linux/drivers/ieee1394/pcilynx.c
Ben Collins 1934b8b656 [PATCH] Sync up ieee-1394
Lots of this patch is trivial code cleanups (static vars were being
intialized to 0, etc).

There's also some fixes for ISO transmits (max buffer handling).
Aswell, we have a few fixes to disable IRM capabilites correctly.  We've
also disabled, by default some generally unused EXPORT symbols for the
sake of cleanliness in the kernel.  However, instead of removing them
completely, we felt it necessary to have a config option that allowed
them to be enabled for the many projects outside of the main kernel tree
that use our API for driver development.

The primary reason for this patch is to revert a MODE6->MODE10 RBC
conversion patch from the SCSI maintainers.  The new conversions handled
directly in the scsi layer do not seem to work for SBP2.  This patch
reverts to our old working code so that users can enjoy using Firewire
disks and dvd drives again.

We are working with the SCSI maintainers to resolve this issue outside
of the main kernel tree.  We'll merge the patch once the SCSI layer's
handling of the MODE10 conversion is working for us.

Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-07-10 12:23:23 -07:00

1595 lines
54 KiB
C

/*
* pcilynx.c - Texas Instruments PCILynx driver
* Copyright (C) 1999,2000 Andreas Bombe <andreas.bombe@munich.netsurf.de>,
* Stephan Linz <linz@mazet.de>
* Manfred Weihs <weihs@ict.tuwien.ac.at>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
/*
* Contributions:
*
* Manfred Weihs <weihs@ict.tuwien.ac.at>
* reading bus info block (containing GUID) from serial
* eeprom via i2c and storing it in config ROM
* Reworked code for initiating bus resets
* (long, short, with or without hold-off)
* Enhancements in async and iso send code
*/
#include <linux/config.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/interrupt.h>
#include <linux/wait.h>
#include <linux/errno.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/fs.h>
#include <linux/poll.h>
#include <linux/kdev_t.h>
#include <linux/dma-mapping.h>
#include <asm/byteorder.h>
#include <asm/atomic.h>
#include <asm/io.h>
#include <asm/uaccess.h>
#include <asm/irq.h>
#include "csr1212.h"
#include "ieee1394.h"
#include "ieee1394_types.h"
#include "hosts.h"
#include "ieee1394_core.h"
#include "highlevel.h"
#include "pcilynx.h"
#include <linux/i2c.h>
#include <linux/i2c-algo-bit.h>
/* print general (card independent) information */
#define PRINT_G(level, fmt, args...) printk(level "pcilynx: " fmt "\n" , ## args)
/* print card specific information */
#define PRINT(level, card, fmt, args...) printk(level "pcilynx%d: " fmt "\n" , card , ## args)
#ifdef CONFIG_IEEE1394_VERBOSEDEBUG
#define PRINT_GD(level, fmt, args...) printk(level "pcilynx: " fmt "\n" , ## args)
#define PRINTD(level, card, fmt, args...) printk(level "pcilynx%d: " fmt "\n" , card , ## args)
#else
#define PRINT_GD(level, fmt, args...) do {} while (0)
#define PRINTD(level, card, fmt, args...) do {} while (0)
#endif
/* Module Parameters */
static int skip_eeprom;
module_param(skip_eeprom, int, 0444);
MODULE_PARM_DESC(skip_eeprom, "Use generic bus info block instead of serial eeprom (default = 0).");
static struct hpsb_host_driver lynx_driver;
static unsigned int card_id;
/*
* I2C stuff
*/
/* the i2c stuff was inspired by i2c-philips-par.c */
static void bit_setscl(void *data, int state)
{
if (state) {
((struct ti_lynx *) data)->i2c_driven_state |= 0x00000040;
} else {
((struct ti_lynx *) data)->i2c_driven_state &= ~0x00000040;
}
reg_write((struct ti_lynx *) data, SERIAL_EEPROM_CONTROL, ((struct ti_lynx *) data)->i2c_driven_state);
}
static void bit_setsda(void *data, int state)
{
if (state) {
((struct ti_lynx *) data)->i2c_driven_state |= 0x00000010;
} else {
((struct ti_lynx *) data)->i2c_driven_state &= ~0x00000010;
}
reg_write((struct ti_lynx *) data, SERIAL_EEPROM_CONTROL, ((struct ti_lynx *) data)->i2c_driven_state);
}
static int bit_getscl(void *data)
{
return reg_read((struct ti_lynx *) data, SERIAL_EEPROM_CONTROL) & 0x00000040;
}
static int bit_getsda(void *data)
{
return reg_read((struct ti_lynx *) data, SERIAL_EEPROM_CONTROL) & 0x00000010;
}
static int bit_reg(struct i2c_client *client)
{
return 0;
}
static int bit_unreg(struct i2c_client *client)
{
return 0;
}
static struct i2c_algo_bit_data bit_data = {
.setsda = bit_setsda,
.setscl = bit_setscl,
.getsda = bit_getsda,
.getscl = bit_getscl,
.udelay = 5,
.mdelay = 5,
.timeout = 100,
};
static struct i2c_adapter bit_ops = {
.id = 0xAA, //FIXME: probably we should get an id in i2c-id.h
.client_register = bit_reg,
.client_unregister = bit_unreg,
.name = "PCILynx I2C",
};
/*
* PCL handling functions.
*/
static pcl_t alloc_pcl(struct ti_lynx *lynx)
{
u8 m;
int i, j;
spin_lock(&lynx->lock);
/* FIXME - use ffz() to make this readable */
for (i = 0; i < (LOCALRAM_SIZE / 1024); i++) {
m = lynx->pcl_bmap[i];
for (j = 0; j < 8; j++) {
if (m & 1<<j) {
continue;
}
m |= 1<<j;
lynx->pcl_bmap[i] = m;
spin_unlock(&lynx->lock);
return 8 * i + j;
}
}
spin_unlock(&lynx->lock);
return -1;
}
#if 0
static void free_pcl(struct ti_lynx *lynx, pcl_t pclid)
{
int off, bit;
off = pclid / 8;
bit = pclid % 8;
if (pclid < 0) {
return;
}
spin_lock(&lynx->lock);
if (lynx->pcl_bmap[off] & 1<<bit) {
lynx->pcl_bmap[off] &= ~(1<<bit);
} else {
PRINT(KERN_ERR, lynx->id,
"attempted to free unallocated PCL %d", pclid);
}
spin_unlock(&lynx->lock);
}
/* functions useful for debugging */
static void pretty_print_pcl(const struct ti_pcl *pcl)
{
int i;
printk("PCL next %08x, userdata %08x, status %08x, remtrans %08x, nextbuf %08x\n",
pcl->next, pcl->user_data, pcl->pcl_status,
pcl->remaining_transfer_count, pcl->next_data_buffer);
printk("PCL");
for (i=0; i<13; i++) {
printk(" c%x:%08x d%x:%08x",
i, pcl->buffer[i].control, i, pcl->buffer[i].pointer);
if (!(i & 0x3) && (i != 12)) printk("\nPCL");
}
printk("\n");
}
static void print_pcl(const struct ti_lynx *lynx, pcl_t pclid)
{
struct ti_pcl pcl;
get_pcl(lynx, pclid, &pcl);
pretty_print_pcl(&pcl);
}
#endif
/***********************************
* IEEE-1394 functionality section *
***********************************/
static int get_phy_reg(struct ti_lynx *lynx, int addr)
{
int retval;
int i = 0;
unsigned long flags;
if (addr > 15) {
PRINT(KERN_ERR, lynx->id,
"%s: PHY register address %d out of range",
__FUNCTION__, addr);
return -1;
}
spin_lock_irqsave(&lynx->phy_reg_lock, flags);
reg_write(lynx, LINK_PHY, LINK_PHY_READ | LINK_PHY_ADDR(addr));
do {
retval = reg_read(lynx, LINK_PHY);
if (i > 10000) {
PRINT(KERN_ERR, lynx->id, "%s: runaway loop, aborting",
__FUNCTION__);
retval = -1;
break;
}
i++;
} while ((retval & 0xf00) != LINK_PHY_RADDR(addr));
reg_write(lynx, LINK_INT_STATUS, LINK_INT_PHY_REG_RCVD);
spin_unlock_irqrestore(&lynx->phy_reg_lock, flags);
if (retval != -1) {
return retval & 0xff;
} else {
return -1;
}
}
static int set_phy_reg(struct ti_lynx *lynx, int addr, int val)
{
unsigned long flags;
if (addr > 15) {
PRINT(KERN_ERR, lynx->id,
"%s: PHY register address %d out of range", __FUNCTION__, addr);
return -1;
}
if (val > 0xff) {
PRINT(KERN_ERR, lynx->id,
"%s: PHY register value %d out of range", __FUNCTION__, val);
return -1;
}
spin_lock_irqsave(&lynx->phy_reg_lock, flags);
reg_write(lynx, LINK_PHY, LINK_PHY_WRITE | LINK_PHY_ADDR(addr)
| LINK_PHY_WDATA(val));
spin_unlock_irqrestore(&lynx->phy_reg_lock, flags);
return 0;
}
static int sel_phy_reg_page(struct ti_lynx *lynx, int page)
{
int reg;
if (page > 7) {
PRINT(KERN_ERR, lynx->id,
"%s: PHY page %d out of range", __FUNCTION__, page);
return -1;
}
reg = get_phy_reg(lynx, 7);
if (reg != -1) {
reg &= 0x1f;
reg |= (page << 5);
set_phy_reg(lynx, 7, reg);
return 0;
} else {
return -1;
}
}
#if 0 /* not needed at this time */
static int sel_phy_reg_port(struct ti_lynx *lynx, int port)
{
int reg;
if (port > 15) {
PRINT(KERN_ERR, lynx->id,
"%s: PHY port %d out of range", __FUNCTION__, port);
return -1;
}
reg = get_phy_reg(lynx, 7);
if (reg != -1) {
reg &= 0xf0;
reg |= port;
set_phy_reg(lynx, 7, reg);
return 0;
} else {
return -1;
}
}
#endif
static u32 get_phy_vendorid(struct ti_lynx *lynx)
{
u32 pvid = 0;
sel_phy_reg_page(lynx, 1);
pvid |= (get_phy_reg(lynx, 10) << 16);
pvid |= (get_phy_reg(lynx, 11) << 8);
pvid |= get_phy_reg(lynx, 12);
PRINT(KERN_INFO, lynx->id, "PHY vendor id 0x%06x", pvid);
return pvid;
}
static u32 get_phy_productid(struct ti_lynx *lynx)
{
u32 id = 0;
sel_phy_reg_page(lynx, 1);
id |= (get_phy_reg(lynx, 13) << 16);
id |= (get_phy_reg(lynx, 14) << 8);
id |= get_phy_reg(lynx, 15);
PRINT(KERN_INFO, lynx->id, "PHY product id 0x%06x", id);
return id;
}
static quadlet_t generate_own_selfid(struct ti_lynx *lynx,
struct hpsb_host *host)
{
quadlet_t lsid;
char phyreg[7];
int i;
phyreg[0] = lynx->phy_reg0;
for (i = 1; i < 7; i++) {
phyreg[i] = get_phy_reg(lynx, i);
}
/* FIXME? We assume a TSB21LV03A phy here. This code doesn't support
more than 3 ports on the PHY anyway. */
lsid = 0x80400000 | ((phyreg[0] & 0xfc) << 22);
lsid |= (phyreg[1] & 0x3f) << 16; /* gap count */
lsid |= (phyreg[2] & 0xc0) << 8; /* max speed */
if (!hpsb_disable_irm)
lsid |= (phyreg[6] & 0x01) << 11; /* contender (phy dependent) */
/* lsid |= 1 << 11; *//* set contender (hack) */
lsid |= (phyreg[6] & 0x10) >> 3; /* initiated reset */
for (i = 0; i < (phyreg[2] & 0xf); i++) { /* ports */
if (phyreg[3 + i] & 0x4) {
lsid |= (((phyreg[3 + i] & 0x8) | 0x10) >> 3)
<< (6 - i*2);
} else {
lsid |= 1 << (6 - i*2);
}
}
cpu_to_be32s(&lsid);
PRINT(KERN_DEBUG, lynx->id, "generated own selfid 0x%x", lsid);
return lsid;
}
static void handle_selfid(struct ti_lynx *lynx, struct hpsb_host *host)
{
quadlet_t *q = lynx->rcv_page;
int phyid, isroot, size;
quadlet_t lsid = 0;
int i;
if (lynx->phy_reg0 == -1 || lynx->selfid_size == -1) return;
size = lynx->selfid_size;
phyid = lynx->phy_reg0;
i = (size > 16 ? 16 : size) / 4 - 1;
while (i >= 0) {
cpu_to_be32s(&q[i]);
i--;
}
if (!lynx->phyic.reg_1394a) {
lsid = generate_own_selfid(lynx, host);
}
isroot = (phyid & 2) != 0;
phyid >>= 2;
PRINT(KERN_INFO, lynx->id, "SelfID process finished (phyid %d, %s)",
phyid, (isroot ? "root" : "not root"));
reg_write(lynx, LINK_ID, (0xffc0 | phyid) << 16);
if (!lynx->phyic.reg_1394a && !size) {
hpsb_selfid_received(host, lsid);
}
while (size > 0) {
struct selfid *sid = (struct selfid *)q;
if (!lynx->phyic.reg_1394a && !sid->extended
&& (sid->phy_id == (phyid + 1))) {
hpsb_selfid_received(host, lsid);
}
if (q[0] == ~q[1]) {
PRINT(KERN_DEBUG, lynx->id, "SelfID packet 0x%x rcvd",
q[0]);
hpsb_selfid_received(host, q[0]);
} else {
PRINT(KERN_INFO, lynx->id,
"inconsistent selfid 0x%x/0x%x", q[0], q[1]);
}
q += 2;
size -= 8;
}
if (!lynx->phyic.reg_1394a && isroot && phyid != 0) {
hpsb_selfid_received(host, lsid);
}
hpsb_selfid_complete(host, phyid, isroot);
if (host->in_bus_reset) return; /* in bus reset again */
if (isroot) reg_set_bits(lynx, LINK_CONTROL, LINK_CONTROL_CYCMASTER); //FIXME: I do not think, we need this here
reg_set_bits(lynx, LINK_CONTROL,
LINK_CONTROL_RCV_CMP_VALID | LINK_CONTROL_TX_ASYNC_EN
| LINK_CONTROL_RX_ASYNC_EN | LINK_CONTROL_CYCTIMEREN);
}
/* This must be called with the respective queue_lock held. */
static void send_next(struct ti_lynx *lynx, int what)
{
struct ti_pcl pcl;
struct lynx_send_data *d;
struct hpsb_packet *packet;
d = (what == hpsb_iso ? &lynx->iso_send : &lynx->async);
if (!list_empty(&d->pcl_queue)) {
PRINT(KERN_ERR, lynx->id, "trying to queue a new packet in nonempty fifo");
BUG();
}
packet = driver_packet(d->queue.next);
list_move_tail(&packet->driver_list, &d->pcl_queue);
d->header_dma = pci_map_single(lynx->dev, packet->header,
packet->header_size, PCI_DMA_TODEVICE);
if (packet->data_size) {
d->data_dma = pci_map_single(lynx->dev, packet->data,
packet->data_size,
PCI_DMA_TODEVICE);
} else {
d->data_dma = 0;
}
pcl.next = PCL_NEXT_INVALID;
pcl.async_error_next = PCL_NEXT_INVALID;
pcl.pcl_status = 0;
pcl.buffer[0].control = packet->speed_code << 14 | packet->header_size;
#ifndef __BIG_ENDIAN
pcl.buffer[0].control |= PCL_BIGENDIAN;
#endif
pcl.buffer[0].pointer = d->header_dma;
pcl.buffer[1].control = PCL_LAST_BUFF | packet->data_size;
pcl.buffer[1].pointer = d->data_dma;
switch (packet->type) {
case hpsb_async:
pcl.buffer[0].control |= PCL_CMD_XMT;
break;
case hpsb_iso:
pcl.buffer[0].control |= PCL_CMD_XMT | PCL_ISOMODE;
break;
case hpsb_raw:
pcl.buffer[0].control |= PCL_CMD_UNFXMT;
break;
}
put_pcl(lynx, d->pcl, &pcl);
run_pcl(lynx, d->pcl_start, d->channel);
}
/* called from subsystem core */
static int lynx_transmit(struct hpsb_host *host, struct hpsb_packet *packet)
{
struct ti_lynx *lynx = host->hostdata;
struct lynx_send_data *d;
unsigned long flags;
if (packet->data_size >= 4096) {
PRINT(KERN_ERR, lynx->id, "transmit packet data too big (%Zd)",
packet->data_size);
return -EOVERFLOW;
}
switch (packet->type) {
case hpsb_async:
case hpsb_raw:
d = &lynx->async;
break;
case hpsb_iso:
d = &lynx->iso_send;
break;
default:
PRINT(KERN_ERR, lynx->id, "invalid packet type %d",
packet->type);
return -EINVAL;
}
if (packet->tcode == TCODE_WRITEQ
|| packet->tcode == TCODE_READQ_RESPONSE) {
cpu_to_be32s(&packet->header[3]);
}
spin_lock_irqsave(&d->queue_lock, flags);
list_add_tail(&packet->driver_list, &d->queue);
if (list_empty(&d->pcl_queue))
send_next(lynx, packet->type);
spin_unlock_irqrestore(&d->queue_lock, flags);
return 0;
}
/* called from subsystem core */
static int lynx_devctl(struct hpsb_host *host, enum devctl_cmd cmd, int arg)
{
struct ti_lynx *lynx = host->hostdata;
int retval = 0;
struct hpsb_packet *packet;
LIST_HEAD(packet_list);
unsigned long flags;
int phy_reg;
switch (cmd) {
case RESET_BUS:
if (reg_read(lynx, LINK_INT_STATUS) & LINK_INT_PHY_BUSRESET) {
retval = 0;
break;
}
switch (arg) {
case SHORT_RESET:
if (lynx->phyic.reg_1394a) {
phy_reg = get_phy_reg(lynx, 5);
if (phy_reg == -1) {
PRINT(KERN_ERR, lynx->id, "cannot reset bus, because read phy reg failed");
retval = -1;
break;
}
phy_reg |= 0x40;
PRINT(KERN_INFO, lynx->id, "resetting bus (short bus reset) on request");
lynx->selfid_size = -1;
lynx->phy_reg0 = -1;
set_phy_reg(lynx, 5, phy_reg); /* set ISBR */
break;
} else {
PRINT(KERN_INFO, lynx->id, "cannot do short bus reset, because of old phy");
/* fall through to long bus reset */
}
case LONG_RESET:
phy_reg = get_phy_reg(lynx, 1);
if (phy_reg == -1) {
PRINT(KERN_ERR, lynx->id, "cannot reset bus, because read phy reg failed");
retval = -1;
break;
}
phy_reg |= 0x40;
PRINT(KERN_INFO, lynx->id, "resetting bus (long bus reset) on request");
lynx->selfid_size = -1;
lynx->phy_reg0 = -1;
set_phy_reg(lynx, 1, phy_reg); /* clear RHB, set IBR */
break;
case SHORT_RESET_NO_FORCE_ROOT:
if (lynx->phyic.reg_1394a) {
phy_reg = get_phy_reg(lynx, 1);
if (phy_reg == -1) {
PRINT(KERN_ERR, lynx->id, "cannot reset bus, because read phy reg failed");
retval = -1;
break;
}
if (phy_reg & 0x80) {
phy_reg &= ~0x80;
set_phy_reg(lynx, 1, phy_reg); /* clear RHB */
}
phy_reg = get_phy_reg(lynx, 5);
if (phy_reg == -1) {
PRINT(KERN_ERR, lynx->id, "cannot reset bus, because read phy reg failed");
retval = -1;
break;
}
phy_reg |= 0x40;
PRINT(KERN_INFO, lynx->id, "resetting bus (short bus reset, no force_root) on request");
lynx->selfid_size = -1;
lynx->phy_reg0 = -1;
set_phy_reg(lynx, 5, phy_reg); /* set ISBR */
break;
} else {
PRINT(KERN_INFO, lynx->id, "cannot do short bus reset, because of old phy");
/* fall through to long bus reset */
}
case LONG_RESET_NO_FORCE_ROOT:
phy_reg = get_phy_reg(lynx, 1);
if (phy_reg == -1) {
PRINT(KERN_ERR, lynx->id, "cannot reset bus, because read phy reg failed");
retval = -1;
break;
}
phy_reg &= ~0x80;
phy_reg |= 0x40;
PRINT(KERN_INFO, lynx->id, "resetting bus (long bus reset, no force_root) on request");
lynx->selfid_size = -1;
lynx->phy_reg0 = -1;
set_phy_reg(lynx, 1, phy_reg); /* clear RHB, set IBR */
break;
case SHORT_RESET_FORCE_ROOT:
if (lynx->phyic.reg_1394a) {
phy_reg = get_phy_reg(lynx, 1);
if (phy_reg == -1) {
PRINT(KERN_ERR, lynx->id, "cannot reset bus, because read phy reg failed");
retval = -1;
break;
}
if (!(phy_reg & 0x80)) {
phy_reg |= 0x80;
set_phy_reg(lynx, 1, phy_reg); /* set RHB */
}
phy_reg = get_phy_reg(lynx, 5);
if (phy_reg == -1) {
PRINT(KERN_ERR, lynx->id, "cannot reset bus, because read phy reg failed");
retval = -1;
break;
}
phy_reg |= 0x40;
PRINT(KERN_INFO, lynx->id, "resetting bus (short bus reset, force_root set) on request");
lynx->selfid_size = -1;
lynx->phy_reg0 = -1;
set_phy_reg(lynx, 5, phy_reg); /* set ISBR */
break;
} else {
PRINT(KERN_INFO, lynx->id, "cannot do short bus reset, because of old phy");
/* fall through to long bus reset */
}
case LONG_RESET_FORCE_ROOT:
phy_reg = get_phy_reg(lynx, 1);
if (phy_reg == -1) {
PRINT(KERN_ERR, lynx->id, "cannot reset bus, because read phy reg failed");
retval = -1;
break;
}
phy_reg |= 0xc0;
PRINT(KERN_INFO, lynx->id, "resetting bus (long bus reset, force_root set) on request");
lynx->selfid_size = -1;
lynx->phy_reg0 = -1;
set_phy_reg(lynx, 1, phy_reg); /* set IBR and RHB */
break;
default:
PRINT(KERN_ERR, lynx->id, "unknown argument for reset_bus command %d", arg);
retval = -1;
}
break;
case GET_CYCLE_COUNTER:
retval = reg_read(lynx, CYCLE_TIMER);
break;
case SET_CYCLE_COUNTER:
reg_write(lynx, CYCLE_TIMER, arg);
break;
case SET_BUS_ID:
reg_write(lynx, LINK_ID,
(arg << 22) | (reg_read(lynx, LINK_ID) & 0x003f0000));
break;
case ACT_CYCLE_MASTER:
if (arg) {
reg_set_bits(lynx, LINK_CONTROL,
LINK_CONTROL_CYCMASTER);
} else {
reg_clear_bits(lynx, LINK_CONTROL,
LINK_CONTROL_CYCMASTER);
}
break;
case CANCEL_REQUESTS:
spin_lock_irqsave(&lynx->async.queue_lock, flags);
reg_write(lynx, DMA_CHAN_CTRL(CHANNEL_ASYNC_SEND), 0);
list_splice(&lynx->async.queue, &packet_list);
INIT_LIST_HEAD(&lynx->async.queue);
if (list_empty(&lynx->async.pcl_queue)) {
spin_unlock_irqrestore(&lynx->async.queue_lock, flags);
PRINTD(KERN_DEBUG, lynx->id, "no async packet in PCL to cancel");
} else {
struct ti_pcl pcl;
u32 ack;
struct hpsb_packet *packet;
PRINT(KERN_INFO, lynx->id, "cancelling async packet, that was already in PCL");
get_pcl(lynx, lynx->async.pcl, &pcl);
packet = driver_packet(lynx->async.pcl_queue.next);
list_del_init(&packet->driver_list);
pci_unmap_single(lynx->dev, lynx->async.header_dma,
packet->header_size, PCI_DMA_TODEVICE);
if (packet->data_size) {
pci_unmap_single(lynx->dev, lynx->async.data_dma,
packet->data_size, PCI_DMA_TODEVICE);
}
spin_unlock_irqrestore(&lynx->async.queue_lock, flags);
if (pcl.pcl_status & DMA_CHAN_STAT_PKTCMPL) {
if (pcl.pcl_status & DMA_CHAN_STAT_SPECIALACK) {
ack = (pcl.pcl_status >> 15) & 0xf;
PRINTD(KERN_INFO, lynx->id, "special ack %d", ack);
ack = (ack == 1 ? ACKX_TIMEOUT : ACKX_SEND_ERROR);
} else {
ack = (pcl.pcl_status >> 15) & 0xf;
}
} else {
PRINT(KERN_INFO, lynx->id, "async packet was not completed");
ack = ACKX_ABORTED;
}
hpsb_packet_sent(host, packet, ack);
}
while (!list_empty(&packet_list)) {
packet = driver_packet(packet_list.next);
list_del_init(&packet->driver_list);
hpsb_packet_sent(host, packet, ACKX_ABORTED);
}
break;
case ISO_LISTEN_CHANNEL:
spin_lock_irqsave(&lynx->iso_rcv.lock, flags);
if (lynx->iso_rcv.chan_count++ == 0) {
reg_write(lynx, DMA_WORD1_CMP_ENABLE(CHANNEL_ISO_RCV),
DMA_WORD1_CMP_ENABLE_MASTER);
}
spin_unlock_irqrestore(&lynx->iso_rcv.lock, flags);
break;
case ISO_UNLISTEN_CHANNEL:
spin_lock_irqsave(&lynx->iso_rcv.lock, flags);
if (--lynx->iso_rcv.chan_count == 0) {
reg_write(lynx, DMA_WORD1_CMP_ENABLE(CHANNEL_ISO_RCV),
0);
}
spin_unlock_irqrestore(&lynx->iso_rcv.lock, flags);
break;
default:
PRINT(KERN_ERR, lynx->id, "unknown devctl command %d", cmd);
retval = -1;
}
return retval;
}
/***************************************
* IEEE-1394 functionality section END *
***************************************/
/********************************************************
* Global stuff (interrupt handler, init/shutdown code) *
********************************************************/
static irqreturn_t lynx_irq_handler(int irq, void *dev_id,
struct pt_regs *regs_are_unused)
{
struct ti_lynx *lynx = (struct ti_lynx *)dev_id;
struct hpsb_host *host = lynx->host;
u32 intmask;
u32 linkint;
linkint = reg_read(lynx, LINK_INT_STATUS);
intmask = reg_read(lynx, PCI_INT_STATUS);
if (!(intmask & PCI_INT_INT_PEND))
return IRQ_NONE;
PRINTD(KERN_DEBUG, lynx->id, "interrupt: 0x%08x / 0x%08x", intmask,
linkint);
reg_write(lynx, LINK_INT_STATUS, linkint);
reg_write(lynx, PCI_INT_STATUS, intmask);
if (intmask & PCI_INT_1394) {
if (linkint & LINK_INT_PHY_TIMEOUT) {
PRINT(KERN_INFO, lynx->id, "PHY timeout occurred");
}
if (linkint & LINK_INT_PHY_BUSRESET) {
PRINT(KERN_INFO, lynx->id, "bus reset interrupt");
lynx->selfid_size = -1;
lynx->phy_reg0 = -1;
if (!host->in_bus_reset)
hpsb_bus_reset(host);
}
if (linkint & LINK_INT_PHY_REG_RCVD) {
u32 reg;
spin_lock(&lynx->phy_reg_lock);
reg = reg_read(lynx, LINK_PHY);
spin_unlock(&lynx->phy_reg_lock);
if (!host->in_bus_reset) {
PRINT(KERN_INFO, lynx->id,
"phy reg received without reset");
} else if (reg & 0xf00) {
PRINT(KERN_INFO, lynx->id,
"unsolicited phy reg %d received",
(reg >> 8) & 0xf);
} else {
lynx->phy_reg0 = reg & 0xff;
handle_selfid(lynx, host);
}
}
if (linkint & LINK_INT_ISO_STUCK) {
PRINT(KERN_INFO, lynx->id, "isochronous transmitter stuck");
}
if (linkint & LINK_INT_ASYNC_STUCK) {
PRINT(KERN_INFO, lynx->id, "asynchronous transmitter stuck");
}
if (linkint & LINK_INT_SENT_REJECT) {
PRINT(KERN_INFO, lynx->id, "sent reject");
}
if (linkint & LINK_INT_TX_INVALID_TC) {
PRINT(KERN_INFO, lynx->id, "invalid transaction code");
}
if (linkint & LINK_INT_GRF_OVERFLOW) {
/* flush FIFO if overflow happens during reset */
if (host->in_bus_reset)
reg_write(lynx, FIFO_CONTROL,
FIFO_CONTROL_GRF_FLUSH);
PRINT(KERN_INFO, lynx->id, "GRF overflow");
}
if (linkint & LINK_INT_ITF_UNDERFLOW) {
PRINT(KERN_INFO, lynx->id, "ITF underflow");
}
if (linkint & LINK_INT_ATF_UNDERFLOW) {
PRINT(KERN_INFO, lynx->id, "ATF underflow");
}
}
if (intmask & PCI_INT_DMA_HLT(CHANNEL_ISO_RCV)) {
PRINTD(KERN_DEBUG, lynx->id, "iso receive");
spin_lock(&lynx->iso_rcv.lock);
lynx->iso_rcv.stat[lynx->iso_rcv.next] =
reg_read(lynx, DMA_CHAN_STAT(CHANNEL_ISO_RCV));
lynx->iso_rcv.used++;
lynx->iso_rcv.next = (lynx->iso_rcv.next + 1) % NUM_ISORCV_PCL;
if ((lynx->iso_rcv.next == lynx->iso_rcv.last)
|| !lynx->iso_rcv.chan_count) {
PRINTD(KERN_DEBUG, lynx->id, "stopped");
reg_write(lynx, DMA_WORD1_CMP_ENABLE(CHANNEL_ISO_RCV), 0);
}
run_sub_pcl(lynx, lynx->iso_rcv.pcl_start, lynx->iso_rcv.next,
CHANNEL_ISO_RCV);
spin_unlock(&lynx->iso_rcv.lock);
tasklet_schedule(&lynx->iso_rcv.tq);
}
if (intmask & PCI_INT_DMA_HLT(CHANNEL_ASYNC_SEND)) {
PRINTD(KERN_DEBUG, lynx->id, "async sent");
spin_lock(&lynx->async.queue_lock);
if (list_empty(&lynx->async.pcl_queue)) {
spin_unlock(&lynx->async.queue_lock);
PRINT(KERN_WARNING, lynx->id, "async dma halted, but no queued packet (maybe it was cancelled)");
} else {
struct ti_pcl pcl;
u32 ack;
struct hpsb_packet *packet;
get_pcl(lynx, lynx->async.pcl, &pcl);
packet = driver_packet(lynx->async.pcl_queue.next);
list_del_init(&packet->driver_list);
pci_unmap_single(lynx->dev, lynx->async.header_dma,
packet->header_size, PCI_DMA_TODEVICE);
if (packet->data_size) {
pci_unmap_single(lynx->dev, lynx->async.data_dma,
packet->data_size, PCI_DMA_TODEVICE);
}
if (!list_empty(&lynx->async.queue)) {
send_next(lynx, hpsb_async);
}
spin_unlock(&lynx->async.queue_lock);
if (pcl.pcl_status & DMA_CHAN_STAT_PKTCMPL) {
if (pcl.pcl_status & DMA_CHAN_STAT_SPECIALACK) {
ack = (pcl.pcl_status >> 15) & 0xf;
PRINTD(KERN_INFO, lynx->id, "special ack %d", ack);
ack = (ack == 1 ? ACKX_TIMEOUT : ACKX_SEND_ERROR);
} else {
ack = (pcl.pcl_status >> 15) & 0xf;
}
} else {
PRINT(KERN_INFO, lynx->id, "async packet was not completed");
ack = ACKX_SEND_ERROR;
}
hpsb_packet_sent(host, packet, ack);
}
}
if (intmask & PCI_INT_DMA_HLT(CHANNEL_ISO_SEND)) {
PRINTD(KERN_DEBUG, lynx->id, "iso sent");
spin_lock(&lynx->iso_send.queue_lock);
if (list_empty(&lynx->iso_send.pcl_queue)) {
spin_unlock(&lynx->iso_send.queue_lock);
PRINT(KERN_ERR, lynx->id, "iso send dma halted, but no queued packet");
} else {
struct ti_pcl pcl;
u32 ack;
struct hpsb_packet *packet;
get_pcl(lynx, lynx->iso_send.pcl, &pcl);
packet = driver_packet(lynx->iso_send.pcl_queue.next);
list_del_init(&packet->driver_list);
pci_unmap_single(lynx->dev, lynx->iso_send.header_dma,
packet->header_size, PCI_DMA_TODEVICE);
if (packet->data_size) {
pci_unmap_single(lynx->dev, lynx->iso_send.data_dma,
packet->data_size, PCI_DMA_TODEVICE);
}
if (!list_empty(&lynx->iso_send.queue)) {
send_next(lynx, hpsb_iso);
}
spin_unlock(&lynx->iso_send.queue_lock);
if (pcl.pcl_status & DMA_CHAN_STAT_PKTCMPL) {
if (pcl.pcl_status & DMA_CHAN_STAT_SPECIALACK) {
ack = (pcl.pcl_status >> 15) & 0xf;
PRINTD(KERN_INFO, lynx->id, "special ack %d", ack);
ack = (ack == 1 ? ACKX_TIMEOUT : ACKX_SEND_ERROR);
} else {
ack = (pcl.pcl_status >> 15) & 0xf;
}
} else {
PRINT(KERN_INFO, lynx->id, "iso send packet was not completed");
ack = ACKX_SEND_ERROR;
}
hpsb_packet_sent(host, packet, ack); //FIXME: maybe we should just use ACK_COMPLETE and ACKX_SEND_ERROR
}
}
if (intmask & PCI_INT_DMA_HLT(CHANNEL_ASYNC_RCV)) {
/* general receive DMA completed */
int stat = reg_read(lynx, DMA_CHAN_STAT(CHANNEL_ASYNC_RCV));
PRINTD(KERN_DEBUG, lynx->id, "received packet size %d",
stat & 0x1fff);
if (stat & DMA_CHAN_STAT_SELFID) {
lynx->selfid_size = stat & 0x1fff;
handle_selfid(lynx, host);
} else {
quadlet_t *q_data = lynx->rcv_page;
if ((*q_data >> 4 & 0xf) == TCODE_READQ_RESPONSE
|| (*q_data >> 4 & 0xf) == TCODE_WRITEQ) {
cpu_to_be32s(q_data + 3);
}
hpsb_packet_received(host, q_data, stat & 0x1fff, 0);
}
run_pcl(lynx, lynx->rcv_pcl_start, CHANNEL_ASYNC_RCV);
}
return IRQ_HANDLED;
}
static void iso_rcv_bh(struct ti_lynx *lynx)
{
unsigned int idx;
quadlet_t *data;
unsigned long flags;
spin_lock_irqsave(&lynx->iso_rcv.lock, flags);
while (lynx->iso_rcv.used) {
idx = lynx->iso_rcv.last;
spin_unlock_irqrestore(&lynx->iso_rcv.lock, flags);
data = lynx->iso_rcv.page[idx / ISORCV_PER_PAGE]
+ (idx % ISORCV_PER_PAGE) * MAX_ISORCV_SIZE;
if ((*data >> 16) + 4 != (lynx->iso_rcv.stat[idx] & 0x1fff)) {
PRINT(KERN_ERR, lynx->id,
"iso length mismatch 0x%08x/0x%08x", *data,
lynx->iso_rcv.stat[idx]);
}
if (lynx->iso_rcv.stat[idx]
& (DMA_CHAN_STAT_PCIERR | DMA_CHAN_STAT_PKTERR)) {
PRINT(KERN_INFO, lynx->id,
"iso receive error on %d to 0x%p", idx, data);
} else {
hpsb_packet_received(lynx->host, data,
lynx->iso_rcv.stat[idx] & 0x1fff,
0);
}
spin_lock_irqsave(&lynx->iso_rcv.lock, flags);
lynx->iso_rcv.last = (idx + 1) % NUM_ISORCV_PCL;
lynx->iso_rcv.used--;
}
if (lynx->iso_rcv.chan_count) {
reg_write(lynx, DMA_WORD1_CMP_ENABLE(CHANNEL_ISO_RCV),
DMA_WORD1_CMP_ENABLE_MASTER);
}
spin_unlock_irqrestore(&lynx->iso_rcv.lock, flags);
}
static void remove_card(struct pci_dev *dev)
{
struct ti_lynx *lynx;
struct device *lynx_dev;
int i;
lynx = pci_get_drvdata(dev);
if (!lynx) return;
pci_set_drvdata(dev, NULL);
lynx_dev = get_device(&lynx->host->device);
switch (lynx->state) {
case is_host:
reg_write(lynx, PCI_INT_ENABLE, 0);
hpsb_remove_host(lynx->host);
case have_intr:
reg_write(lynx, PCI_INT_ENABLE, 0);
free_irq(lynx->dev->irq, lynx);
/* Disable IRM Contender and LCtrl */
if (lynx->phyic.reg_1394a)
set_phy_reg(lynx, 4, ~0xc0 & get_phy_reg(lynx, 4));
/* Let all other nodes know to ignore us */
lynx_devctl(lynx->host, RESET_BUS, LONG_RESET_NO_FORCE_ROOT);
case have_iomappings:
reg_set_bits(lynx, MISC_CONTROL, MISC_CONTROL_SWRESET);
/* Fix buggy cards with autoboot pin not tied low: */
reg_write(lynx, DMA0_CHAN_CTRL, 0);
iounmap(lynx->registers);
iounmap(lynx->local_rom);
iounmap(lynx->local_ram);
iounmap(lynx->aux_port);
case have_1394_buffers:
for (i = 0; i < ISORCV_PAGES; i++) {
if (lynx->iso_rcv.page[i]) {
pci_free_consistent(lynx->dev, PAGE_SIZE,
lynx->iso_rcv.page[i],
lynx->iso_rcv.page_dma[i]);
}
}
pci_free_consistent(lynx->dev, PAGE_SIZE, lynx->rcv_page,
lynx->rcv_page_dma);
case have_aux_buf:
case have_pcl_mem:
pci_free_consistent(lynx->dev, LOCALRAM_SIZE, lynx->pcl_mem,
lynx->pcl_mem_dma);
case clear:
/* do nothing - already freed */
;
}
tasklet_kill(&lynx->iso_rcv.tq);
if (lynx_dev)
put_device(lynx_dev);
}
static int __devinit add_card(struct pci_dev *dev,
const struct pci_device_id *devid_is_unused)
{
#define FAIL(fmt, args...) do { \
PRINT_G(KERN_ERR, fmt , ## args); \
remove_card(dev); \
return error; \
} while (0)
char irq_buf[16];
struct hpsb_host *host;
struct ti_lynx *lynx; /* shortcut to currently handled device */
struct ti_pcl pcl;
u32 *pcli;
int i;
int error;
error = -ENXIO;
if (pci_set_dma_mask(dev, DMA_32BIT_MASK))
FAIL("DMA address limits not supported for PCILynx hardware");
if (pci_enable_device(dev))
FAIL("failed to enable PCILynx hardware");
pci_set_master(dev);
error = -ENOMEM;
host = hpsb_alloc_host(&lynx_driver, sizeof(struct ti_lynx), &dev->dev);
if (!host) FAIL("failed to allocate control structure memory");
lynx = host->hostdata;
lynx->id = card_id++;
lynx->dev = dev;
lynx->state = clear;
lynx->host = host;
host->pdev = dev;
pci_set_drvdata(dev, lynx);
spin_lock_init(&lynx->lock);
spin_lock_init(&lynx->phy_reg_lock);
lynx->pcl_mem = pci_alloc_consistent(dev, LOCALRAM_SIZE,
&lynx->pcl_mem_dma);
if (lynx->pcl_mem != NULL) {
lynx->state = have_pcl_mem;
PRINT(KERN_INFO, lynx->id,
"allocated PCL memory %d Bytes @ 0x%p", LOCALRAM_SIZE,
lynx->pcl_mem);
} else {
FAIL("failed to allocate PCL memory area");
}
lynx->rcv_page = pci_alloc_consistent(dev, PAGE_SIZE,
&lynx->rcv_page_dma);
if (lynx->rcv_page == NULL) {
FAIL("failed to allocate receive buffer");
}
lynx->state = have_1394_buffers;
for (i = 0; i < ISORCV_PAGES; i++) {
lynx->iso_rcv.page[i] =
pci_alloc_consistent(dev, PAGE_SIZE,
&lynx->iso_rcv.page_dma[i]);
if (lynx->iso_rcv.page[i] == NULL) {
FAIL("failed to allocate iso receive buffers");
}
}
lynx->registers = ioremap_nocache(pci_resource_start(dev,0),
PCILYNX_MAX_REGISTER);
lynx->local_ram = ioremap(pci_resource_start(dev,1), PCILYNX_MAX_MEMORY);
lynx->aux_port = ioremap(pci_resource_start(dev,2), PCILYNX_MAX_MEMORY);
lynx->local_rom = ioremap(pci_resource_start(dev,PCI_ROM_RESOURCE),
PCILYNX_MAX_MEMORY);
lynx->state = have_iomappings;
if (lynx->registers == NULL) {
FAIL("failed to remap registers - card not accessible");
}
reg_set_bits(lynx, MISC_CONTROL, MISC_CONTROL_SWRESET);
/* Fix buggy cards with autoboot pin not tied low: */
reg_write(lynx, DMA0_CHAN_CTRL, 0);
#ifndef __sparc__
sprintf (irq_buf, "%d", dev->irq);
#else
sprintf (irq_buf, "%s", __irq_itoa(dev->irq));
#endif
if (!request_irq(dev->irq, lynx_irq_handler, SA_SHIRQ,
PCILYNX_DRIVER_NAME, lynx)) {
PRINT(KERN_INFO, lynx->id, "allocated interrupt %s", irq_buf);
lynx->state = have_intr;
} else {
FAIL("failed to allocate shared interrupt %s", irq_buf);
}
/* alloc_pcl return values are not checked, it is expected that the
* provided PCL space is sufficient for the initial allocations */
lynx->rcv_pcl = alloc_pcl(lynx);
lynx->rcv_pcl_start = alloc_pcl(lynx);
lynx->async.pcl = alloc_pcl(lynx);
lynx->async.pcl_start = alloc_pcl(lynx);
lynx->iso_send.pcl = alloc_pcl(lynx);
lynx->iso_send.pcl_start = alloc_pcl(lynx);
for (i = 0; i < NUM_ISORCV_PCL; i++) {
lynx->iso_rcv.pcl[i] = alloc_pcl(lynx);
}
lynx->iso_rcv.pcl_start = alloc_pcl(lynx);
/* all allocations successful - simple init stuff follows */
reg_write(lynx, PCI_INT_ENABLE, PCI_INT_DMA_ALL);
tasklet_init(&lynx->iso_rcv.tq, (void (*)(unsigned long))iso_rcv_bh,
(unsigned long)lynx);
spin_lock_init(&lynx->iso_rcv.lock);
spin_lock_init(&lynx->async.queue_lock);
lynx->async.channel = CHANNEL_ASYNC_SEND;
spin_lock_init(&lynx->iso_send.queue_lock);
lynx->iso_send.channel = CHANNEL_ISO_SEND;
PRINT(KERN_INFO, lynx->id, "remapped memory spaces reg 0x%p, rom 0x%p, "
"ram 0x%p, aux 0x%p", lynx->registers, lynx->local_rom,
lynx->local_ram, lynx->aux_port);
/* now, looking for PHY register set */
if ((get_phy_reg(lynx, 2) & 0xe0) == 0xe0) {
lynx->phyic.reg_1394a = 1;
PRINT(KERN_INFO, lynx->id,
"found 1394a conform PHY (using extended register set)");
lynx->phyic.vendor = get_phy_vendorid(lynx);
lynx->phyic.product = get_phy_productid(lynx);
} else {
lynx->phyic.reg_1394a = 0;
PRINT(KERN_INFO, lynx->id, "found old 1394 PHY");
}
lynx->selfid_size = -1;
lynx->phy_reg0 = -1;
INIT_LIST_HEAD(&lynx->async.queue);
INIT_LIST_HEAD(&lynx->async.pcl_queue);
INIT_LIST_HEAD(&lynx->iso_send.queue);
INIT_LIST_HEAD(&lynx->iso_send.pcl_queue);
pcl.next = pcl_bus(lynx, lynx->rcv_pcl);
put_pcl(lynx, lynx->rcv_pcl_start, &pcl);
pcl.next = PCL_NEXT_INVALID;
pcl.async_error_next = PCL_NEXT_INVALID;
pcl.buffer[0].control = PCL_CMD_RCV | 16;
#ifndef __BIG_ENDIAN
pcl.buffer[0].control |= PCL_BIGENDIAN;
#endif
pcl.buffer[1].control = PCL_LAST_BUFF | 4080;
pcl.buffer[0].pointer = lynx->rcv_page_dma;
pcl.buffer[1].pointer = lynx->rcv_page_dma + 16;
put_pcl(lynx, lynx->rcv_pcl, &pcl);
pcl.next = pcl_bus(lynx, lynx->async.pcl);
pcl.async_error_next = pcl_bus(lynx, lynx->async.pcl);
put_pcl(lynx, lynx->async.pcl_start, &pcl);
pcl.next = pcl_bus(lynx, lynx->iso_send.pcl);
pcl.async_error_next = PCL_NEXT_INVALID;
put_pcl(lynx, lynx->iso_send.pcl_start, &pcl);
pcl.next = PCL_NEXT_INVALID;
pcl.async_error_next = PCL_NEXT_INVALID;
pcl.buffer[0].control = PCL_CMD_RCV | 4;
#ifndef __BIG_ENDIAN
pcl.buffer[0].control |= PCL_BIGENDIAN;
#endif
pcl.buffer[1].control = PCL_LAST_BUFF | 2044;
for (i = 0; i < NUM_ISORCV_PCL; i++) {
int page = i / ISORCV_PER_PAGE;
int sec = i % ISORCV_PER_PAGE;
pcl.buffer[0].pointer = lynx->iso_rcv.page_dma[page]
+ sec * MAX_ISORCV_SIZE;
pcl.buffer[1].pointer = pcl.buffer[0].pointer + 4;
put_pcl(lynx, lynx->iso_rcv.pcl[i], &pcl);
}
pcli = (u32 *)&pcl;
for (i = 0; i < NUM_ISORCV_PCL; i++) {
pcli[i] = pcl_bus(lynx, lynx->iso_rcv.pcl[i]);
}
put_pcl(lynx, lynx->iso_rcv.pcl_start, &pcl);
/* FIFO sizes from left to right: ITF=48 ATF=48 GRF=160 */
reg_write(lynx, FIFO_SIZES, 0x003030a0);
/* 20 byte threshold before triggering PCI transfer */
reg_write(lynx, DMA_GLOBAL_REGISTER, 0x2<<24);
/* threshold on both send FIFOs before transmitting:
FIFO size - cache line size - 1 */
i = reg_read(lynx, PCI_LATENCY_CACHELINE) & 0xff;
i = 0x30 - i - 1;
reg_write(lynx, FIFO_XMIT_THRESHOLD, (i << 8) | i);
reg_set_bits(lynx, PCI_INT_ENABLE, PCI_INT_1394);
reg_write(lynx, LINK_INT_ENABLE, LINK_INT_PHY_TIMEOUT
| LINK_INT_PHY_REG_RCVD | LINK_INT_PHY_BUSRESET
| LINK_INT_ISO_STUCK | LINK_INT_ASYNC_STUCK
| LINK_INT_SENT_REJECT | LINK_INT_TX_INVALID_TC
| LINK_INT_GRF_OVERFLOW | LINK_INT_ITF_UNDERFLOW
| LINK_INT_ATF_UNDERFLOW);
reg_write(lynx, DMA_WORD0_CMP_VALUE(CHANNEL_ASYNC_RCV), 0);
reg_write(lynx, DMA_WORD0_CMP_ENABLE(CHANNEL_ASYNC_RCV), 0xa<<4);
reg_write(lynx, DMA_WORD1_CMP_VALUE(CHANNEL_ASYNC_RCV), 0);
reg_write(lynx, DMA_WORD1_CMP_ENABLE(CHANNEL_ASYNC_RCV),
DMA_WORD1_CMP_MATCH_LOCAL_NODE | DMA_WORD1_CMP_MATCH_BROADCAST
| DMA_WORD1_CMP_MATCH_EXACT | DMA_WORD1_CMP_MATCH_BUS_BCAST
| DMA_WORD1_CMP_ENABLE_SELF_ID | DMA_WORD1_CMP_ENABLE_MASTER);
run_pcl(lynx, lynx->rcv_pcl_start, CHANNEL_ASYNC_RCV);
reg_write(lynx, DMA_WORD0_CMP_VALUE(CHANNEL_ISO_RCV), 0);
reg_write(lynx, DMA_WORD0_CMP_ENABLE(CHANNEL_ISO_RCV), 0x9<<4);
reg_write(lynx, DMA_WORD1_CMP_VALUE(CHANNEL_ISO_RCV), 0);
reg_write(lynx, DMA_WORD1_CMP_ENABLE(CHANNEL_ISO_RCV), 0);
run_sub_pcl(lynx, lynx->iso_rcv.pcl_start, 0, CHANNEL_ISO_RCV);
reg_write(lynx, LINK_CONTROL, LINK_CONTROL_RCV_CMP_VALID
| LINK_CONTROL_TX_ISO_EN | LINK_CONTROL_RX_ISO_EN
| LINK_CONTROL_TX_ASYNC_EN | LINK_CONTROL_RX_ASYNC_EN
| LINK_CONTROL_RESET_TX | LINK_CONTROL_RESET_RX);
if (!lynx->phyic.reg_1394a) {
if (!hpsb_disable_irm) {
/* attempt to enable contender bit -FIXME- would this
* work elsewhere? */
reg_set_bits(lynx, GPIO_CTRL_A, 0x1);
reg_write(lynx, GPIO_DATA_BASE + 0x3c, 0x1);
}
} else {
/* set the contender (if appropriate) and LCtrl bit in the
* extended PHY register set. (Should check that PHY_02_EXTENDED
* is set in register 2?)
*/
i = get_phy_reg(lynx, 4);
i |= PHY_04_LCTRL;
if (hpsb_disable_irm)
i &= ~PHY_04_CONTENDER;
else
i |= PHY_04_CONTENDER;
if (i != -1) set_phy_reg(lynx, 4, i);
}
if (!skip_eeprom)
{
/* needed for i2c communication with serial eeprom */
struct i2c_adapter *i2c_ad;
struct i2c_algo_bit_data i2c_adapter_data;
error = -ENOMEM;
i2c_ad = kmalloc(sizeof(struct i2c_adapter), SLAB_KERNEL);
if (!i2c_ad) FAIL("failed to allocate I2C adapter memory");
memcpy(i2c_ad, &bit_ops, sizeof(struct i2c_adapter));
i2c_adapter_data = bit_data;
i2c_ad->algo_data = &i2c_adapter_data;
i2c_adapter_data.data = lynx;
PRINTD(KERN_DEBUG, lynx->id,"original eeprom control: %d",
reg_read(lynx, SERIAL_EEPROM_CONTROL));
/* reset hardware to sane state */
lynx->i2c_driven_state = 0x00000070;
reg_write(lynx, SERIAL_EEPROM_CONTROL, lynx->i2c_driven_state);
if (i2c_bit_add_bus(i2c_ad) < 0)
{
kfree(i2c_ad);
error = -ENXIO;
FAIL("unable to register i2c");
}
else
{
/* do i2c stuff */
unsigned char i2c_cmd = 0x10;
struct i2c_msg msg[2] = { { 0x50, 0, 1, &i2c_cmd },
{ 0x50, I2C_M_RD, 20, (unsigned char*) lynx->bus_info_block }
};
#ifdef CONFIG_IEEE1394_VERBOSEDEBUG
union i2c_smbus_data data;
if (i2c_smbus_xfer(i2c_ad, 80, 0, I2C_SMBUS_WRITE, 0, I2C_SMBUS_BYTE,NULL))
PRINT(KERN_ERR, lynx->id,"eeprom read start has failed");
else
{
u16 addr;
for (addr=0x00; addr < 0x100; addr++) {
if (i2c_smbus_xfer(i2c_ad, 80, 0, I2C_SMBUS_READ, 0, I2C_SMBUS_BYTE,& data)) {
PRINT(KERN_ERR, lynx->id, "unable to read i2c %x", addr);
break;
}
else
PRINT(KERN_DEBUG, lynx->id,"got serial eeprom data at %x: %x",addr, data.byte);
}
}
#endif
/* we use i2c_transfer, because i2c_smbus_read_block_data does not work properly and we
do it more efficiently in one transaction rather then using several reads */
if (i2c_transfer(i2c_ad, msg, 2) < 0) {
PRINT(KERN_ERR, lynx->id, "unable to read bus info block from i2c");
} else {
int i;
PRINT(KERN_INFO, lynx->id, "got bus info block from serial eeprom");
/* FIXME: probably we shoud rewrite the max_rec, max_ROM(1394a),
* generation(1394a) and link_spd(1394a) field and recalculate
* the CRC */
for (i = 0; i < 5 ; i++)
PRINTD(KERN_DEBUG, lynx->id, "Businfo block quadlet %i: %08x",
i, be32_to_cpu(lynx->bus_info_block[i]));
/* info_length, crc_length and 1394 magic number to check, if it is really a bus info block */
if (((be32_to_cpu(lynx->bus_info_block[0]) & 0xffff0000) == 0x04040000) &&
(lynx->bus_info_block[1] == __constant_cpu_to_be32(0x31333934)))
{
PRINT(KERN_DEBUG, lynx->id, "read a valid bus info block from");
} else {
kfree(i2c_ad);
error = -ENXIO;
FAIL("read something from serial eeprom, but it does not seem to be a valid bus info block");
}
}
i2c_bit_del_bus(i2c_ad);
kfree(i2c_ad);
}
}
host->csr.guid_hi = be32_to_cpu(lynx->bus_info_block[3]);
host->csr.guid_lo = be32_to_cpu(lynx->bus_info_block[4]);
host->csr.cyc_clk_acc = (be32_to_cpu(lynx->bus_info_block[2]) >> 16) & 0xff;
host->csr.max_rec = (be32_to_cpu(lynx->bus_info_block[2]) >> 12) & 0xf;
if (!lynx->phyic.reg_1394a)
host->csr.lnk_spd = (get_phy_reg(lynx, 2) & 0xc0) >> 6;
else
host->csr.lnk_spd = be32_to_cpu(lynx->bus_info_block[2]) & 0x7;
if (hpsb_add_host(host)) {
error = -ENOMEM;
FAIL("Failed to register host with highlevel");
}
lynx->state = is_host;
return 0;
#undef FAIL
}
static struct pci_device_id pci_table[] = {
{
.vendor = PCI_VENDOR_ID_TI,
.device = PCI_DEVICE_ID_TI_PCILYNX,
.subvendor = PCI_ANY_ID,
.subdevice = PCI_ANY_ID,
},
{ } /* Terminating entry */
};
static struct pci_driver lynx_pci_driver = {
.name = PCILYNX_DRIVER_NAME,
.id_table = pci_table,
.probe = add_card,
.remove = remove_card,
};
static struct hpsb_host_driver lynx_driver = {
.owner = THIS_MODULE,
.name = PCILYNX_DRIVER_NAME,
.set_hw_config_rom = NULL,
.transmit_packet = lynx_transmit,
.devctl = lynx_devctl,
.isoctl = NULL,
};
MODULE_AUTHOR("Andreas E. Bombe <andreas.bombe@munich.netsurf.de>");
MODULE_DESCRIPTION("driver for Texas Instruments PCI Lynx IEEE-1394 controller");
MODULE_LICENSE("GPL");
MODULE_SUPPORTED_DEVICE("pcilynx");
MODULE_DEVICE_TABLE(pci, pci_table);
static int __init pcilynx_init(void)
{
int ret;
ret = pci_register_driver(&lynx_pci_driver);
if (ret < 0) {
PRINT_G(KERN_ERR, "PCI module init failed");
return ret;
}
return 0;
}
static void __exit pcilynx_cleanup(void)
{
pci_unregister_driver(&lynx_pci_driver);
}
module_init(pcilynx_init);
module_exit(pcilynx_cleanup);