linux/fs/f2fs/f2fs.h
Chao Yu 377224c471 f2fs: don't split checkpoint in fstrim
Now, we issue discard asynchronously in separated thread instead of in
checkpoint, after that, we won't encounter long latency in checkpoint
due to huge number of synchronous discard command handling, so, we don't
need to split checkpoint to do trim in batch, merge it and obsolete
related sysfs entry.

Signed-off-by: Chao Yu <yuchao0@huawei.com>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2018-05-30 08:58:59 -07:00

3299 lines
102 KiB
C

/*
* fs/f2fs/f2fs.h
*
* Copyright (c) 2012 Samsung Electronics Co., Ltd.
* http://www.samsung.com/
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#ifndef _LINUX_F2FS_H
#define _LINUX_F2FS_H
#include <linux/types.h>
#include <linux/page-flags.h>
#include <linux/buffer_head.h>
#include <linux/slab.h>
#include <linux/crc32.h>
#include <linux/magic.h>
#include <linux/kobject.h>
#include <linux/sched.h>
#include <linux/cred.h>
#include <linux/vmalloc.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
#include <linux/quotaops.h>
#include <crypto/hash.h>
#define __FS_HAS_ENCRYPTION IS_ENABLED(CONFIG_F2FS_FS_ENCRYPTION)
#include <linux/fscrypt.h>
#ifdef CONFIG_F2FS_CHECK_FS
#define f2fs_bug_on(sbi, condition) BUG_ON(condition)
#else
#define f2fs_bug_on(sbi, condition) \
do { \
if (unlikely(condition)) { \
WARN_ON(1); \
set_sbi_flag(sbi, SBI_NEED_FSCK); \
} \
} while (0)
#endif
#ifdef CONFIG_F2FS_FAULT_INJECTION
enum {
FAULT_KMALLOC,
FAULT_KVMALLOC,
FAULT_PAGE_ALLOC,
FAULT_PAGE_GET,
FAULT_ALLOC_BIO,
FAULT_ALLOC_NID,
FAULT_ORPHAN,
FAULT_BLOCK,
FAULT_DIR_DEPTH,
FAULT_EVICT_INODE,
FAULT_TRUNCATE,
FAULT_IO,
FAULT_CHECKPOINT,
FAULT_MAX,
};
struct f2fs_fault_info {
atomic_t inject_ops;
unsigned int inject_rate;
unsigned int inject_type;
};
extern char *fault_name[FAULT_MAX];
#define IS_FAULT_SET(fi, type) ((fi)->inject_type & (1 << (type)))
#endif
/*
* For mount options
*/
#define F2FS_MOUNT_BG_GC 0x00000001
#define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002
#define F2FS_MOUNT_DISCARD 0x00000004
#define F2FS_MOUNT_NOHEAP 0x00000008
#define F2FS_MOUNT_XATTR_USER 0x00000010
#define F2FS_MOUNT_POSIX_ACL 0x00000020
#define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040
#define F2FS_MOUNT_INLINE_XATTR 0x00000080
#define F2FS_MOUNT_INLINE_DATA 0x00000100
#define F2FS_MOUNT_INLINE_DENTRY 0x00000200
#define F2FS_MOUNT_FLUSH_MERGE 0x00000400
#define F2FS_MOUNT_NOBARRIER 0x00000800
#define F2FS_MOUNT_FASTBOOT 0x00001000
#define F2FS_MOUNT_EXTENT_CACHE 0x00002000
#define F2FS_MOUNT_FORCE_FG_GC 0x00004000
#define F2FS_MOUNT_DATA_FLUSH 0x00008000
#define F2FS_MOUNT_FAULT_INJECTION 0x00010000
#define F2FS_MOUNT_ADAPTIVE 0x00020000
#define F2FS_MOUNT_LFS 0x00040000
#define F2FS_MOUNT_USRQUOTA 0x00080000
#define F2FS_MOUNT_GRPQUOTA 0x00100000
#define F2FS_MOUNT_PRJQUOTA 0x00200000
#define F2FS_MOUNT_QUOTA 0x00400000
#define F2FS_MOUNT_INLINE_XATTR_SIZE 0x00800000
#define F2FS_MOUNT_RESERVE_ROOT 0x01000000
#define F2FS_OPTION(sbi) ((sbi)->mount_opt)
#define clear_opt(sbi, option) (F2FS_OPTION(sbi).opt &= ~F2FS_MOUNT_##option)
#define set_opt(sbi, option) (F2FS_OPTION(sbi).opt |= F2FS_MOUNT_##option)
#define test_opt(sbi, option) (F2FS_OPTION(sbi).opt & F2FS_MOUNT_##option)
#define ver_after(a, b) (typecheck(unsigned long long, a) && \
typecheck(unsigned long long, b) && \
((long long)((a) - (b)) > 0))
typedef u32 block_t; /*
* should not change u32, since it is the on-disk block
* address format, __le32.
*/
typedef u32 nid_t;
struct f2fs_mount_info {
unsigned int opt;
int write_io_size_bits; /* Write IO size bits */
block_t root_reserved_blocks; /* root reserved blocks */
kuid_t s_resuid; /* reserved blocks for uid */
kgid_t s_resgid; /* reserved blocks for gid */
int active_logs; /* # of active logs */
int inline_xattr_size; /* inline xattr size */
#ifdef CONFIG_F2FS_FAULT_INJECTION
struct f2fs_fault_info fault_info; /* For fault injection */
#endif
#ifdef CONFIG_QUOTA
/* Names of quota files with journalled quota */
char *s_qf_names[MAXQUOTAS];
int s_jquota_fmt; /* Format of quota to use */
#endif
/* For which write hints are passed down to block layer */
int whint_mode;
int alloc_mode; /* segment allocation policy */
int fsync_mode; /* fsync policy */
bool test_dummy_encryption; /* test dummy encryption */
};
#define F2FS_FEATURE_ENCRYPT 0x0001
#define F2FS_FEATURE_BLKZONED 0x0002
#define F2FS_FEATURE_ATOMIC_WRITE 0x0004
#define F2FS_FEATURE_EXTRA_ATTR 0x0008
#define F2FS_FEATURE_PRJQUOTA 0x0010
#define F2FS_FEATURE_INODE_CHKSUM 0x0020
#define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR 0x0040
#define F2FS_FEATURE_QUOTA_INO 0x0080
#define F2FS_FEATURE_INODE_CRTIME 0x0100
#define F2FS_FEATURE_LOST_FOUND 0x0200
#define F2FS_FEATURE_VERITY 0x0400 /* reserved */
#define F2FS_HAS_FEATURE(sb, mask) \
((F2FS_SB(sb)->raw_super->feature & cpu_to_le32(mask)) != 0)
#define F2FS_SET_FEATURE(sb, mask) \
(F2FS_SB(sb)->raw_super->feature |= cpu_to_le32(mask))
#define F2FS_CLEAR_FEATURE(sb, mask) \
(F2FS_SB(sb)->raw_super->feature &= ~cpu_to_le32(mask))
/*
* Default values for user and/or group using reserved blocks
*/
#define F2FS_DEF_RESUID 0
#define F2FS_DEF_RESGID 0
/*
* For checkpoint manager
*/
enum {
NAT_BITMAP,
SIT_BITMAP
};
#define CP_UMOUNT 0x00000001
#define CP_FASTBOOT 0x00000002
#define CP_SYNC 0x00000004
#define CP_RECOVERY 0x00000008
#define CP_DISCARD 0x00000010
#define CP_TRIMMED 0x00000020
#define MAX_DISCARD_BLOCKS(sbi) BLKS_PER_SEC(sbi)
#define DEF_MAX_DISCARD_REQUEST 8 /* issue 8 discards per round */
#define DEF_MAX_DISCARD_LEN 512 /* Max. 2MB per discard */
#define DEF_MIN_DISCARD_ISSUE_TIME 50 /* 50 ms, if exists */
#define DEF_MAX_DISCARD_ISSUE_TIME 60000 /* 60 s, if no candidates */
#define DEF_DISCARD_URGENT_UTIL 80 /* do more discard over 80% */
#define DEF_CP_INTERVAL 60 /* 60 secs */
#define DEF_IDLE_INTERVAL 5 /* 5 secs */
struct cp_control {
int reason;
__u64 trim_start;
__u64 trim_end;
__u64 trim_minlen;
};
/*
* For CP/NAT/SIT/SSA readahead
*/
enum {
META_CP,
META_NAT,
META_SIT,
META_SSA,
META_POR,
};
/* for the list of ino */
enum {
ORPHAN_INO, /* for orphan ino list */
APPEND_INO, /* for append ino list */
UPDATE_INO, /* for update ino list */
TRANS_DIR_INO, /* for trasactions dir ino list */
FLUSH_INO, /* for multiple device flushing */
MAX_INO_ENTRY, /* max. list */
};
struct ino_entry {
struct list_head list; /* list head */
nid_t ino; /* inode number */
unsigned int dirty_device; /* dirty device bitmap */
};
/* for the list of inodes to be GCed */
struct inode_entry {
struct list_head list; /* list head */
struct inode *inode; /* vfs inode pointer */
};
/* for the bitmap indicate blocks to be discarded */
struct discard_entry {
struct list_head list; /* list head */
block_t start_blkaddr; /* start blockaddr of current segment */
unsigned char discard_map[SIT_VBLOCK_MAP_SIZE]; /* segment discard bitmap */
};
/* default discard granularity of inner discard thread, unit: block count */
#define DEFAULT_DISCARD_GRANULARITY 16
/* max discard pend list number */
#define MAX_PLIST_NUM 512
#define plist_idx(blk_num) ((blk_num) >= MAX_PLIST_NUM ? \
(MAX_PLIST_NUM - 1) : (blk_num - 1))
enum {
D_PREP,
D_SUBMIT,
D_DONE,
};
struct discard_info {
block_t lstart; /* logical start address */
block_t len; /* length */
block_t start; /* actual start address in dev */
};
struct discard_cmd {
struct rb_node rb_node; /* rb node located in rb-tree */
union {
struct {
block_t lstart; /* logical start address */
block_t len; /* length */
block_t start; /* actual start address in dev */
};
struct discard_info di; /* discard info */
};
struct list_head list; /* command list */
struct completion wait; /* compleation */
struct block_device *bdev; /* bdev */
unsigned short ref; /* reference count */
unsigned char state; /* state */
int error; /* bio error */
};
enum {
DPOLICY_BG,
DPOLICY_FORCE,
DPOLICY_FSTRIM,
DPOLICY_UMOUNT,
MAX_DPOLICY,
};
struct discard_policy {
int type; /* type of discard */
unsigned int min_interval; /* used for candidates exist */
unsigned int max_interval; /* used for candidates not exist */
unsigned int max_requests; /* # of discards issued per round */
unsigned int io_aware_gran; /* minimum granularity discard not be aware of I/O */
bool io_aware; /* issue discard in idle time */
bool sync; /* submit discard with REQ_SYNC flag */
unsigned int granularity; /* discard granularity */
};
struct discard_cmd_control {
struct task_struct *f2fs_issue_discard; /* discard thread */
struct list_head entry_list; /* 4KB discard entry list */
struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */
struct list_head wait_list; /* store on-flushing entries */
struct list_head fstrim_list; /* in-flight discard from fstrim */
wait_queue_head_t discard_wait_queue; /* waiting queue for wake-up */
unsigned int discard_wake; /* to wake up discard thread */
struct mutex cmd_lock;
unsigned int nr_discards; /* # of discards in the list */
unsigned int max_discards; /* max. discards to be issued */
unsigned int discard_granularity; /* discard granularity */
unsigned int undiscard_blks; /* # of undiscard blocks */
atomic_t issued_discard; /* # of issued discard */
atomic_t issing_discard; /* # of issing discard */
atomic_t discard_cmd_cnt; /* # of cached cmd count */
struct rb_root root; /* root of discard rb-tree */
};
/* for the list of fsync inodes, used only during recovery */
struct fsync_inode_entry {
struct list_head list; /* list head */
struct inode *inode; /* vfs inode pointer */
block_t blkaddr; /* block address locating the last fsync */
block_t last_dentry; /* block address locating the last dentry */
};
#define nats_in_cursum(jnl) (le16_to_cpu((jnl)->n_nats))
#define sits_in_cursum(jnl) (le16_to_cpu((jnl)->n_sits))
#define nat_in_journal(jnl, i) ((jnl)->nat_j.entries[i].ne)
#define nid_in_journal(jnl, i) ((jnl)->nat_j.entries[i].nid)
#define sit_in_journal(jnl, i) ((jnl)->sit_j.entries[i].se)
#define segno_in_journal(jnl, i) ((jnl)->sit_j.entries[i].segno)
#define MAX_NAT_JENTRIES(jnl) (NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
#define MAX_SIT_JENTRIES(jnl) (SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
{
int before = nats_in_cursum(journal);
journal->n_nats = cpu_to_le16(before + i);
return before;
}
static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
{
int before = sits_in_cursum(journal);
journal->n_sits = cpu_to_le16(before + i);
return before;
}
static inline bool __has_cursum_space(struct f2fs_journal *journal,
int size, int type)
{
if (type == NAT_JOURNAL)
return size <= MAX_NAT_JENTRIES(journal);
return size <= MAX_SIT_JENTRIES(journal);
}
/*
* ioctl commands
*/
#define F2FS_IOC_GETFLAGS FS_IOC_GETFLAGS
#define F2FS_IOC_SETFLAGS FS_IOC_SETFLAGS
#define F2FS_IOC_GETVERSION FS_IOC_GETVERSION
#define F2FS_IOCTL_MAGIC 0xf5
#define F2FS_IOC_START_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 1)
#define F2FS_IOC_COMMIT_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 2)
#define F2FS_IOC_START_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 3)
#define F2FS_IOC_RELEASE_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 4)
#define F2FS_IOC_ABORT_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 5)
#define F2FS_IOC_GARBAGE_COLLECT _IOW(F2FS_IOCTL_MAGIC, 6, __u32)
#define F2FS_IOC_WRITE_CHECKPOINT _IO(F2FS_IOCTL_MAGIC, 7)
#define F2FS_IOC_DEFRAGMENT _IOWR(F2FS_IOCTL_MAGIC, 8, \
struct f2fs_defragment)
#define F2FS_IOC_MOVE_RANGE _IOWR(F2FS_IOCTL_MAGIC, 9, \
struct f2fs_move_range)
#define F2FS_IOC_FLUSH_DEVICE _IOW(F2FS_IOCTL_MAGIC, 10, \
struct f2fs_flush_device)
#define F2FS_IOC_GARBAGE_COLLECT_RANGE _IOW(F2FS_IOCTL_MAGIC, 11, \
struct f2fs_gc_range)
#define F2FS_IOC_GET_FEATURES _IOR(F2FS_IOCTL_MAGIC, 12, __u32)
#define F2FS_IOC_SET_PIN_FILE _IOW(F2FS_IOCTL_MAGIC, 13, __u32)
#define F2FS_IOC_GET_PIN_FILE _IOR(F2FS_IOCTL_MAGIC, 14, __u32)
#define F2FS_IOC_PRECACHE_EXTENTS _IO(F2FS_IOCTL_MAGIC, 15)
#define F2FS_IOC_SET_ENCRYPTION_POLICY FS_IOC_SET_ENCRYPTION_POLICY
#define F2FS_IOC_GET_ENCRYPTION_POLICY FS_IOC_GET_ENCRYPTION_POLICY
#define F2FS_IOC_GET_ENCRYPTION_PWSALT FS_IOC_GET_ENCRYPTION_PWSALT
/*
* should be same as XFS_IOC_GOINGDOWN.
* Flags for going down operation used by FS_IOC_GOINGDOWN
*/
#define F2FS_IOC_SHUTDOWN _IOR('X', 125, __u32) /* Shutdown */
#define F2FS_GOING_DOWN_FULLSYNC 0x0 /* going down with full sync */
#define F2FS_GOING_DOWN_METASYNC 0x1 /* going down with metadata */
#define F2FS_GOING_DOWN_NOSYNC 0x2 /* going down */
#define F2FS_GOING_DOWN_METAFLUSH 0x3 /* going down with meta flush */
#if defined(__KERNEL__) && defined(CONFIG_COMPAT)
/*
* ioctl commands in 32 bit emulation
*/
#define F2FS_IOC32_GETFLAGS FS_IOC32_GETFLAGS
#define F2FS_IOC32_SETFLAGS FS_IOC32_SETFLAGS
#define F2FS_IOC32_GETVERSION FS_IOC32_GETVERSION
#endif
#define F2FS_IOC_FSGETXATTR FS_IOC_FSGETXATTR
#define F2FS_IOC_FSSETXATTR FS_IOC_FSSETXATTR
struct f2fs_gc_range {
u32 sync;
u64 start;
u64 len;
};
struct f2fs_defragment {
u64 start;
u64 len;
};
struct f2fs_move_range {
u32 dst_fd; /* destination fd */
u64 pos_in; /* start position in src_fd */
u64 pos_out; /* start position in dst_fd */
u64 len; /* size to move */
};
struct f2fs_flush_device {
u32 dev_num; /* device number to flush */
u32 segments; /* # of segments to flush */
};
/* for inline stuff */
#define DEF_INLINE_RESERVED_SIZE 1
#define DEF_MIN_INLINE_SIZE 1
static inline int get_extra_isize(struct inode *inode);
static inline int get_inline_xattr_addrs(struct inode *inode);
#define MAX_INLINE_DATA(inode) (sizeof(__le32) * \
(CUR_ADDRS_PER_INODE(inode) - \
get_inline_xattr_addrs(inode) - \
DEF_INLINE_RESERVED_SIZE))
/* for inline dir */
#define NR_INLINE_DENTRY(inode) (MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \
((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
BITS_PER_BYTE + 1))
#define INLINE_DENTRY_BITMAP_SIZE(inode) ((NR_INLINE_DENTRY(inode) + \
BITS_PER_BYTE - 1) / BITS_PER_BYTE)
#define INLINE_RESERVED_SIZE(inode) (MAX_INLINE_DATA(inode) - \
((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
NR_INLINE_DENTRY(inode) + \
INLINE_DENTRY_BITMAP_SIZE(inode)))
/*
* For INODE and NODE manager
*/
/* for directory operations */
struct f2fs_dentry_ptr {
struct inode *inode;
void *bitmap;
struct f2fs_dir_entry *dentry;
__u8 (*filename)[F2FS_SLOT_LEN];
int max;
int nr_bitmap;
};
static inline void make_dentry_ptr_block(struct inode *inode,
struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t)
{
d->inode = inode;
d->max = NR_DENTRY_IN_BLOCK;
d->nr_bitmap = SIZE_OF_DENTRY_BITMAP;
d->bitmap = t->dentry_bitmap;
d->dentry = t->dentry;
d->filename = t->filename;
}
static inline void make_dentry_ptr_inline(struct inode *inode,
struct f2fs_dentry_ptr *d, void *t)
{
int entry_cnt = NR_INLINE_DENTRY(inode);
int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode);
int reserved_size = INLINE_RESERVED_SIZE(inode);
d->inode = inode;
d->max = entry_cnt;
d->nr_bitmap = bitmap_size;
d->bitmap = t;
d->dentry = t + bitmap_size + reserved_size;
d->filename = t + bitmap_size + reserved_size +
SIZE_OF_DIR_ENTRY * entry_cnt;
}
/*
* XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
* as its node offset to distinguish from index node blocks.
* But some bits are used to mark the node block.
*/
#define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
>> OFFSET_BIT_SHIFT)
enum {
ALLOC_NODE, /* allocate a new node page if needed */
LOOKUP_NODE, /* look up a node without readahead */
LOOKUP_NODE_RA, /*
* look up a node with readahead called
* by get_data_block.
*/
};
#define F2FS_LINK_MAX 0xffffffff /* maximum link count per file */
#define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */
/* vector size for gang look-up from extent cache that consists of radix tree */
#define EXT_TREE_VEC_SIZE 64
/* for in-memory extent cache entry */
#define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */
/* number of extent info in extent cache we try to shrink */
#define EXTENT_CACHE_SHRINK_NUMBER 128
struct rb_entry {
struct rb_node rb_node; /* rb node located in rb-tree */
unsigned int ofs; /* start offset of the entry */
unsigned int len; /* length of the entry */
};
struct extent_info {
unsigned int fofs; /* start offset in a file */
unsigned int len; /* length of the extent */
u32 blk; /* start block address of the extent */
};
struct extent_node {
struct rb_node rb_node;
union {
struct {
unsigned int fofs;
unsigned int len;
u32 blk;
};
struct extent_info ei; /* extent info */
};
struct list_head list; /* node in global extent list of sbi */
struct extent_tree *et; /* extent tree pointer */
};
struct extent_tree {
nid_t ino; /* inode number */
struct rb_root root; /* root of extent info rb-tree */
struct extent_node *cached_en; /* recently accessed extent node */
struct extent_info largest; /* largested extent info */
struct list_head list; /* to be used by sbi->zombie_list */
rwlock_t lock; /* protect extent info rb-tree */
atomic_t node_cnt; /* # of extent node in rb-tree*/
};
/*
* This structure is taken from ext4_map_blocks.
*
* Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
*/
#define F2FS_MAP_NEW (1 << BH_New)
#define F2FS_MAP_MAPPED (1 << BH_Mapped)
#define F2FS_MAP_UNWRITTEN (1 << BH_Unwritten)
#define F2FS_MAP_FLAGS (F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
F2FS_MAP_UNWRITTEN)
struct f2fs_map_blocks {
block_t m_pblk;
block_t m_lblk;
unsigned int m_len;
unsigned int m_flags;
pgoff_t *m_next_pgofs; /* point next possible non-hole pgofs */
pgoff_t *m_next_extent; /* point to next possible extent */
int m_seg_type;
};
/* for flag in get_data_block */
enum {
F2FS_GET_BLOCK_DEFAULT,
F2FS_GET_BLOCK_FIEMAP,
F2FS_GET_BLOCK_BMAP,
F2FS_GET_BLOCK_PRE_DIO,
F2FS_GET_BLOCK_PRE_AIO,
F2FS_GET_BLOCK_PRECACHE,
};
/*
* i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
*/
#define FADVISE_COLD_BIT 0x01
#define FADVISE_LOST_PINO_BIT 0x02
#define FADVISE_ENCRYPT_BIT 0x04
#define FADVISE_ENC_NAME_BIT 0x08
#define FADVISE_KEEP_SIZE_BIT 0x10
#define FADVISE_HOT_BIT 0x20
#define FADVISE_VERITY_BIT 0x40 /* reserved */
#define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT)
#define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT)
#define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT)
#define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT)
#define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT)
#define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT)
#define file_is_encrypt(inode) is_file(inode, FADVISE_ENCRYPT_BIT)
#define file_set_encrypt(inode) set_file(inode, FADVISE_ENCRYPT_BIT)
#define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT)
#define file_enc_name(inode) is_file(inode, FADVISE_ENC_NAME_BIT)
#define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
#define file_keep_isize(inode) is_file(inode, FADVISE_KEEP_SIZE_BIT)
#define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
#define file_is_hot(inode) is_file(inode, FADVISE_HOT_BIT)
#define file_set_hot(inode) set_file(inode, FADVISE_HOT_BIT)
#define file_clear_hot(inode) clear_file(inode, FADVISE_HOT_BIT)
#define DEF_DIR_LEVEL 0
struct f2fs_inode_info {
struct inode vfs_inode; /* serve a vfs inode */
unsigned long i_flags; /* keep an inode flags for ioctl */
unsigned char i_advise; /* use to give file attribute hints */
unsigned char i_dir_level; /* use for dentry level for large dir */
union {
unsigned int i_current_depth; /* only for directory depth */
unsigned short i_gc_failures; /* only for regular file */
};
unsigned int i_pino; /* parent inode number */
umode_t i_acl_mode; /* keep file acl mode temporarily */
/* Use below internally in f2fs*/
unsigned long flags; /* use to pass per-file flags */
struct rw_semaphore i_sem; /* protect fi info */
atomic_t dirty_pages; /* # of dirty pages */
f2fs_hash_t chash; /* hash value of given file name */
unsigned int clevel; /* maximum level of given file name */
struct task_struct *task; /* lookup and create consistency */
struct task_struct *cp_task; /* separate cp/wb IO stats*/
nid_t i_xattr_nid; /* node id that contains xattrs */
loff_t last_disk_size; /* lastly written file size */
#ifdef CONFIG_QUOTA
struct dquot *i_dquot[MAXQUOTAS];
/* quota space reservation, managed internally by quota code */
qsize_t i_reserved_quota;
#endif
struct list_head dirty_list; /* dirty list for dirs and files */
struct list_head gdirty_list; /* linked in global dirty list */
struct list_head inmem_ilist; /* list for inmem inodes */
struct list_head inmem_pages; /* inmemory pages managed by f2fs */
struct task_struct *inmem_task; /* store inmemory task */
struct mutex inmem_lock; /* lock for inmemory pages */
struct extent_tree *extent_tree; /* cached extent_tree entry */
struct rw_semaphore dio_rwsem[2];/* avoid racing between dio and gc */
struct rw_semaphore i_mmap_sem;
struct rw_semaphore i_xattr_sem; /* avoid racing between reading and changing EAs */
int i_extra_isize; /* size of extra space located in i_addr */
kprojid_t i_projid; /* id for project quota */
int i_inline_xattr_size; /* inline xattr size */
struct timespec i_crtime; /* inode creation time */
struct timespec i_disk_time[4]; /* inode disk times */
};
static inline void get_extent_info(struct extent_info *ext,
struct f2fs_extent *i_ext)
{
ext->fofs = le32_to_cpu(i_ext->fofs);
ext->blk = le32_to_cpu(i_ext->blk);
ext->len = le32_to_cpu(i_ext->len);
}
static inline void set_raw_extent(struct extent_info *ext,
struct f2fs_extent *i_ext)
{
i_ext->fofs = cpu_to_le32(ext->fofs);
i_ext->blk = cpu_to_le32(ext->blk);
i_ext->len = cpu_to_le32(ext->len);
}
static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
u32 blk, unsigned int len)
{
ei->fofs = fofs;
ei->blk = blk;
ei->len = len;
}
static inline bool __is_discard_mergeable(struct discard_info *back,
struct discard_info *front)
{
return (back->lstart + back->len == front->lstart) &&
(back->len + front->len < DEF_MAX_DISCARD_LEN);
}
static inline bool __is_discard_back_mergeable(struct discard_info *cur,
struct discard_info *back)
{
return __is_discard_mergeable(back, cur);
}
static inline bool __is_discard_front_mergeable(struct discard_info *cur,
struct discard_info *front)
{
return __is_discard_mergeable(cur, front);
}
static inline bool __is_extent_mergeable(struct extent_info *back,
struct extent_info *front)
{
return (back->fofs + back->len == front->fofs &&
back->blk + back->len == front->blk);
}
static inline bool __is_back_mergeable(struct extent_info *cur,
struct extent_info *back)
{
return __is_extent_mergeable(back, cur);
}
static inline bool __is_front_mergeable(struct extent_info *cur,
struct extent_info *front)
{
return __is_extent_mergeable(cur, front);
}
extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
static inline void __try_update_largest_extent(struct inode *inode,
struct extent_tree *et, struct extent_node *en)
{
if (en->ei.len > et->largest.len) {
et->largest = en->ei;
f2fs_mark_inode_dirty_sync(inode, true);
}
}
/*
* For free nid management
*/
enum nid_state {
FREE_NID, /* newly added to free nid list */
PREALLOC_NID, /* it is preallocated */
MAX_NID_STATE,
};
struct f2fs_nm_info {
block_t nat_blkaddr; /* base disk address of NAT */
nid_t max_nid; /* maximum possible node ids */
nid_t available_nids; /* # of available node ids */
nid_t next_scan_nid; /* the next nid to be scanned */
unsigned int ram_thresh; /* control the memory footprint */
unsigned int ra_nid_pages; /* # of nid pages to be readaheaded */
unsigned int dirty_nats_ratio; /* control dirty nats ratio threshold */
/* NAT cache management */
struct radix_tree_root nat_root;/* root of the nat entry cache */
struct radix_tree_root nat_set_root;/* root of the nat set cache */
struct rw_semaphore nat_tree_lock; /* protect nat_tree_lock */
struct list_head nat_entries; /* cached nat entry list (clean) */
unsigned int nat_cnt; /* the # of cached nat entries */
unsigned int dirty_nat_cnt; /* total num of nat entries in set */
unsigned int nat_blocks; /* # of nat blocks */
/* free node ids management */
struct radix_tree_root free_nid_root;/* root of the free_nid cache */
struct list_head free_nid_list; /* list for free nids excluding preallocated nids */
unsigned int nid_cnt[MAX_NID_STATE]; /* the number of free node id */
spinlock_t nid_list_lock; /* protect nid lists ops */
struct mutex build_lock; /* lock for build free nids */
unsigned char **free_nid_bitmap;
unsigned char *nat_block_bitmap;
unsigned short *free_nid_count; /* free nid count of NAT block */
/* for checkpoint */
char *nat_bitmap; /* NAT bitmap pointer */
unsigned int nat_bits_blocks; /* # of nat bits blocks */
unsigned char *nat_bits; /* NAT bits blocks */
unsigned char *full_nat_bits; /* full NAT pages */
unsigned char *empty_nat_bits; /* empty NAT pages */
#ifdef CONFIG_F2FS_CHECK_FS
char *nat_bitmap_mir; /* NAT bitmap mirror */
#endif
int bitmap_size; /* bitmap size */
};
/*
* this structure is used as one of function parameters.
* all the information are dedicated to a given direct node block determined
* by the data offset in a file.
*/
struct dnode_of_data {
struct inode *inode; /* vfs inode pointer */
struct page *inode_page; /* its inode page, NULL is possible */
struct page *node_page; /* cached direct node page */
nid_t nid; /* node id of the direct node block */
unsigned int ofs_in_node; /* data offset in the node page */
bool inode_page_locked; /* inode page is locked or not */
bool node_changed; /* is node block changed */
char cur_level; /* level of hole node page */
char max_level; /* level of current page located */
block_t data_blkaddr; /* block address of the node block */
};
static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
struct page *ipage, struct page *npage, nid_t nid)
{
memset(dn, 0, sizeof(*dn));
dn->inode = inode;
dn->inode_page = ipage;
dn->node_page = npage;
dn->nid = nid;
}
/*
* For SIT manager
*
* By default, there are 6 active log areas across the whole main area.
* When considering hot and cold data separation to reduce cleaning overhead,
* we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
* respectively.
* In the current design, you should not change the numbers intentionally.
* Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
* logs individually according to the underlying devices. (default: 6)
* Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
* data and 8 for node logs.
*/
#define NR_CURSEG_DATA_TYPE (3)
#define NR_CURSEG_NODE_TYPE (3)
#define NR_CURSEG_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
enum {
CURSEG_HOT_DATA = 0, /* directory entry blocks */
CURSEG_WARM_DATA, /* data blocks */
CURSEG_COLD_DATA, /* multimedia or GCed data blocks */
CURSEG_HOT_NODE, /* direct node blocks of directory files */
CURSEG_WARM_NODE, /* direct node blocks of normal files */
CURSEG_COLD_NODE, /* indirect node blocks */
NO_CHECK_TYPE,
};
struct flush_cmd {
struct completion wait;
struct llist_node llnode;
nid_t ino;
int ret;
};
struct flush_cmd_control {
struct task_struct *f2fs_issue_flush; /* flush thread */
wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */
atomic_t issued_flush; /* # of issued flushes */
atomic_t issing_flush; /* # of issing flushes */
struct llist_head issue_list; /* list for command issue */
struct llist_node *dispatch_list; /* list for command dispatch */
};
struct f2fs_sm_info {
struct sit_info *sit_info; /* whole segment information */
struct free_segmap_info *free_info; /* free segment information */
struct dirty_seglist_info *dirty_info; /* dirty segment information */
struct curseg_info *curseg_array; /* active segment information */
struct rw_semaphore curseg_lock; /* for preventing curseg change */
block_t seg0_blkaddr; /* block address of 0'th segment */
block_t main_blkaddr; /* start block address of main area */
block_t ssa_blkaddr; /* start block address of SSA area */
unsigned int segment_count; /* total # of segments */
unsigned int main_segments; /* # of segments in main area */
unsigned int reserved_segments; /* # of reserved segments */
unsigned int ovp_segments; /* # of overprovision segments */
/* a threshold to reclaim prefree segments */
unsigned int rec_prefree_segments;
/* for batched trimming */
unsigned int trim_sections; /* # of sections to trim */
struct list_head sit_entry_set; /* sit entry set list */
unsigned int ipu_policy; /* in-place-update policy */
unsigned int min_ipu_util; /* in-place-update threshold */
unsigned int min_fsync_blocks; /* threshold for fsync */
unsigned int min_hot_blocks; /* threshold for hot block allocation */
unsigned int min_ssr_sections; /* threshold to trigger SSR allocation */
/* for flush command control */
struct flush_cmd_control *fcc_info;
/* for discard command control */
struct discard_cmd_control *dcc_info;
};
/*
* For superblock
*/
/*
* COUNT_TYPE for monitoring
*
* f2fs monitors the number of several block types such as on-writeback,
* dirty dentry blocks, dirty node blocks, and dirty meta blocks.
*/
#define WB_DATA_TYPE(p) (__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
enum count_type {
F2FS_DIRTY_DENTS,
F2FS_DIRTY_DATA,
F2FS_DIRTY_QDATA,
F2FS_DIRTY_NODES,
F2FS_DIRTY_META,
F2FS_INMEM_PAGES,
F2FS_DIRTY_IMETA,
F2FS_WB_CP_DATA,
F2FS_WB_DATA,
NR_COUNT_TYPE,
};
/*
* The below are the page types of bios used in submit_bio().
* The available types are:
* DATA User data pages. It operates as async mode.
* NODE Node pages. It operates as async mode.
* META FS metadata pages such as SIT, NAT, CP.
* NR_PAGE_TYPE The number of page types.
* META_FLUSH Make sure the previous pages are written
* with waiting the bio's completion
* ... Only can be used with META.
*/
#define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type))
enum page_type {
DATA,
NODE,
META,
NR_PAGE_TYPE,
META_FLUSH,
INMEM, /* the below types are used by tracepoints only. */
INMEM_DROP,
INMEM_INVALIDATE,
INMEM_REVOKE,
IPU,
OPU,
};
enum temp_type {
HOT = 0, /* must be zero for meta bio */
WARM,
COLD,
NR_TEMP_TYPE,
};
enum need_lock_type {
LOCK_REQ = 0,
LOCK_DONE,
LOCK_RETRY,
};
enum cp_reason_type {
CP_NO_NEEDED,
CP_NON_REGULAR,
CP_HARDLINK,
CP_SB_NEED_CP,
CP_WRONG_PINO,
CP_NO_SPC_ROLL,
CP_NODE_NEED_CP,
CP_FASTBOOT_MODE,
CP_SPEC_LOG_NUM,
CP_RECOVER_DIR,
};
enum iostat_type {
APP_DIRECT_IO, /* app direct IOs */
APP_BUFFERED_IO, /* app buffered IOs */
APP_WRITE_IO, /* app write IOs */
APP_MAPPED_IO, /* app mapped IOs */
FS_DATA_IO, /* data IOs from kworker/fsync/reclaimer */
FS_NODE_IO, /* node IOs from kworker/fsync/reclaimer */
FS_META_IO, /* meta IOs from kworker/reclaimer */
FS_GC_DATA_IO, /* data IOs from forground gc */
FS_GC_NODE_IO, /* node IOs from forground gc */
FS_CP_DATA_IO, /* data IOs from checkpoint */
FS_CP_NODE_IO, /* node IOs from checkpoint */
FS_CP_META_IO, /* meta IOs from checkpoint */
FS_DISCARD, /* discard */
NR_IO_TYPE,
};
struct f2fs_io_info {
struct f2fs_sb_info *sbi; /* f2fs_sb_info pointer */
nid_t ino; /* inode number */
enum page_type type; /* contains DATA/NODE/META/META_FLUSH */
enum temp_type temp; /* contains HOT/WARM/COLD */
int op; /* contains REQ_OP_ */
int op_flags; /* req_flag_bits */
block_t new_blkaddr; /* new block address to be written */
block_t old_blkaddr; /* old block address before Cow */
struct page *page; /* page to be written */
struct page *encrypted_page; /* encrypted page */
struct list_head list; /* serialize IOs */
bool submitted; /* indicate IO submission */
int need_lock; /* indicate we need to lock cp_rwsem */
bool in_list; /* indicate fio is in io_list */
bool is_meta; /* indicate borrow meta inode mapping or not */
enum iostat_type io_type; /* io type */
struct writeback_control *io_wbc; /* writeback control */
};
#define is_read_io(rw) ((rw) == READ)
struct f2fs_bio_info {
struct f2fs_sb_info *sbi; /* f2fs superblock */
struct bio *bio; /* bios to merge */
sector_t last_block_in_bio; /* last block number */
struct f2fs_io_info fio; /* store buffered io info. */
struct rw_semaphore io_rwsem; /* blocking op for bio */
spinlock_t io_lock; /* serialize DATA/NODE IOs */
struct list_head io_list; /* track fios */
};
#define FDEV(i) (sbi->devs[i])
#define RDEV(i) (raw_super->devs[i])
struct f2fs_dev_info {
struct block_device *bdev;
char path[MAX_PATH_LEN];
unsigned int total_segments;
block_t start_blk;
block_t end_blk;
#ifdef CONFIG_BLK_DEV_ZONED
unsigned int nr_blkz; /* Total number of zones */
u8 *blkz_type; /* Array of zones type */
#endif
};
enum inode_type {
DIR_INODE, /* for dirty dir inode */
FILE_INODE, /* for dirty regular/symlink inode */
DIRTY_META, /* for all dirtied inode metadata */
ATOMIC_FILE, /* for all atomic files */
NR_INODE_TYPE,
};
/* for inner inode cache management */
struct inode_management {
struct radix_tree_root ino_root; /* ino entry array */
spinlock_t ino_lock; /* for ino entry lock */
struct list_head ino_list; /* inode list head */
unsigned long ino_num; /* number of entries */
};
/* For s_flag in struct f2fs_sb_info */
enum {
SBI_IS_DIRTY, /* dirty flag for checkpoint */
SBI_IS_CLOSE, /* specify unmounting */
SBI_NEED_FSCK, /* need fsck.f2fs to fix */
SBI_POR_DOING, /* recovery is doing or not */
SBI_NEED_SB_WRITE, /* need to recover superblock */
SBI_NEED_CP, /* need to checkpoint */
};
enum {
CP_TIME,
REQ_TIME,
MAX_TIME,
};
enum {
WHINT_MODE_OFF, /* not pass down write hints */
WHINT_MODE_USER, /* try to pass down hints given by users */
WHINT_MODE_FS, /* pass down hints with F2FS policy */
};
enum {
ALLOC_MODE_DEFAULT, /* stay default */
ALLOC_MODE_REUSE, /* reuse segments as much as possible */
};
enum fsync_mode {
FSYNC_MODE_POSIX, /* fsync follows posix semantics */
FSYNC_MODE_STRICT, /* fsync behaves in line with ext4 */
FSYNC_MODE_NOBARRIER, /* fsync behaves nobarrier based on posix */
};
#ifdef CONFIG_F2FS_FS_ENCRYPTION
#define DUMMY_ENCRYPTION_ENABLED(sbi) \
(unlikely(F2FS_OPTION(sbi).test_dummy_encryption))
#else
#define DUMMY_ENCRYPTION_ENABLED(sbi) (0)
#endif
struct f2fs_sb_info {
struct super_block *sb; /* pointer to VFS super block */
struct proc_dir_entry *s_proc; /* proc entry */
struct f2fs_super_block *raw_super; /* raw super block pointer */
struct rw_semaphore sb_lock; /* lock for raw super block */
int valid_super_block; /* valid super block no */
unsigned long s_flag; /* flags for sbi */
#ifdef CONFIG_BLK_DEV_ZONED
unsigned int blocks_per_blkz; /* F2FS blocks per zone */
unsigned int log_blocks_per_blkz; /* log2 F2FS blocks per zone */
#endif
/* for node-related operations */
struct f2fs_nm_info *nm_info; /* node manager */
struct inode *node_inode; /* cache node blocks */
/* for segment-related operations */
struct f2fs_sm_info *sm_info; /* segment manager */
/* for bio operations */
struct f2fs_bio_info *write_io[NR_PAGE_TYPE]; /* for write bios */
struct mutex wio_mutex[NR_PAGE_TYPE - 1][NR_TEMP_TYPE];
/* bio ordering for NODE/DATA */
mempool_t *write_io_dummy; /* Dummy pages */
/* for checkpoint */
struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */
int cur_cp_pack; /* remain current cp pack */
spinlock_t cp_lock; /* for flag in ckpt */
struct inode *meta_inode; /* cache meta blocks */
struct mutex cp_mutex; /* checkpoint procedure lock */
struct rw_semaphore cp_rwsem; /* blocking FS operations */
struct rw_semaphore node_write; /* locking node writes */
struct rw_semaphore node_change; /* locking node change */
wait_queue_head_t cp_wait;
unsigned long last_time[MAX_TIME]; /* to store time in jiffies */
long interval_time[MAX_TIME]; /* to store thresholds */
struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */
/* for orphan inode, use 0'th array */
unsigned int max_orphans; /* max orphan inodes */
/* for inode management */
struct list_head inode_list[NR_INODE_TYPE]; /* dirty inode list */
spinlock_t inode_lock[NR_INODE_TYPE]; /* for dirty inode list lock */
/* for extent tree cache */
struct radix_tree_root extent_tree_root;/* cache extent cache entries */
struct mutex extent_tree_lock; /* locking extent radix tree */
struct list_head extent_list; /* lru list for shrinker */
spinlock_t extent_lock; /* locking extent lru list */
atomic_t total_ext_tree; /* extent tree count */
struct list_head zombie_list; /* extent zombie tree list */
atomic_t total_zombie_tree; /* extent zombie tree count */
atomic_t total_ext_node; /* extent info count */
/* basic filesystem units */
unsigned int log_sectors_per_block; /* log2 sectors per block */
unsigned int log_blocksize; /* log2 block size */
unsigned int blocksize; /* block size */
unsigned int root_ino_num; /* root inode number*/
unsigned int node_ino_num; /* node inode number*/
unsigned int meta_ino_num; /* meta inode number*/
unsigned int log_blocks_per_seg; /* log2 blocks per segment */
unsigned int blocks_per_seg; /* blocks per segment */
unsigned int segs_per_sec; /* segments per section */
unsigned int secs_per_zone; /* sections per zone */
unsigned int total_sections; /* total section count */
unsigned int total_node_count; /* total node block count */
unsigned int total_valid_node_count; /* valid node block count */
loff_t max_file_blocks; /* max block index of file */
int dir_level; /* directory level */
unsigned int trigger_ssr_threshold; /* threshold to trigger ssr */
int readdir_ra; /* readahead inode in readdir */
block_t user_block_count; /* # of user blocks */
block_t total_valid_block_count; /* # of valid blocks */
block_t discard_blks; /* discard command candidats */
block_t last_valid_block_count; /* for recovery */
block_t reserved_blocks; /* configurable reserved blocks */
block_t current_reserved_blocks; /* current reserved blocks */
unsigned int nquota_files; /* # of quota sysfile */
u32 s_next_generation; /* for NFS support */
/* # of pages, see count_type */
atomic_t nr_pages[NR_COUNT_TYPE];
/* # of allocated blocks */
struct percpu_counter alloc_valid_block_count;
/* writeback control */
atomic_t wb_sync_req; /* count # of WB_SYNC threads */
/* valid inode count */
struct percpu_counter total_valid_inode_count;
struct f2fs_mount_info mount_opt; /* mount options */
/* for cleaning operations */
struct mutex gc_mutex; /* mutex for GC */
struct f2fs_gc_kthread *gc_thread; /* GC thread */
unsigned int cur_victim_sec; /* current victim section num */
/* threshold for converting bg victims for fg */
u64 fggc_threshold;
/* threshold for gc trials on pinned files */
u64 gc_pin_file_threshold;
/* maximum # of trials to find a victim segment for SSR and GC */
unsigned int max_victim_search;
/*
* for stat information.
* one is for the LFS mode, and the other is for the SSR mode.
*/
#ifdef CONFIG_F2FS_STAT_FS
struct f2fs_stat_info *stat_info; /* FS status information */
unsigned int segment_count[2]; /* # of allocated segments */
unsigned int block_count[2]; /* # of allocated blocks */
atomic_t inplace_count; /* # of inplace update */
atomic64_t total_hit_ext; /* # of lookup extent cache */
atomic64_t read_hit_rbtree; /* # of hit rbtree extent node */
atomic64_t read_hit_largest; /* # of hit largest extent node */
atomic64_t read_hit_cached; /* # of hit cached extent node */
atomic_t inline_xattr; /* # of inline_xattr inodes */
atomic_t inline_inode; /* # of inline_data inodes */
atomic_t inline_dir; /* # of inline_dentry inodes */
atomic_t aw_cnt; /* # of atomic writes */
atomic_t vw_cnt; /* # of volatile writes */
atomic_t max_aw_cnt; /* max # of atomic writes */
atomic_t max_vw_cnt; /* max # of volatile writes */
int bg_gc; /* background gc calls */
unsigned int ndirty_inode[NR_INODE_TYPE]; /* # of dirty inodes */
#endif
spinlock_t stat_lock; /* lock for stat operations */
/* For app/fs IO statistics */
spinlock_t iostat_lock;
unsigned long long write_iostat[NR_IO_TYPE];
bool iostat_enable;
/* For sysfs suppport */
struct kobject s_kobj;
struct completion s_kobj_unregister;
/* For shrinker support */
struct list_head s_list;
int s_ndevs; /* number of devices */
struct f2fs_dev_info *devs; /* for device list */
unsigned int dirty_device; /* for checkpoint data flush */
spinlock_t dev_lock; /* protect dirty_device */
struct mutex umount_mutex;
unsigned int shrinker_run_no;
/* For write statistics */
u64 sectors_written_start;
u64 kbytes_written;
/* Reference to checksum algorithm driver via cryptoapi */
struct crypto_shash *s_chksum_driver;
/* Precomputed FS UUID checksum for seeding other checksums */
__u32 s_chksum_seed;
};
#ifdef CONFIG_F2FS_FAULT_INJECTION
#define f2fs_show_injection_info(type) \
printk("%sF2FS-fs : inject %s in %s of %pF\n", \
KERN_INFO, fault_name[type], \
__func__, __builtin_return_address(0))
static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
{
struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
if (!ffi->inject_rate)
return false;
if (!IS_FAULT_SET(ffi, type))
return false;
atomic_inc(&ffi->inject_ops);
if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
atomic_set(&ffi->inject_ops, 0);
return true;
}
return false;
}
#endif
/* For write statistics. Suppose sector size is 512 bytes,
* and the return value is in kbytes. s is of struct f2fs_sb_info.
*/
#define BD_PART_WRITTEN(s) \
(((u64)part_stat_read((s)->sb->s_bdev->bd_part, sectors[1]) - \
(s)->sectors_written_start) >> 1)
static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
{
sbi->last_time[type] = jiffies;
}
static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
{
unsigned long interval = sbi->interval_time[type] * HZ;
return time_after(jiffies, sbi->last_time[type] + interval);
}
static inline bool is_idle(struct f2fs_sb_info *sbi)
{
struct block_device *bdev = sbi->sb->s_bdev;
struct request_queue *q = bdev_get_queue(bdev);
struct request_list *rl = &q->root_rl;
if (rl->count[BLK_RW_SYNC] || rl->count[BLK_RW_ASYNC])
return 0;
return f2fs_time_over(sbi, REQ_TIME);
}
/*
* Inline functions
*/
static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc,
const void *address, unsigned int length)
{
struct {
struct shash_desc shash;
char ctx[4];
} desc;
int err;
BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx));
desc.shash.tfm = sbi->s_chksum_driver;
desc.shash.flags = 0;
*(u32 *)desc.ctx = crc;
err = crypto_shash_update(&desc.shash, address, length);
BUG_ON(err);
return *(u32 *)desc.ctx;
}
static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
unsigned int length)
{
return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length);
}
static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
void *buf, size_t buf_size)
{
return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
}
static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc,
const void *address, unsigned int length)
{
return __f2fs_crc32(sbi, crc, address, length);
}
static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
{
return container_of(inode, struct f2fs_inode_info, vfs_inode);
}
static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
{
return sb->s_fs_info;
}
static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
{
return F2FS_SB(inode->i_sb);
}
static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
{
return F2FS_I_SB(mapping->host);
}
static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
{
return F2FS_M_SB(page->mapping);
}
static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
{
return (struct f2fs_super_block *)(sbi->raw_super);
}
static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
{
return (struct f2fs_checkpoint *)(sbi->ckpt);
}
static inline struct f2fs_node *F2FS_NODE(struct page *page)
{
return (struct f2fs_node *)page_address(page);
}
static inline struct f2fs_inode *F2FS_INODE(struct page *page)
{
return &((struct f2fs_node *)page_address(page))->i;
}
static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
{
return (struct f2fs_nm_info *)(sbi->nm_info);
}
static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
{
return (struct f2fs_sm_info *)(sbi->sm_info);
}
static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
{
return (struct sit_info *)(SM_I(sbi)->sit_info);
}
static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
{
return (struct free_segmap_info *)(SM_I(sbi)->free_info);
}
static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
{
return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
}
static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
{
return sbi->meta_inode->i_mapping;
}
static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
{
return sbi->node_inode->i_mapping;
}
static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
{
return test_bit(type, &sbi->s_flag);
}
static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
{
set_bit(type, &sbi->s_flag);
}
static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
{
clear_bit(type, &sbi->s_flag);
}
static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
{
return le64_to_cpu(cp->checkpoint_ver);
}
static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type)
{
if (type < F2FS_MAX_QUOTAS)
return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]);
return 0;
}
static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
{
size_t crc_offset = le32_to_cpu(cp->checksum_offset);
return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
}
static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
{
unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
return ckpt_flags & f;
}
static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
{
return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
}
static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
{
unsigned int ckpt_flags;
ckpt_flags = le32_to_cpu(cp->ckpt_flags);
ckpt_flags |= f;
cp->ckpt_flags = cpu_to_le32(ckpt_flags);
}
static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
{
unsigned long flags;
spin_lock_irqsave(&sbi->cp_lock, flags);
__set_ckpt_flags(F2FS_CKPT(sbi), f);
spin_unlock_irqrestore(&sbi->cp_lock, flags);
}
static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
{
unsigned int ckpt_flags;
ckpt_flags = le32_to_cpu(cp->ckpt_flags);
ckpt_flags &= (~f);
cp->ckpt_flags = cpu_to_le32(ckpt_flags);
}
static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
{
unsigned long flags;
spin_lock_irqsave(&sbi->cp_lock, flags);
__clear_ckpt_flags(F2FS_CKPT(sbi), f);
spin_unlock_irqrestore(&sbi->cp_lock, flags);
}
static inline void disable_nat_bits(struct f2fs_sb_info *sbi, bool lock)
{
unsigned long flags;
set_sbi_flag(sbi, SBI_NEED_FSCK);
if (lock)
spin_lock_irqsave(&sbi->cp_lock, flags);
__clear_ckpt_flags(F2FS_CKPT(sbi), CP_NAT_BITS_FLAG);
kfree(NM_I(sbi)->nat_bits);
NM_I(sbi)->nat_bits = NULL;
if (lock)
spin_unlock_irqrestore(&sbi->cp_lock, flags);
}
static inline bool enabled_nat_bits(struct f2fs_sb_info *sbi,
struct cp_control *cpc)
{
bool set = is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
return (cpc) ? (cpc->reason & CP_UMOUNT) && set : set;
}
static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
{
down_read(&sbi->cp_rwsem);
}
static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi)
{
return down_read_trylock(&sbi->cp_rwsem);
}
static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
{
up_read(&sbi->cp_rwsem);
}
static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
{
down_write(&sbi->cp_rwsem);
}
static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
{
up_write(&sbi->cp_rwsem);
}
static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
{
int reason = CP_SYNC;
if (test_opt(sbi, FASTBOOT))
reason = CP_FASTBOOT;
if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
reason = CP_UMOUNT;
return reason;
}
static inline bool __remain_node_summaries(int reason)
{
return (reason & (CP_UMOUNT | CP_FASTBOOT));
}
static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
{
return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
}
/*
* Check whether the given nid is within node id range.
*/
static inline int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
{
if (unlikely(nid < F2FS_ROOT_INO(sbi)))
return -EINVAL;
if (unlikely(nid >= NM_I(sbi)->max_nid))
return -EINVAL;
return 0;
}
/*
* Check whether the inode has blocks or not
*/
static inline int F2FS_HAS_BLOCKS(struct inode *inode)
{
block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0;
return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block;
}
static inline bool f2fs_has_xattr_block(unsigned int ofs)
{
return ofs == XATTR_NODE_OFFSET;
}
static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi,
struct inode *inode, bool cap)
{
if (!inode)
return true;
if (!test_opt(sbi, RESERVE_ROOT))
return false;
if (IS_NOQUOTA(inode))
return true;
if (uid_eq(F2FS_OPTION(sbi).s_resuid, current_fsuid()))
return true;
if (!gid_eq(F2FS_OPTION(sbi).s_resgid, GLOBAL_ROOT_GID) &&
in_group_p(F2FS_OPTION(sbi).s_resgid))
return true;
if (cap && capable(CAP_SYS_RESOURCE))
return true;
return false;
}
static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool);
static inline int inc_valid_block_count(struct f2fs_sb_info *sbi,
struct inode *inode, blkcnt_t *count)
{
blkcnt_t diff = 0, release = 0;
block_t avail_user_block_count;
int ret;
ret = dquot_reserve_block(inode, *count);
if (ret)
return ret;
#ifdef CONFIG_F2FS_FAULT_INJECTION
if (time_to_inject(sbi, FAULT_BLOCK)) {
f2fs_show_injection_info(FAULT_BLOCK);
release = *count;
goto enospc;
}
#endif
/*
* let's increase this in prior to actual block count change in order
* for f2fs_sync_file to avoid data races when deciding checkpoint.
*/
percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
spin_lock(&sbi->stat_lock);
sbi->total_valid_block_count += (block_t)(*count);
avail_user_block_count = sbi->user_block_count -
sbi->current_reserved_blocks;
if (!__allow_reserved_blocks(sbi, inode, true))
avail_user_block_count -= F2FS_OPTION(sbi).root_reserved_blocks;
if (unlikely(sbi->total_valid_block_count > avail_user_block_count)) {
diff = sbi->total_valid_block_count - avail_user_block_count;
if (diff > *count)
diff = *count;
*count -= diff;
release = diff;
sbi->total_valid_block_count -= diff;
if (!*count) {
spin_unlock(&sbi->stat_lock);
percpu_counter_sub(&sbi->alloc_valid_block_count, diff);
goto enospc;
}
}
spin_unlock(&sbi->stat_lock);
if (unlikely(release))
dquot_release_reservation_block(inode, release);
f2fs_i_blocks_write(inode, *count, true, true);
return 0;
enospc:
dquot_release_reservation_block(inode, release);
return -ENOSPC;
}
static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
struct inode *inode,
block_t count)
{
blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK;
spin_lock(&sbi->stat_lock);
f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
f2fs_bug_on(sbi, inode->i_blocks < sectors);
sbi->total_valid_block_count -= (block_t)count;
if (sbi->reserved_blocks &&
sbi->current_reserved_blocks < sbi->reserved_blocks)
sbi->current_reserved_blocks = min(sbi->reserved_blocks,
sbi->current_reserved_blocks + count);
spin_unlock(&sbi->stat_lock);
f2fs_i_blocks_write(inode, count, false, true);
}
static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
{
atomic_inc(&sbi->nr_pages[count_type]);
if (count_type == F2FS_DIRTY_DATA || count_type == F2FS_INMEM_PAGES ||
count_type == F2FS_WB_CP_DATA || count_type == F2FS_WB_DATA)
return;
set_sbi_flag(sbi, SBI_IS_DIRTY);
}
static inline void inode_inc_dirty_pages(struct inode *inode)
{
atomic_inc(&F2FS_I(inode)->dirty_pages);
inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
if (IS_NOQUOTA(inode))
inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
}
static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
{
atomic_dec(&sbi->nr_pages[count_type]);
}
static inline void inode_dec_dirty_pages(struct inode *inode)
{
if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
!S_ISLNK(inode->i_mode))
return;
atomic_dec(&F2FS_I(inode)->dirty_pages);
dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
if (IS_NOQUOTA(inode))
dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
}
static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
{
return atomic_read(&sbi->nr_pages[count_type]);
}
static inline int get_dirty_pages(struct inode *inode)
{
return atomic_read(&F2FS_I(inode)->dirty_pages);
}
static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
{
unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >>
sbi->log_blocks_per_seg;
return segs / sbi->segs_per_sec;
}
static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
{
return sbi->total_valid_block_count;
}
static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
{
return sbi->discard_blks;
}
static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
{
struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
/* return NAT or SIT bitmap */
if (flag == NAT_BITMAP)
return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
else if (flag == SIT_BITMAP)
return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
return 0;
}
static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
{
return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
}
static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
{
struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
int offset;
if (is_set_ckpt_flags(sbi, CP_LARGE_NAT_BITMAP_FLAG)) {
offset = (flag == SIT_BITMAP) ?
le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0;
return &ckpt->sit_nat_version_bitmap + offset;
}
if (__cp_payload(sbi) > 0) {
if (flag == NAT_BITMAP)
return &ckpt->sit_nat_version_bitmap;
else
return (unsigned char *)ckpt + F2FS_BLKSIZE;
} else {
offset = (flag == NAT_BITMAP) ?
le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
return &ckpt->sit_nat_version_bitmap + offset;
}
}
static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
{
block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
if (sbi->cur_cp_pack == 2)
start_addr += sbi->blocks_per_seg;
return start_addr;
}
static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
{
block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
if (sbi->cur_cp_pack == 1)
start_addr += sbi->blocks_per_seg;
return start_addr;
}
static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
{
sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
}
static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
{
return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
}
static inline int inc_valid_node_count(struct f2fs_sb_info *sbi,
struct inode *inode, bool is_inode)
{
block_t valid_block_count;
unsigned int valid_node_count;
bool quota = inode && !is_inode;
if (quota) {
int ret = dquot_reserve_block(inode, 1);
if (ret)
return ret;
}
#ifdef CONFIG_F2FS_FAULT_INJECTION
if (time_to_inject(sbi, FAULT_BLOCK)) {
f2fs_show_injection_info(FAULT_BLOCK);
goto enospc;
}
#endif
spin_lock(&sbi->stat_lock);
valid_block_count = sbi->total_valid_block_count +
sbi->current_reserved_blocks + 1;
if (!__allow_reserved_blocks(sbi, inode, false))
valid_block_count += F2FS_OPTION(sbi).root_reserved_blocks;
if (unlikely(valid_block_count > sbi->user_block_count)) {
spin_unlock(&sbi->stat_lock);
goto enospc;
}
valid_node_count = sbi->total_valid_node_count + 1;
if (unlikely(valid_node_count > sbi->total_node_count)) {
spin_unlock(&sbi->stat_lock);
goto enospc;
}
sbi->total_valid_node_count++;
sbi->total_valid_block_count++;
spin_unlock(&sbi->stat_lock);
if (inode) {
if (is_inode)
f2fs_mark_inode_dirty_sync(inode, true);
else
f2fs_i_blocks_write(inode, 1, true, true);
}
percpu_counter_inc(&sbi->alloc_valid_block_count);
return 0;
enospc:
if (quota)
dquot_release_reservation_block(inode, 1);
return -ENOSPC;
}
static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
struct inode *inode, bool is_inode)
{
spin_lock(&sbi->stat_lock);
f2fs_bug_on(sbi, !sbi->total_valid_block_count);
f2fs_bug_on(sbi, !sbi->total_valid_node_count);
f2fs_bug_on(sbi, !is_inode && !inode->i_blocks);
sbi->total_valid_node_count--;
sbi->total_valid_block_count--;
if (sbi->reserved_blocks &&
sbi->current_reserved_blocks < sbi->reserved_blocks)
sbi->current_reserved_blocks++;
spin_unlock(&sbi->stat_lock);
if (!is_inode)
f2fs_i_blocks_write(inode, 1, false, true);
}
static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
{
return sbi->total_valid_node_count;
}
static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
{
percpu_counter_inc(&sbi->total_valid_inode_count);
}
static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
{
percpu_counter_dec(&sbi->total_valid_inode_count);
}
static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
{
return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
}
static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
pgoff_t index, bool for_write)
{
#ifdef CONFIG_F2FS_FAULT_INJECTION
struct page *page = find_lock_page(mapping, index);
if (page)
return page;
if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) {
f2fs_show_injection_info(FAULT_PAGE_ALLOC);
return NULL;
}
#endif
if (!for_write)
return grab_cache_page(mapping, index);
return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
}
static inline struct page *f2fs_pagecache_get_page(
struct address_space *mapping, pgoff_t index,
int fgp_flags, gfp_t gfp_mask)
{
#ifdef CONFIG_F2FS_FAULT_INJECTION
if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET)) {
f2fs_show_injection_info(FAULT_PAGE_GET);
return NULL;
}
#endif
return pagecache_get_page(mapping, index, fgp_flags, gfp_mask);
}
static inline void f2fs_copy_page(struct page *src, struct page *dst)
{
char *src_kaddr = kmap(src);
char *dst_kaddr = kmap(dst);
memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
kunmap(dst);
kunmap(src);
}
static inline void f2fs_put_page(struct page *page, int unlock)
{
if (!page)
return;
if (unlock) {
f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
unlock_page(page);
}
put_page(page);
}
static inline void f2fs_put_dnode(struct dnode_of_data *dn)
{
if (dn->node_page)
f2fs_put_page(dn->node_page, 1);
if (dn->inode_page && dn->node_page != dn->inode_page)
f2fs_put_page(dn->inode_page, 0);
dn->node_page = NULL;
dn->inode_page = NULL;
}
static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
size_t size)
{
return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
}
static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
gfp_t flags)
{
void *entry;
entry = kmem_cache_alloc(cachep, flags);
if (!entry)
entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
return entry;
}
static inline struct bio *f2fs_bio_alloc(struct f2fs_sb_info *sbi,
int npages, bool no_fail)
{
struct bio *bio;
if (no_fail) {
/* No failure on bio allocation */
bio = bio_alloc(GFP_NOIO, npages);
if (!bio)
bio = bio_alloc(GFP_NOIO | __GFP_NOFAIL, npages);
return bio;
}
#ifdef CONFIG_F2FS_FAULT_INJECTION
if (time_to_inject(sbi, FAULT_ALLOC_BIO)) {
f2fs_show_injection_info(FAULT_ALLOC_BIO);
return NULL;
}
#endif
return bio_alloc(GFP_KERNEL, npages);
}
static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
unsigned long index, void *item)
{
while (radix_tree_insert(root, index, item))
cond_resched();
}
#define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino)
static inline bool IS_INODE(struct page *page)
{
struct f2fs_node *p = F2FS_NODE(page);
return RAW_IS_INODE(p);
}
static inline int offset_in_addr(struct f2fs_inode *i)
{
return (i->i_inline & F2FS_EXTRA_ATTR) ?
(le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0;
}
static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
{
return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
}
static inline int f2fs_has_extra_attr(struct inode *inode);
static inline block_t datablock_addr(struct inode *inode,
struct page *node_page, unsigned int offset)
{
struct f2fs_node *raw_node;
__le32 *addr_array;
int base = 0;
bool is_inode = IS_INODE(node_page);
raw_node = F2FS_NODE(node_page);
/* from GC path only */
if (is_inode) {
if (!inode)
base = offset_in_addr(&raw_node->i);
else if (f2fs_has_extra_attr(inode))
base = get_extra_isize(inode);
}
addr_array = blkaddr_in_node(raw_node);
return le32_to_cpu(addr_array[base + offset]);
}
static inline int f2fs_test_bit(unsigned int nr, char *addr)
{
int mask;
addr += (nr >> 3);
mask = 1 << (7 - (nr & 0x07));
return mask & *addr;
}
static inline void f2fs_set_bit(unsigned int nr, char *addr)
{
int mask;
addr += (nr >> 3);
mask = 1 << (7 - (nr & 0x07));
*addr |= mask;
}
static inline void f2fs_clear_bit(unsigned int nr, char *addr)
{
int mask;
addr += (nr >> 3);
mask = 1 << (7 - (nr & 0x07));
*addr &= ~mask;
}
static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
{
int mask;
int ret;
addr += (nr >> 3);
mask = 1 << (7 - (nr & 0x07));
ret = mask & *addr;
*addr |= mask;
return ret;
}
static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
{
int mask;
int ret;
addr += (nr >> 3);
mask = 1 << (7 - (nr & 0x07));
ret = mask & *addr;
*addr &= ~mask;
return ret;
}
static inline void f2fs_change_bit(unsigned int nr, char *addr)
{
int mask;
addr += (nr >> 3);
mask = 1 << (7 - (nr & 0x07));
*addr ^= mask;
}
#define F2FS_REG_FLMASK (~(FS_DIRSYNC_FL | FS_TOPDIR_FL))
#define F2FS_OTHER_FLMASK (FS_NODUMP_FL | FS_NOATIME_FL)
#define F2FS_FL_INHERITED (FS_PROJINHERIT_FL)
static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
{
if (S_ISDIR(mode))
return flags;
else if (S_ISREG(mode))
return flags & F2FS_REG_FLMASK;
else
return flags & F2FS_OTHER_FLMASK;
}
/* used for f2fs_inode_info->flags */
enum {
FI_NEW_INODE, /* indicate newly allocated inode */
FI_DIRTY_INODE, /* indicate inode is dirty or not */
FI_AUTO_RECOVER, /* indicate inode is recoverable */
FI_DIRTY_DIR, /* indicate directory has dirty pages */
FI_INC_LINK, /* need to increment i_nlink */
FI_ACL_MODE, /* indicate acl mode */
FI_NO_ALLOC, /* should not allocate any blocks */
FI_FREE_NID, /* free allocated nide */
FI_NO_EXTENT, /* not to use the extent cache */
FI_INLINE_XATTR, /* used for inline xattr */
FI_INLINE_DATA, /* used for inline data*/
FI_INLINE_DENTRY, /* used for inline dentry */
FI_APPEND_WRITE, /* inode has appended data */
FI_UPDATE_WRITE, /* inode has in-place-update data */
FI_NEED_IPU, /* used for ipu per file */
FI_ATOMIC_FILE, /* indicate atomic file */
FI_ATOMIC_COMMIT, /* indicate the state of atomical committing */
FI_VOLATILE_FILE, /* indicate volatile file */
FI_FIRST_BLOCK_WRITTEN, /* indicate #0 data block was written */
FI_DROP_CACHE, /* drop dirty page cache */
FI_DATA_EXIST, /* indicate data exists */
FI_INLINE_DOTS, /* indicate inline dot dentries */
FI_DO_DEFRAG, /* indicate defragment is running */
FI_DIRTY_FILE, /* indicate regular/symlink has dirty pages */
FI_NO_PREALLOC, /* indicate skipped preallocated blocks */
FI_HOT_DATA, /* indicate file is hot */
FI_EXTRA_ATTR, /* indicate file has extra attribute */
FI_PROJ_INHERIT, /* indicate file inherits projectid */
FI_PIN_FILE, /* indicate file should not be gced */
};
static inline void __mark_inode_dirty_flag(struct inode *inode,
int flag, bool set)
{
switch (flag) {
case FI_INLINE_XATTR:
case FI_INLINE_DATA:
case FI_INLINE_DENTRY:
case FI_NEW_INODE:
if (set)
return;
case FI_DATA_EXIST:
case FI_INLINE_DOTS:
case FI_PIN_FILE:
f2fs_mark_inode_dirty_sync(inode, true);
}
}
static inline void set_inode_flag(struct inode *inode, int flag)
{
if (!test_bit(flag, &F2FS_I(inode)->flags))
set_bit(flag, &F2FS_I(inode)->flags);
__mark_inode_dirty_flag(inode, flag, true);
}
static inline int is_inode_flag_set(struct inode *inode, int flag)
{
return test_bit(flag, &F2FS_I(inode)->flags);
}
static inline void clear_inode_flag(struct inode *inode, int flag)
{
if (test_bit(flag, &F2FS_I(inode)->flags))
clear_bit(flag, &F2FS_I(inode)->flags);
__mark_inode_dirty_flag(inode, flag, false);
}
static inline void set_acl_inode(struct inode *inode, umode_t mode)
{
F2FS_I(inode)->i_acl_mode = mode;
set_inode_flag(inode, FI_ACL_MODE);
f2fs_mark_inode_dirty_sync(inode, false);
}
static inline void f2fs_i_links_write(struct inode *inode, bool inc)
{
if (inc)
inc_nlink(inode);
else
drop_nlink(inode);
f2fs_mark_inode_dirty_sync(inode, true);
}
static inline void f2fs_i_blocks_write(struct inode *inode,
block_t diff, bool add, bool claim)
{
bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
/* add = 1, claim = 1 should be dquot_reserve_block in pair */
if (add) {
if (claim)
dquot_claim_block(inode, diff);
else
dquot_alloc_block_nofail(inode, diff);
} else {
dquot_free_block(inode, diff);
}
f2fs_mark_inode_dirty_sync(inode, true);
if (clean || recover)
set_inode_flag(inode, FI_AUTO_RECOVER);
}
static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
{
bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
if (i_size_read(inode) == i_size)
return;
i_size_write(inode, i_size);
f2fs_mark_inode_dirty_sync(inode, true);
if (clean || recover)
set_inode_flag(inode, FI_AUTO_RECOVER);
}
static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
{
F2FS_I(inode)->i_current_depth = depth;
f2fs_mark_inode_dirty_sync(inode, true);
}
static inline void f2fs_i_gc_failures_write(struct inode *inode,
unsigned int count)
{
F2FS_I(inode)->i_gc_failures = count;
f2fs_mark_inode_dirty_sync(inode, true);
}
static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
{
F2FS_I(inode)->i_xattr_nid = xnid;
f2fs_mark_inode_dirty_sync(inode, true);
}
static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
{
F2FS_I(inode)->i_pino = pino;
f2fs_mark_inode_dirty_sync(inode, true);
}
static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
{
struct f2fs_inode_info *fi = F2FS_I(inode);
if (ri->i_inline & F2FS_INLINE_XATTR)
set_bit(FI_INLINE_XATTR, &fi->flags);
if (ri->i_inline & F2FS_INLINE_DATA)
set_bit(FI_INLINE_DATA, &fi->flags);
if (ri->i_inline & F2FS_INLINE_DENTRY)
set_bit(FI_INLINE_DENTRY, &fi->flags);
if (ri->i_inline & F2FS_DATA_EXIST)
set_bit(FI_DATA_EXIST, &fi->flags);
if (ri->i_inline & F2FS_INLINE_DOTS)
set_bit(FI_INLINE_DOTS, &fi->flags);
if (ri->i_inline & F2FS_EXTRA_ATTR)
set_bit(FI_EXTRA_ATTR, &fi->flags);
if (ri->i_inline & F2FS_PIN_FILE)
set_bit(FI_PIN_FILE, &fi->flags);
}
static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
{
ri->i_inline = 0;
if (is_inode_flag_set(inode, FI_INLINE_XATTR))
ri->i_inline |= F2FS_INLINE_XATTR;
if (is_inode_flag_set(inode, FI_INLINE_DATA))
ri->i_inline |= F2FS_INLINE_DATA;
if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
ri->i_inline |= F2FS_INLINE_DENTRY;
if (is_inode_flag_set(inode, FI_DATA_EXIST))
ri->i_inline |= F2FS_DATA_EXIST;
if (is_inode_flag_set(inode, FI_INLINE_DOTS))
ri->i_inline |= F2FS_INLINE_DOTS;
if (is_inode_flag_set(inode, FI_EXTRA_ATTR))
ri->i_inline |= F2FS_EXTRA_ATTR;
if (is_inode_flag_set(inode, FI_PIN_FILE))
ri->i_inline |= F2FS_PIN_FILE;
}
static inline int f2fs_has_extra_attr(struct inode *inode)
{
return is_inode_flag_set(inode, FI_EXTRA_ATTR);
}
static inline int f2fs_has_inline_xattr(struct inode *inode)
{
return is_inode_flag_set(inode, FI_INLINE_XATTR);
}
static inline unsigned int addrs_per_inode(struct inode *inode)
{
return CUR_ADDRS_PER_INODE(inode) - get_inline_xattr_addrs(inode);
}
static inline void *inline_xattr_addr(struct inode *inode, struct page *page)
{
struct f2fs_inode *ri = F2FS_INODE(page);
return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
get_inline_xattr_addrs(inode)]);
}
static inline int inline_xattr_size(struct inode *inode)
{
return get_inline_xattr_addrs(inode) * sizeof(__le32);
}
static inline int f2fs_has_inline_data(struct inode *inode)
{
return is_inode_flag_set(inode, FI_INLINE_DATA);
}
static inline int f2fs_exist_data(struct inode *inode)
{
return is_inode_flag_set(inode, FI_DATA_EXIST);
}
static inline int f2fs_has_inline_dots(struct inode *inode)
{
return is_inode_flag_set(inode, FI_INLINE_DOTS);
}
static inline bool f2fs_is_pinned_file(struct inode *inode)
{
return is_inode_flag_set(inode, FI_PIN_FILE);
}
static inline bool f2fs_is_atomic_file(struct inode *inode)
{
return is_inode_flag_set(inode, FI_ATOMIC_FILE);
}
static inline bool f2fs_is_commit_atomic_write(struct inode *inode)
{
return is_inode_flag_set(inode, FI_ATOMIC_COMMIT);
}
static inline bool f2fs_is_volatile_file(struct inode *inode)
{
return is_inode_flag_set(inode, FI_VOLATILE_FILE);
}
static inline bool f2fs_is_first_block_written(struct inode *inode)
{
return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN);
}
static inline bool f2fs_is_drop_cache(struct inode *inode)
{
return is_inode_flag_set(inode, FI_DROP_CACHE);
}
static inline void *inline_data_addr(struct inode *inode, struct page *page)
{
struct f2fs_inode *ri = F2FS_INODE(page);
int extra_size = get_extra_isize(inode);
return (void *)&(ri->i_addr[extra_size + DEF_INLINE_RESERVED_SIZE]);
}
static inline int f2fs_has_inline_dentry(struct inode *inode)
{
return is_inode_flag_set(inode, FI_INLINE_DENTRY);
}
static inline int is_file(struct inode *inode, int type)
{
return F2FS_I(inode)->i_advise & type;
}
static inline void set_file(struct inode *inode, int type)
{
F2FS_I(inode)->i_advise |= type;
f2fs_mark_inode_dirty_sync(inode, true);
}
static inline void clear_file(struct inode *inode, int type)
{
F2FS_I(inode)->i_advise &= ~type;
f2fs_mark_inode_dirty_sync(inode, true);
}
static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
{
bool ret;
if (dsync) {
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
spin_lock(&sbi->inode_lock[DIRTY_META]);
ret = list_empty(&F2FS_I(inode)->gdirty_list);
spin_unlock(&sbi->inode_lock[DIRTY_META]);
return ret;
}
if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
file_keep_isize(inode) ||
i_size_read(inode) & ~PAGE_MASK)
return false;
if (!timespec_equal(F2FS_I(inode)->i_disk_time, &inode->i_atime))
return false;
if (!timespec_equal(F2FS_I(inode)->i_disk_time + 1, &inode->i_ctime))
return false;
if (!timespec_equal(F2FS_I(inode)->i_disk_time + 2, &inode->i_mtime))
return false;
if (!timespec_equal(F2FS_I(inode)->i_disk_time + 3,
&F2FS_I(inode)->i_crtime))
return false;
down_read(&F2FS_I(inode)->i_sem);
ret = F2FS_I(inode)->last_disk_size == i_size_read(inode);
up_read(&F2FS_I(inode)->i_sem);
return ret;
}
static inline bool f2fs_readonly(struct super_block *sb)
{
return sb_rdonly(sb);
}
static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
{
return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
}
static inline bool is_dot_dotdot(const struct qstr *str)
{
if (str->len == 1 && str->name[0] == '.')
return true;
if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.')
return true;
return false;
}
static inline bool f2fs_may_extent_tree(struct inode *inode)
{
if (!test_opt(F2FS_I_SB(inode), EXTENT_CACHE) ||
is_inode_flag_set(inode, FI_NO_EXTENT))
return false;
return S_ISREG(inode->i_mode);
}
static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
size_t size, gfp_t flags)
{
#ifdef CONFIG_F2FS_FAULT_INJECTION
if (time_to_inject(sbi, FAULT_KMALLOC)) {
f2fs_show_injection_info(FAULT_KMALLOC);
return NULL;
}
#endif
return kmalloc(size, flags);
}
static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi,
size_t size, gfp_t flags)
{
return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO);
}
static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi,
size_t size, gfp_t flags)
{
#ifdef CONFIG_F2FS_FAULT_INJECTION
if (time_to_inject(sbi, FAULT_KVMALLOC)) {
f2fs_show_injection_info(FAULT_KVMALLOC);
return NULL;
}
#endif
return kvmalloc(size, flags);
}
static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi,
size_t size, gfp_t flags)
{
return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO);
}
static inline int get_extra_isize(struct inode *inode)
{
return F2FS_I(inode)->i_extra_isize / sizeof(__le32);
}
static inline int get_inline_xattr_addrs(struct inode *inode)
{
return F2FS_I(inode)->i_inline_xattr_size;
}
#define get_inode_mode(i) \
((is_inode_flag_set(i, FI_ACL_MODE)) ? \
(F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
#define F2FS_TOTAL_EXTRA_ATTR_SIZE \
(offsetof(struct f2fs_inode, i_extra_end) - \
offsetof(struct f2fs_inode, i_extra_isize)) \
#define F2FS_OLD_ATTRIBUTE_SIZE (offsetof(struct f2fs_inode, i_addr))
#define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field) \
((offsetof(typeof(*f2fs_inode), field) + \
sizeof((f2fs_inode)->field)) \
<= (F2FS_OLD_ATTRIBUTE_SIZE + extra_isize)) \
static inline void f2fs_reset_iostat(struct f2fs_sb_info *sbi)
{
int i;
spin_lock(&sbi->iostat_lock);
for (i = 0; i < NR_IO_TYPE; i++)
sbi->write_iostat[i] = 0;
spin_unlock(&sbi->iostat_lock);
}
static inline void f2fs_update_iostat(struct f2fs_sb_info *sbi,
enum iostat_type type, unsigned long long io_bytes)
{
if (!sbi->iostat_enable)
return;
spin_lock(&sbi->iostat_lock);
sbi->write_iostat[type] += io_bytes;
if (type == APP_WRITE_IO || type == APP_DIRECT_IO)
sbi->write_iostat[APP_BUFFERED_IO] =
sbi->write_iostat[APP_WRITE_IO] -
sbi->write_iostat[APP_DIRECT_IO];
spin_unlock(&sbi->iostat_lock);
}
/*
* file.c
*/
int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
void truncate_data_blocks(struct dnode_of_data *dn);
int truncate_blocks(struct inode *inode, u64 from, bool lock);
int f2fs_truncate(struct inode *inode);
int f2fs_getattr(const struct path *path, struct kstat *stat,
u32 request_mask, unsigned int flags);
int f2fs_setattr(struct dentry *dentry, struct iattr *attr);
int truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
void truncate_data_blocks_range(struct dnode_of_data *dn, int count);
int f2fs_precache_extents(struct inode *inode);
long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
int f2fs_pin_file_control(struct inode *inode, bool inc);
/*
* inode.c
*/
void f2fs_set_inode_flags(struct inode *inode);
bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page);
void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page);
struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
void update_inode(struct inode *inode, struct page *node_page);
void update_inode_page(struct inode *inode);
int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
void f2fs_evict_inode(struct inode *inode);
void handle_failed_inode(struct inode *inode);
/*
* namei.c
*/
int update_extension_list(struct f2fs_sb_info *sbi, const char *name,
bool hot, bool set);
struct dentry *f2fs_get_parent(struct dentry *child);
/*
* dir.c
*/
void set_de_type(struct f2fs_dir_entry *de, umode_t mode);
unsigned char get_de_type(struct f2fs_dir_entry *de);
struct f2fs_dir_entry *find_target_dentry(struct fscrypt_name *fname,
f2fs_hash_t namehash, int *max_slots,
struct f2fs_dentry_ptr *d);
int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
unsigned int start_pos, struct fscrypt_str *fstr);
void do_make_empty_dir(struct inode *inode, struct inode *parent,
struct f2fs_dentry_ptr *d);
struct page *init_inode_metadata(struct inode *inode, struct inode *dir,
const struct qstr *new_name,
const struct qstr *orig_name, struct page *dpage);
void update_parent_metadata(struct inode *dir, struct inode *inode,
unsigned int current_depth);
int room_for_filename(const void *bitmap, int slots, int max_slots);
void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
struct fscrypt_name *fname, struct page **res_page);
struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
const struct qstr *child, struct page **res_page);
struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p);
ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
struct page **page);
void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
struct page *page, struct inode *inode);
void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
const struct qstr *name, f2fs_hash_t name_hash,
unsigned int bit_pos);
int f2fs_add_regular_entry(struct inode *dir, const struct qstr *new_name,
const struct qstr *orig_name,
struct inode *inode, nid_t ino, umode_t mode);
int __f2fs_do_add_link(struct inode *dir, struct fscrypt_name *fname,
struct inode *inode, nid_t ino, umode_t mode);
int __f2fs_add_link(struct inode *dir, const struct qstr *name,
struct inode *inode, nid_t ino, umode_t mode);
void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
struct inode *dir, struct inode *inode);
int f2fs_do_tmpfile(struct inode *inode, struct inode *dir);
bool f2fs_empty_dir(struct inode *dir);
static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
{
return __f2fs_add_link(d_inode(dentry->d_parent), &dentry->d_name,
inode, inode->i_ino, inode->i_mode);
}
/*
* super.c
*/
int f2fs_inode_dirtied(struct inode *inode, bool sync);
void f2fs_inode_synced(struct inode *inode);
int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly);
void f2fs_quota_off_umount(struct super_block *sb);
int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
int f2fs_sync_fs(struct super_block *sb, int sync);
extern __printf(3, 4)
void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...);
int sanity_check_ckpt(struct f2fs_sb_info *sbi);
/*
* hash.c
*/
f2fs_hash_t f2fs_dentry_hash(const struct qstr *name_info,
struct fscrypt_name *fname);
/*
* node.c
*/
struct dnode_of_data;
struct node_info;
bool available_free_memory(struct f2fs_sb_info *sbi, int type);
int need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
bool is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
bool need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni);
pgoff_t get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
int truncate_inode_blocks(struct inode *inode, pgoff_t from);
int truncate_xattr_node(struct inode *inode);
int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino);
int remove_inode_page(struct inode *inode);
struct page *new_inode_page(struct inode *inode);
struct page *new_node_page(struct dnode_of_data *dn, unsigned int ofs);
void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid);
struct page *get_node_page_ra(struct page *parent, int start);
void move_node_page(struct page *node_page, int gc_type);
int fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
struct writeback_control *wbc, bool atomic);
int sync_node_pages(struct f2fs_sb_info *sbi, struct writeback_control *wbc,
bool do_balance, enum iostat_type io_type);
void build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
int try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
void recover_inline_xattr(struct inode *inode, struct page *page);
int recover_xattr_data(struct inode *inode, struct page *page);
int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page);
void restore_node_summary(struct f2fs_sb_info *sbi,
unsigned int segno, struct f2fs_summary_block *sum);
void flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
int build_node_manager(struct f2fs_sb_info *sbi);
void destroy_node_manager(struct f2fs_sb_info *sbi);
int __init create_node_manager_caches(void);
void destroy_node_manager_caches(void);
/*
* segment.c
*/
bool need_SSR(struct f2fs_sb_info *sbi);
void register_inmem_page(struct inode *inode, struct page *page);
void drop_inmem_pages_all(struct f2fs_sb_info *sbi);
void drop_inmem_pages(struct inode *inode);
void drop_inmem_page(struct inode *inode, struct page *page);
int commit_inmem_pages(struct inode *inode);
void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi);
int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino);
int create_flush_cmd_control(struct f2fs_sb_info *sbi);
int f2fs_flush_device_cache(struct f2fs_sb_info *sbi);
void destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr);
bool is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
void drop_discard_cmd(struct f2fs_sb_info *sbi);
void stop_discard_thread(struct f2fs_sb_info *sbi);
bool f2fs_wait_discard_bios(struct f2fs_sb_info *sbi);
void clear_prefree_segments(struct f2fs_sb_info *sbi, struct cp_control *cpc);
void release_discard_addrs(struct f2fs_sb_info *sbi);
int npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
void allocate_new_segments(struct f2fs_sb_info *sbi);
int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
bool exist_trim_candidates(struct f2fs_sb_info *sbi, struct cp_control *cpc);
struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno);
void update_meta_page(struct f2fs_sb_info *sbi, void *src, block_t blk_addr);
void write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
enum iostat_type io_type);
void write_node_page(unsigned int nid, struct f2fs_io_info *fio);
void write_data_page(struct dnode_of_data *dn, struct f2fs_io_info *fio);
int rewrite_data_page(struct f2fs_io_info *fio);
void __f2fs_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
block_t old_blkaddr, block_t new_blkaddr,
bool recover_curseg, bool recover_newaddr);
void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
block_t old_addr, block_t new_addr,
unsigned char version, bool recover_curseg,
bool recover_newaddr);
void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
block_t old_blkaddr, block_t *new_blkaddr,
struct f2fs_summary *sum, int type,
struct f2fs_io_info *fio, bool add_list);
void f2fs_wait_on_page_writeback(struct page *page,
enum page_type type, bool ordered);
void f2fs_wait_on_block_writeback(struct f2fs_sb_info *sbi, block_t blkaddr);
void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
int lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
unsigned int val, int alloc);
void flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
int build_segment_manager(struct f2fs_sb_info *sbi);
void destroy_segment_manager(struct f2fs_sb_info *sbi);
int __init create_segment_manager_caches(void);
void destroy_segment_manager_caches(void);
int rw_hint_to_seg_type(enum rw_hint hint);
enum rw_hint io_type_to_rw_hint(struct f2fs_sb_info *sbi, enum page_type type,
enum temp_type temp);
/*
* checkpoint.c
*/
void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io);
struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
struct page *get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index);
bool is_valid_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr, int type);
int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
int type, bool sync);
void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index);
long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
long nr_to_write, enum iostat_type io_type);
void add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
void remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
void release_ino_entry(struct f2fs_sb_info *sbi, bool all);
bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
void set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
unsigned int devidx, int type);
bool is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
unsigned int devidx, int type);
int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi);
int acquire_orphan_inode(struct f2fs_sb_info *sbi);
void release_orphan_inode(struct f2fs_sb_info *sbi);
void add_orphan_inode(struct inode *inode);
void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
int recover_orphan_inodes(struct f2fs_sb_info *sbi);
int get_valid_checkpoint(struct f2fs_sb_info *sbi);
void update_dirty_page(struct inode *inode, struct page *page);
void remove_dirty_inode(struct inode *inode);
int sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type);
int write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
void init_ino_entry_info(struct f2fs_sb_info *sbi);
int __init create_checkpoint_caches(void);
void destroy_checkpoint_caches(void);
/*
* data.c
*/
int f2fs_init_post_read_processing(void);
void f2fs_destroy_post_read_processing(void);
void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type);
void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
struct inode *inode, nid_t ino, pgoff_t idx,
enum page_type type);
void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi);
int f2fs_submit_page_bio(struct f2fs_io_info *fio);
int f2fs_submit_page_write(struct f2fs_io_info *fio);
struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
block_t blk_addr, struct bio *bio);
int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
void set_data_blkaddr(struct dnode_of_data *dn);
void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
int reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
int reserve_new_block(struct dnode_of_data *dn);
int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index);
int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from);
int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
struct page *get_read_data_page(struct inode *inode, pgoff_t index,
int op_flags, bool for_write);
struct page *find_data_page(struct inode *inode, pgoff_t index);
struct page *get_lock_data_page(struct inode *inode, pgoff_t index,
bool for_write);
struct page *get_new_data_page(struct inode *inode,
struct page *ipage, pgoff_t index, bool new_i_size);
int do_write_data_page(struct f2fs_io_info *fio);
int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
int create, int flag);
int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
u64 start, u64 len);
bool should_update_inplace(struct inode *inode, struct f2fs_io_info *fio);
bool should_update_outplace(struct inode *inode, struct f2fs_io_info *fio);
int __f2fs_write_data_pages(struct address_space *mapping,
struct writeback_control *wbc,
enum iostat_type io_type);
void f2fs_invalidate_page(struct page *page, unsigned int offset,
unsigned int length);
int f2fs_release_page(struct page *page, gfp_t wait);
#ifdef CONFIG_MIGRATION
int f2fs_migrate_page(struct address_space *mapping, struct page *newpage,
struct page *page, enum migrate_mode mode);
#endif
bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len);
/*
* gc.c
*/
int start_gc_thread(struct f2fs_sb_info *sbi);
void stop_gc_thread(struct f2fs_sb_info *sbi);
block_t start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
int f2fs_gc(struct f2fs_sb_info *sbi, bool sync, bool background,
unsigned int segno);
void build_gc_manager(struct f2fs_sb_info *sbi);
/*
* recovery.c
*/
int recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
bool space_for_roll_forward(struct f2fs_sb_info *sbi);
/*
* debug.c
*/
#ifdef CONFIG_F2FS_STAT_FS
struct f2fs_stat_info {
struct list_head stat_list;
struct f2fs_sb_info *sbi;
int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
int main_area_segs, main_area_sections, main_area_zones;
unsigned long long hit_largest, hit_cached, hit_rbtree;
unsigned long long hit_total, total_ext;
int ext_tree, zombie_tree, ext_node;
int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta;
int ndirty_data, ndirty_qdata;
int inmem_pages;
unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all;
int nats, dirty_nats, sits, dirty_sits;
int free_nids, avail_nids, alloc_nids;
int total_count, utilization;
int bg_gc, nr_wb_cp_data, nr_wb_data;
int nr_flushing, nr_flushed, flush_list_empty;
int nr_discarding, nr_discarded;
int nr_discard_cmd;
unsigned int undiscard_blks;
int inline_xattr, inline_inode, inline_dir, append, update, orphans;
int aw_cnt, max_aw_cnt, vw_cnt, max_vw_cnt;
unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
unsigned int bimodal, avg_vblocks;
int util_free, util_valid, util_invalid;
int rsvd_segs, overp_segs;
int dirty_count, node_pages, meta_pages;
int prefree_count, call_count, cp_count, bg_cp_count;
int tot_segs, node_segs, data_segs, free_segs, free_secs;
int bg_node_segs, bg_data_segs;
int tot_blks, data_blks, node_blks;
int bg_data_blks, bg_node_blks;
int curseg[NR_CURSEG_TYPE];
int cursec[NR_CURSEG_TYPE];
int curzone[NR_CURSEG_TYPE];
unsigned int segment_count[2];
unsigned int block_count[2];
unsigned int inplace_count;
unsigned long long base_mem, cache_mem, page_mem;
};
static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
{
return (struct f2fs_stat_info *)sbi->stat_info;
}
#define stat_inc_cp_count(si) ((si)->cp_count++)
#define stat_inc_bg_cp_count(si) ((si)->bg_cp_count++)
#define stat_inc_call_count(si) ((si)->call_count++)
#define stat_inc_bggc_count(sbi) ((sbi)->bg_gc++)
#define stat_inc_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]++)
#define stat_dec_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]--)
#define stat_inc_total_hit(sbi) (atomic64_inc(&(sbi)->total_hit_ext))
#define stat_inc_rbtree_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_rbtree))
#define stat_inc_largest_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_largest))
#define stat_inc_cached_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_cached))
#define stat_inc_inline_xattr(inode) \
do { \
if (f2fs_has_inline_xattr(inode)) \
(atomic_inc(&F2FS_I_SB(inode)->inline_xattr)); \
} while (0)
#define stat_dec_inline_xattr(inode) \
do { \
if (f2fs_has_inline_xattr(inode)) \
(atomic_dec(&F2FS_I_SB(inode)->inline_xattr)); \
} while (0)
#define stat_inc_inline_inode(inode) \
do { \
if (f2fs_has_inline_data(inode)) \
(atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \
} while (0)
#define stat_dec_inline_inode(inode) \
do { \
if (f2fs_has_inline_data(inode)) \
(atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \
} while (0)
#define stat_inc_inline_dir(inode) \
do { \
if (f2fs_has_inline_dentry(inode)) \
(atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \
} while (0)
#define stat_dec_inline_dir(inode) \
do { \
if (f2fs_has_inline_dentry(inode)) \
(atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \
} while (0)
#define stat_inc_seg_type(sbi, curseg) \
((sbi)->segment_count[(curseg)->alloc_type]++)
#define stat_inc_block_count(sbi, curseg) \
((sbi)->block_count[(curseg)->alloc_type]++)
#define stat_inc_inplace_blocks(sbi) \
(atomic_inc(&(sbi)->inplace_count))
#define stat_inc_atomic_write(inode) \
(atomic_inc(&F2FS_I_SB(inode)->aw_cnt))
#define stat_dec_atomic_write(inode) \
(atomic_dec(&F2FS_I_SB(inode)->aw_cnt))
#define stat_update_max_atomic_write(inode) \
do { \
int cur = atomic_read(&F2FS_I_SB(inode)->aw_cnt); \
int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt); \
if (cur > max) \
atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur); \
} while (0)
#define stat_inc_volatile_write(inode) \
(atomic_inc(&F2FS_I_SB(inode)->vw_cnt))
#define stat_dec_volatile_write(inode) \
(atomic_dec(&F2FS_I_SB(inode)->vw_cnt))
#define stat_update_max_volatile_write(inode) \
do { \
int cur = atomic_read(&F2FS_I_SB(inode)->vw_cnt); \
int max = atomic_read(&F2FS_I_SB(inode)->max_vw_cnt); \
if (cur > max) \
atomic_set(&F2FS_I_SB(inode)->max_vw_cnt, cur); \
} while (0)
#define stat_inc_seg_count(sbi, type, gc_type) \
do { \
struct f2fs_stat_info *si = F2FS_STAT(sbi); \
si->tot_segs++; \
if ((type) == SUM_TYPE_DATA) { \
si->data_segs++; \
si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0; \
} else { \
si->node_segs++; \
si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0; \
} \
} while (0)
#define stat_inc_tot_blk_count(si, blks) \
((si)->tot_blks += (blks))
#define stat_inc_data_blk_count(sbi, blks, gc_type) \
do { \
struct f2fs_stat_info *si = F2FS_STAT(sbi); \
stat_inc_tot_blk_count(si, blks); \
si->data_blks += (blks); \
si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0; \
} while (0)
#define stat_inc_node_blk_count(sbi, blks, gc_type) \
do { \
struct f2fs_stat_info *si = F2FS_STAT(sbi); \
stat_inc_tot_blk_count(si, blks); \
si->node_blks += (blks); \
si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0; \
} while (0)
int f2fs_build_stats(struct f2fs_sb_info *sbi);
void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
int __init f2fs_create_root_stats(void);
void f2fs_destroy_root_stats(void);
#else
#define stat_inc_cp_count(si) do { } while (0)
#define stat_inc_bg_cp_count(si) do { } while (0)
#define stat_inc_call_count(si) do { } while (0)
#define stat_inc_bggc_count(si) do { } while (0)
#define stat_inc_dirty_inode(sbi, type) do { } while (0)
#define stat_dec_dirty_inode(sbi, type) do { } while (0)
#define stat_inc_total_hit(sb) do { } while (0)
#define stat_inc_rbtree_node_hit(sb) do { } while (0)
#define stat_inc_largest_node_hit(sbi) do { } while (0)
#define stat_inc_cached_node_hit(sbi) do { } while (0)
#define stat_inc_inline_xattr(inode) do { } while (0)
#define stat_dec_inline_xattr(inode) do { } while (0)
#define stat_inc_inline_inode(inode) do { } while (0)
#define stat_dec_inline_inode(inode) do { } while (0)
#define stat_inc_inline_dir(inode) do { } while (0)
#define stat_dec_inline_dir(inode) do { } while (0)
#define stat_inc_atomic_write(inode) do { } while (0)
#define stat_dec_atomic_write(inode) do { } while (0)
#define stat_update_max_atomic_write(inode) do { } while (0)
#define stat_inc_volatile_write(inode) do { } while (0)
#define stat_dec_volatile_write(inode) do { } while (0)
#define stat_update_max_volatile_write(inode) do { } while (0)
#define stat_inc_seg_type(sbi, curseg) do { } while (0)
#define stat_inc_block_count(sbi, curseg) do { } while (0)
#define stat_inc_inplace_blocks(sbi) do { } while (0)
#define stat_inc_seg_count(sbi, type, gc_type) do { } while (0)
#define stat_inc_tot_blk_count(si, blks) do { } while (0)
#define stat_inc_data_blk_count(sbi, blks, gc_type) do { } while (0)
#define stat_inc_node_blk_count(sbi, blks, gc_type) do { } while (0)
static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
static inline int __init f2fs_create_root_stats(void) { return 0; }
static inline void f2fs_destroy_root_stats(void) { }
#endif
extern const struct file_operations f2fs_dir_operations;
extern const struct file_operations f2fs_file_operations;
extern const struct inode_operations f2fs_file_inode_operations;
extern const struct address_space_operations f2fs_dblock_aops;
extern const struct address_space_operations f2fs_node_aops;
extern const struct address_space_operations f2fs_meta_aops;
extern const struct inode_operations f2fs_dir_inode_operations;
extern const struct inode_operations f2fs_symlink_inode_operations;
extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
extern const struct inode_operations f2fs_special_inode_operations;
extern struct kmem_cache *inode_entry_slab;
/*
* inline.c
*/
bool f2fs_may_inline_data(struct inode *inode);
bool f2fs_may_inline_dentry(struct inode *inode);
void read_inline_data(struct page *page, struct page *ipage);
void truncate_inline_inode(struct inode *inode, struct page *ipage, u64 from);
int f2fs_read_inline_data(struct inode *inode, struct page *page);
int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page);
int f2fs_convert_inline_inode(struct inode *inode);
int f2fs_write_inline_data(struct inode *inode, struct page *page);
bool recover_inline_data(struct inode *inode, struct page *npage);
struct f2fs_dir_entry *find_in_inline_dir(struct inode *dir,
struct fscrypt_name *fname, struct page **res_page);
int make_empty_inline_dir(struct inode *inode, struct inode *parent,
struct page *ipage);
int f2fs_add_inline_entry(struct inode *dir, const struct qstr *new_name,
const struct qstr *orig_name,
struct inode *inode, nid_t ino, umode_t mode);
void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry, struct page *page,
struct inode *dir, struct inode *inode);
bool f2fs_empty_inline_dir(struct inode *dir);
int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
struct fscrypt_str *fstr);
int f2fs_inline_data_fiemap(struct inode *inode,
struct fiemap_extent_info *fieinfo,
__u64 start, __u64 len);
/*
* shrinker.c
*/
unsigned long f2fs_shrink_count(struct shrinker *shrink,
struct shrink_control *sc);
unsigned long f2fs_shrink_scan(struct shrinker *shrink,
struct shrink_control *sc);
void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
/*
* extent_cache.c
*/
struct rb_entry *__lookup_rb_tree(struct rb_root *root,
struct rb_entry *cached_re, unsigned int ofs);
struct rb_node **__lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi,
struct rb_root *root, struct rb_node **parent,
unsigned int ofs);
struct rb_entry *__lookup_rb_tree_ret(struct rb_root *root,
struct rb_entry *cached_re, unsigned int ofs,
struct rb_entry **prev_entry, struct rb_entry **next_entry,
struct rb_node ***insert_p, struct rb_node **insert_parent,
bool force);
bool __check_rb_tree_consistence(struct f2fs_sb_info *sbi,
struct rb_root *root);
unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink);
bool f2fs_init_extent_tree(struct inode *inode, struct f2fs_extent *i_ext);
void f2fs_drop_extent_tree(struct inode *inode);
unsigned int f2fs_destroy_extent_node(struct inode *inode);
void f2fs_destroy_extent_tree(struct inode *inode);
bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
struct extent_info *ei);
void f2fs_update_extent_cache(struct dnode_of_data *dn);
void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
pgoff_t fofs, block_t blkaddr, unsigned int len);
void init_extent_cache_info(struct f2fs_sb_info *sbi);
int __init create_extent_cache(void);
void destroy_extent_cache(void);
/*
* sysfs.c
*/
int __init f2fs_init_sysfs(void);
void f2fs_exit_sysfs(void);
int f2fs_register_sysfs(struct f2fs_sb_info *sbi);
void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi);
/*
* crypto support
*/
static inline bool f2fs_encrypted_inode(struct inode *inode)
{
return file_is_encrypt(inode);
}
static inline bool f2fs_encrypted_file(struct inode *inode)
{
return f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode);
}
static inline void f2fs_set_encrypted_inode(struct inode *inode)
{
#ifdef CONFIG_F2FS_FS_ENCRYPTION
file_set_encrypt(inode);
inode->i_flags |= S_ENCRYPTED;
#endif
}
/*
* Returns true if the reads of the inode's data need to undergo some
* postprocessing step, like decryption or authenticity verification.
*/
static inline bool f2fs_post_read_required(struct inode *inode)
{
return f2fs_encrypted_file(inode);
}
#define F2FS_FEATURE_FUNCS(name, flagname) \
static inline int f2fs_sb_has_##name(struct super_block *sb) \
{ \
return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_##flagname); \
}
F2FS_FEATURE_FUNCS(encrypt, ENCRYPT);
F2FS_FEATURE_FUNCS(blkzoned, BLKZONED);
F2FS_FEATURE_FUNCS(extra_attr, EXTRA_ATTR);
F2FS_FEATURE_FUNCS(project_quota, PRJQUOTA);
F2FS_FEATURE_FUNCS(inode_chksum, INODE_CHKSUM);
F2FS_FEATURE_FUNCS(flexible_inline_xattr, FLEXIBLE_INLINE_XATTR);
F2FS_FEATURE_FUNCS(quota_ino, QUOTA_INO);
F2FS_FEATURE_FUNCS(inode_crtime, INODE_CRTIME);
F2FS_FEATURE_FUNCS(lost_found, LOST_FOUND);
#ifdef CONFIG_BLK_DEV_ZONED
static inline int get_blkz_type(struct f2fs_sb_info *sbi,
struct block_device *bdev, block_t blkaddr)
{
unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz;
int i;
for (i = 0; i < sbi->s_ndevs; i++)
if (FDEV(i).bdev == bdev)
return FDEV(i).blkz_type[zno];
return -EINVAL;
}
#endif
static inline bool f2fs_discard_en(struct f2fs_sb_info *sbi)
{
struct request_queue *q = bdev_get_queue(sbi->sb->s_bdev);
return blk_queue_discard(q) || f2fs_sb_has_blkzoned(sbi->sb);
}
static inline void set_opt_mode(struct f2fs_sb_info *sbi, unsigned int mt)
{
clear_opt(sbi, ADAPTIVE);
clear_opt(sbi, LFS);
switch (mt) {
case F2FS_MOUNT_ADAPTIVE:
set_opt(sbi, ADAPTIVE);
break;
case F2FS_MOUNT_LFS:
set_opt(sbi, LFS);
break;
}
}
static inline bool f2fs_may_encrypt(struct inode *inode)
{
#ifdef CONFIG_F2FS_FS_ENCRYPTION
umode_t mode = inode->i_mode;
return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode));
#else
return 0;
#endif
}
static inline bool f2fs_force_buffered_io(struct inode *inode, int rw)
{
return (f2fs_post_read_required(inode) ||
(rw == WRITE && test_opt(F2FS_I_SB(inode), LFS)) ||
F2FS_I_SB(inode)->s_ndevs);
}
#endif