set_airq(struct zpci_dev *zdev)
{
u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_REG_INT);
struct zpci_fib fib = {0};
u8 status;
fib.fmt0.isc = PCI_ISC;
fib.fmt0.sum = 1; /* enable summary notifications */
fib.fmt0.noi = airq_iv_end(zdev->aibv);
fib.fmt0.aibv = (unsigned long) zdev->aibv->vector;
fib.fmt0.aibvo = 0; /* each zdev has its own interrupt vector */
fib.fmt0.aisb = (unsigned long) zpci_sbv->vector + (zdev->aisb/64)*8;
fib.fmt0.aisbo = zdev->aisb & 63;
return zpci_mod_fc(req, &fib, &status) ? -EIO : 0;
}
/* Modify PCI: Unregister adapter interruptions */
static int zpci_clear_airq(struct zpci_dev *zdev)
{
u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_DEREG_INT);
struct zpci_fib fib = {0};
u8 cc, status;
cc = zpci_mod_fc(req, &fib, &status);
if (cc == 3 || (cc == 1 && status == 24))
/* Function already gone or IRQs already deregistered. */
cc = 0;
return cc ? -EIO : 0;
}
/* Modify PCI: Register CPU directed interruptions */
static int zpci_set_directed_irq(struct zpci_dev *zdev)
{
u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_REG_INT_D);
struct zpci_fib fib = {0};
u8 status;
fib.fmt = 1;
fib.fmt1.noi = zdev->msi_nr_irqs;
fib.fmt1.dibvo = zdev->msi_first_bit;
return zpci_mod_fc(req, &fib, &status) ? -EIO : 0;
}
/* Modify PCI: Unregister CPU directed interruptions */
static int zpci_clear_directed_irq(struct zpci_dev *zdev)
{
u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_DEREG_INT_D);
struct zpci_fib fib = {0};
u8 cc, status;
fib.fmt = 1;
cc = zpci_mod_fc(req, &fib, &status);
if (cc == 3 || (cc == 1 && status == 24))
/* Function already gone or IRQs already deregistered. */
cc = 0;
return cc ? -EIO : 0;
}
static int zpci_set_irq_affinity(struct irq_data *data, const struct cpumask *dest,
bool force)
{
struct msi_desc *entry = irq_get_msi_desc(data->irq);
struct msi_msg msg = entry->msg;
msg.address_lo &= 0xff0000ff;
msg.address_lo |= (cpumask_first(dest) << 8);
pci_write_msi_msg(data->irq, &msg);
return IRQ_SET_MASK_OK;
}
static struct irq_chip zpci_irq_chip = {
.name = "PCI-MSI",
.irq_unmask = pci_msi_unmask_irq,
.irq_mask = pci_msi_mask_irq,
};
static void zpci_handle_cpu_local_irq(bool rescan)
{
struct airq_iv *dibv = zpci_ibv[smp_processor_id()];
unsigned long bit;
int irqs_on = 0;
for (bit = 0;;) {
/* Scan the directed IRQ bit vector */
bit = airq_iv_scan(dibv, bit, airq_iv_end(dibv));
if (bit == -1UL) {
if (!rescan || irqs_on++)
/* End of second scan with interrupts on. */
break;
/* First scan complete, reenable interrupts. */
if (zpci_set_irq_ctrl(SIC_IRQ_MODE_D_SINGLE, PCI_ISC))
break;
bit = 0;
continue;
}
inc_irq_stat(IRQIO_MSI);
generic_handle_irq(airq_iv_get_data(dibv, bit));
}
}
struct cpu_irq_data {
call_single_data_t csd;
atomic_t scheduled;
};
static DEFINE_PER_CPU_SHARED_ALIGNED(struct cpu_irq_data, irq_data);
static void zpci_handle_remote_irq(void *data)
{
atomic_t *scheduled = data;
do {
zpci_handle_cpu_local_irq(false);
} while (atomic_dec_return(scheduled));
}
static void zpci_handle_fallback_irq(void)
{
struct cpu_irq_data *cpu_data;
unsigned long cpu;
int irqs_on = 0;
for (cpu = 0;;) {
cpu = airq_iv_scan(zpci_sbv, cpu, airq_iv_end(zpci_sbv));
if (cpu == -1UL) {
if (irqs_on++)
/* End of second scan with interrupts on. */
break;
/* First scan complete, reenable interrupts. */
if (zpci_set_irq_ctrl(SIC_IRQ_MODE_SINGLE, PCI_ISC))
break;
cpu = 0;
continue;
}
cpu_data = &per_cpu(irq_data, cpu);
if (atomic_inc_return(&cpu_data->scheduled) > 1)
continue;
cpu_data->csd.func = zpci_handle_remote_irq;
cpu_data->csd.info = &cpu_data->scheduled;
cpu_data->csd.flags = 0;
smp_call_function_single_async(cpu, &cpu_data->csd);
}
}
static void zpci_directed_irq_handler(struct airq_struct *airq, bool floating)
{
if (floating) {
inc_irq_stat(IRQIO_PCF);
zpci_handle_fallback_irq();
} else {
inc_irq_stat(IRQIO_PCD);
zpci_handle_cpu_local_irq(true);
}
}
static void zpci_floating_irq_handler(struct airq_struct *airq, bool floating)
{
unsigned long si, ai;
struct airq_iv *aibv;
int irqs_on = 0;
inc_irq_stat(IRQIO_PCF);
for (si = 0;;) {
/* Scan adapter summary indicator bit vector */
si = airq_iv_scan(zpci_sbv, si, airq_iv_end(zpci_sbv));
if (si == -1UL) {
if (irqs_on++)
/* End of second scan with interrupts on. */
break;
/* First scan complete, reenable interrupts. */
if (zpci_set_irq_ctrl(SIC_IRQ_MODE_SINGLE, PCI_ISC))
break;
si = 0;
continue;
}
/* Scan the adapter interrupt vector for this device. */
aibv = zpci_ibv[si];
for (ai = 0;;) {
ai = airq_iv_scan(aibv, ai, airq_iv_end(aibv));
if (ai == -1UL)
break;
inc_irq_stat(IRQIO_MSI);
airq_iv_lock(aibv, ai);
generic_handle_irq(airq_iv_get_data(aibv, ai));
airq_iv_unlock(aibv, ai);
}
}
}
int arch_setup_msi_irqs(struct pci_dev *pdev, int nvec, int type)
{
struct zpci_dev *zdev = to_zpci(pdev);
unsigned int hwirq, msi_vecs, cpu;
unsigned long bit;
struct msi_desc *msi;
struct msi_msg msg;
int rc, irq;
zdev->aisb = -1UL;
zdev->msi_first_bit = -1U;
if (type == PCI_CAP_ID_MSI && nvec > 1)
return 1;
msi_vecs = min_t(unsigned int, nvec, zdev->max_msi);
if (irq_delivery == DIRECTED) {
/* Allocate cpu vector bits */
bit = airq_iv_alloc(zpci_ibv[0], msi_vecs);
if (bit == -1UL)
return -EIO;
} else {
/* Allocate adapter summary indicator bit */
bit = airq_iv_alloc_bit(zpci_sbv);
if (bit == -1UL)
return -EIO;
zdev->aisb = bit;
/* Create adapter interrupt vector */
zdev->aibv = airq_iv_create(msi_vecs, AIRQ_IV_DATA | AIRQ_IV_BITLOCK);
if (!zdev->aibv)
return -ENOMEM;
/* Wire up shortcut pointer */
zpci_ibv[bit] = zdev->aibv;
/* Each function has its own interrupt vector */
bit = 0;
}
/* Request MSI interrupts */
hwirq = bit;
for_each_pci_msi_entry(msi, pdev) {
rc = -EIO;
if (hwirq - bit >= msi_vecs)
break;
irq = __irq_alloc_descs(-1, 0, 1, 0, THIS_MODULE,
(irq_delivery == DIRECTED) ?
msi->affinity : NULL);
if (irq < 0)
return -ENOMEM;
rc = irq_set_msi_desc(irq, msi);
if (rc)
return rc;
irq_set_chip_and_handler(irq, &zpci_irq_chip,
handle_percpu_irq);
msg.data = hwirq - bit;
if (irq_delivery == DIRECTED) {
msg.address_lo = zdev->msi_addr & 0xff0000ff;
msg.address_lo |= msi->affinity ?
(cpumask_first(&msi->affinity->mask) << 8) : 0;
for_each_possible_cpu(cpu) {
airq_iv_set_data(zpci_ibv[cpu], hwirq, irq);
}
} else {
msg.address_lo = zdev->msi_addr & 0xffffffff;
airq_iv_set_data(zdev->aibv, hwirq, irq);
}
msg.address_hi = zdev->msi_addr >> 32;
pci_write_msi_msg(irq, &msg);
hwirq++;
}
zdev->msi_first_bit = bit;
zdev->msi_nr_irqs = msi_vecs;
if (irq_delivery == DIRECTED)
rc = zpci_set_directed_irq(zdev);
else
rc = zpci_set_airq(zdev);
if (rc)
return rc;
return (msi_vecs == nvec) ? 0 : msi_vecs;
}
void arch_teardown_msi_irqs(struct pci_dev *pdev)
{
struct zpci_dev *zdev = to_zpci(pdev);
struct msi_desc *msi;
int rc;
/* Disable interrupts */
if (irq_delivery == DIRECTED)
rc = zpci_clear_directed_irq(zdev);
else
rc = zpci_clear_airq(zdev);
if (rc)
return;
/* Release MSI interrupts */
for_each_pci_msi_entry(msi, pdev) {
if (!msi->irq)
continue;
if (msi->msi_attrib.is_msix)
__pci_msix_desc_mask_irq(msi, 1);
else
__pci_msi_desc_mask_irq(msi, 1, 1);
irq_set_msi_desc(msi->irq, NULL);
irq_free_desc(msi->irq);
msi->msg.address_lo = 0;
msi->msg.address_hi = 0;
msi->msg.data = 0;
msi->irq = 0;
}
if (zdev->aisb != -1UL) {
zpci_ibv[zdev->aisb] = NULL;
airq_iv_free_bit(zpci_sbv, zdev->aisb);
zdev->aisb = -1UL;
}
if (zdev->aibv) {
airq_iv_release(zdev->aibv);
zdev->aibv = NULL;
}
if ((irq_delivery == DIRECTED) && zdev->msi_first_bit != -1U)
airq_iv_free(zpci_ibv[0], zdev->msi_first_bit, zdev->msi_nr_irqs);
}
static struct airq_struct zpci_airq = {
.handler = zpci_floating_irq_handler,
.isc = PCI_ISC,
};
static void __init cpu_enable_directed_irq(void *unused)
{
union zpci_sic_iib iib = {{0}};
iib.cdiib.dibv_addr = (u64) zpci_ibv[smp_processor_id()]->vector;
__zpci_set_irq_ctrl(SIC_IRQ_MODE_SET_CPU, 0, &iib);
zpci_set_irq_ctrl(SIC_IRQ_MODE_D_SINGLE, PCI_ISC);
}
static int __init zpci_directed_irq_init(void)
{
union zpci_sic_iib iib = {{0}};
unsigned int cpu;
zpci_sbv = airq_iv_create(num_possible_cpus(), 0);
if (!zpci_sbv)
return -ENOMEM;
iib.diib.isc = PCI_ISC;
iib.diib.nr_cpus = num_possible_cpus();
iib.diib.disb_addr = (u64) zpci_sbv->vector;
__zpci_set_irq_ctrl(SIC_IRQ_MODE_DIRECT, 0, &iib);
zpci_ibv = kcalloc(num_possible_cpus(), sizeof(*zpci_ibv),
GFP_KERNEL);
if (!zpci_ibv)
return -ENOMEM;
for_each_possible_cpu(cpu) {
/*
* Per CPU IRQ vectors look the same but bit-allocation
* is only done on the first vector.
*/
zpci_ibv[cpu] = airq_iv_create(cache_line_size() * BITS_PER_BYTE,
AIRQ_IV_DATA |
AIRQ_IV_CACHELINE |
(!cpu ? AIRQ_IV_ALLOC : 0));
if (!zpci_ibv[cpu])
return -ENOMEM;
}
on_each_cpu(cpu_enable_directed_irq, NULL, 1);
zpci_irq_chip.irq_set_affinity = zpci_set_irq_affinity;
return 0;
}
static int __init zpci_floating_irq_init(void)
{
zpci_ibv = kcalloc(ZPCI_NR_DEVICES, sizeof(*zpci_ibv), GFP_KERNEL);
if (!zpci_ibv)
return -ENOMEM;
zpci_sbv = airq_iv_create(ZPCI_NR_DEVICES, AIRQ_IV_ALLOC);
if (!zpci_sbv)
goto out_free;
return 0;
out_free:
kfree(zpci_ibv);
return -ENOMEM;
}
int __init zpci_irq_init(void)
{
int rc;
irq_delivery = sclp.has_dirq ? DIRECTED : FLOATING;
if (s390_pci_force_floating)
irq_delivery = FLOATING;
if (irq_delivery == DIRECTED)
zpci_airq.handler = zpci_directed_irq_handler;
rc = register_adapter_interrupt(&zpci_airq);
if (rc)
goto out;
/* Set summary to 1 to be called every time for the ISC. */
*zpci_airq.lsi_ptr = 1;
switch (irq_delivery) {
case FLOATING:
rc = zpci_floating_irq_init();
break;
case DIRECTED:
rc = zpci_directed_irq_init();
break;
}
if (rc)
goto out_airq;
/*
* Enable floating IRQs (with suppression after one IRQ). When using
* directed IRQs this enables the fallback path.
*/
zpci_set_irq_ctrl(SIC_IRQ_MODE_SINGLE, PCI_ISC);
return 0;
out_airq:
unregister_adapter_interrupt(&zpci_airq);
out:
return rc;
}
void __init zpci_irq_exit(void)
{
unsigned int cpu;
if (irq_delivery == DIRECTED) {
for_each_possible_cpu(cpu) {
airq_iv_release(zpci_ibv[cpu]);
}
}
kfree(zpci_ibv);
if (zpci_sbv)
airq_iv_release(zpci_sbv);
unregister_adapter_interrupt(&zpci_airq);
}