linux/drivers/media/platform/vsp1/vsp1_entity.c
Niklas Söderlund 0ac702d5b9 [media] v4l: vsp1: Add HGT support
The HGT is a Histogram Generator Two-Dimensions. It computes a weighted
frequency histograms for hue and saturation areas over a configurable
region of the image with optional subsampling.

Signed-off-by: Niklas Söderlund <niklas.soderlund+renesas@ragnatech.se>
Reviewed-by: Laurent Pinchart <laurent.pinchart+renesas@ideasonboard.com>
Signed-off-by: Laurent Pinchart <laurent.pinchart+renesas@ideasonboard.com>
Signed-off-by: Mauro Carvalho Chehab <mchehab@s-opensource.com>
2017-04-14 22:53:00 -03:00

562 lines
16 KiB
C

/*
* vsp1_entity.c -- R-Car VSP1 Base Entity
*
* Copyright (C) 2013-2014 Renesas Electronics Corporation
*
* Contact: Laurent Pinchart (laurent.pinchart@ideasonboard.com)
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*/
#include <linux/device.h>
#include <linux/gfp.h>
#include <media/media-entity.h>
#include <media/v4l2-ctrls.h>
#include <media/v4l2-subdev.h>
#include "vsp1.h"
#include "vsp1_dl.h"
#include "vsp1_entity.h"
#include "vsp1_pipe.h"
#include "vsp1_rwpf.h"
static inline struct vsp1_entity *
media_entity_to_vsp1_entity(struct media_entity *entity)
{
return container_of(entity, struct vsp1_entity, subdev.entity);
}
void vsp1_entity_route_setup(struct vsp1_entity *entity,
struct vsp1_pipeline *pipe,
struct vsp1_dl_list *dl)
{
struct vsp1_entity *source;
struct vsp1_entity *sink;
if (entity->type == VSP1_ENTITY_HGO) {
u32 smppt;
/*
* The HGO is a special case, its routing is configured on the
* sink pad.
*/
source = media_entity_to_vsp1_entity(entity->sources[0]);
smppt = (pipe->output->entity.index << VI6_DPR_SMPPT_TGW_SHIFT)
| (source->route->output << VI6_DPR_SMPPT_PT_SHIFT);
vsp1_dl_list_write(dl, VI6_DPR_HGO_SMPPT, smppt);
return;
} else if (entity->type == VSP1_ENTITY_HGT) {
u32 smppt;
/*
* The HGT is a special case, its routing is configured on the
* sink pad.
*/
source = media_entity_to_vsp1_entity(entity->sources[0]);
smppt = (pipe->output->entity.index << VI6_DPR_SMPPT_TGW_SHIFT)
| (source->route->output << VI6_DPR_SMPPT_PT_SHIFT);
vsp1_dl_list_write(dl, VI6_DPR_HGT_SMPPT, smppt);
return;
}
source = entity;
if (source->route->reg == 0)
return;
sink = media_entity_to_vsp1_entity(source->sink);
vsp1_dl_list_write(dl, source->route->reg,
sink->route->inputs[source->sink_pad]);
}
/* -----------------------------------------------------------------------------
* V4L2 Subdevice Operations
*/
/**
* vsp1_entity_get_pad_config - Get the pad configuration for an entity
* @entity: the entity
* @cfg: the TRY pad configuration
* @which: configuration selector (ACTIVE or TRY)
*
* When called with which set to V4L2_SUBDEV_FORMAT_ACTIVE the caller must hold
* the entity lock to access the returned configuration.
*
* Return the pad configuration requested by the which argument. The TRY
* configuration is passed explicitly to the function through the cfg argument
* and simply returned when requested. The ACTIVE configuration comes from the
* entity structure.
*/
struct v4l2_subdev_pad_config *
vsp1_entity_get_pad_config(struct vsp1_entity *entity,
struct v4l2_subdev_pad_config *cfg,
enum v4l2_subdev_format_whence which)
{
switch (which) {
case V4L2_SUBDEV_FORMAT_ACTIVE:
return entity->config;
case V4L2_SUBDEV_FORMAT_TRY:
default:
return cfg;
}
}
/**
* vsp1_entity_get_pad_format - Get a pad format from storage for an entity
* @entity: the entity
* @cfg: the configuration storage
* @pad: the pad number
*
* Return the format stored in the given configuration for an entity's pad. The
* configuration can be an ACTIVE or TRY configuration.
*/
struct v4l2_mbus_framefmt *
vsp1_entity_get_pad_format(struct vsp1_entity *entity,
struct v4l2_subdev_pad_config *cfg,
unsigned int pad)
{
return v4l2_subdev_get_try_format(&entity->subdev, cfg, pad);
}
/**
* vsp1_entity_get_pad_selection - Get a pad selection from storage for entity
* @entity: the entity
* @cfg: the configuration storage
* @pad: the pad number
* @target: the selection target
*
* Return the selection rectangle stored in the given configuration for an
* entity's pad. The configuration can be an ACTIVE or TRY configuration. The
* selection target can be COMPOSE or CROP.
*/
struct v4l2_rect *
vsp1_entity_get_pad_selection(struct vsp1_entity *entity,
struct v4l2_subdev_pad_config *cfg,
unsigned int pad, unsigned int target)
{
switch (target) {
case V4L2_SEL_TGT_COMPOSE:
return v4l2_subdev_get_try_compose(&entity->subdev, cfg, pad);
case V4L2_SEL_TGT_CROP:
return v4l2_subdev_get_try_crop(&entity->subdev, cfg, pad);
default:
return NULL;
}
}
/*
* vsp1_entity_init_cfg - Initialize formats on all pads
* @subdev: V4L2 subdevice
* @cfg: V4L2 subdev pad configuration
*
* Initialize all pad formats with default values in the given pad config. This
* function can be used as a handler for the subdev pad::init_cfg operation.
*/
int vsp1_entity_init_cfg(struct v4l2_subdev *subdev,
struct v4l2_subdev_pad_config *cfg)
{
struct v4l2_subdev_format format;
unsigned int pad;
for (pad = 0; pad < subdev->entity.num_pads - 1; ++pad) {
memset(&format, 0, sizeof(format));
format.pad = pad;
format.which = cfg ? V4L2_SUBDEV_FORMAT_TRY
: V4L2_SUBDEV_FORMAT_ACTIVE;
v4l2_subdev_call(subdev, pad, set_fmt, cfg, &format);
}
return 0;
}
/*
* vsp1_subdev_get_pad_format - Subdev pad get_fmt handler
* @subdev: V4L2 subdevice
* @cfg: V4L2 subdev pad configuration
* @fmt: V4L2 subdev format
*
* This function implements the subdev get_fmt pad operation. It can be used as
* a direct drop-in for the operation handler.
*/
int vsp1_subdev_get_pad_format(struct v4l2_subdev *subdev,
struct v4l2_subdev_pad_config *cfg,
struct v4l2_subdev_format *fmt)
{
struct vsp1_entity *entity = to_vsp1_entity(subdev);
struct v4l2_subdev_pad_config *config;
config = vsp1_entity_get_pad_config(entity, cfg, fmt->which);
if (!config)
return -EINVAL;
mutex_lock(&entity->lock);
fmt->format = *vsp1_entity_get_pad_format(entity, config, fmt->pad);
mutex_unlock(&entity->lock);
return 0;
}
/*
* vsp1_subdev_enum_mbus_code - Subdev pad enum_mbus_code handler
* @subdev: V4L2 subdevice
* @cfg: V4L2 subdev pad configuration
* @code: Media bus code enumeration
* @codes: Array of supported media bus codes
* @ncodes: Number of supported media bus codes
*
* This function implements the subdev enum_mbus_code pad operation for entities
* that do not support format conversion. It enumerates the given supported
* media bus codes on the sink pad and reports a source pad format identical to
* the sink pad.
*/
int vsp1_subdev_enum_mbus_code(struct v4l2_subdev *subdev,
struct v4l2_subdev_pad_config *cfg,
struct v4l2_subdev_mbus_code_enum *code,
const unsigned int *codes, unsigned int ncodes)
{
struct vsp1_entity *entity = to_vsp1_entity(subdev);
if (code->pad == 0) {
if (code->index >= ncodes)
return -EINVAL;
code->code = codes[code->index];
} else {
struct v4l2_subdev_pad_config *config;
struct v4l2_mbus_framefmt *format;
/*
* The entity can't perform format conversion, the sink format
* is always identical to the source format.
*/
if (code->index)
return -EINVAL;
config = vsp1_entity_get_pad_config(entity, cfg, code->which);
if (!config)
return -EINVAL;
mutex_lock(&entity->lock);
format = vsp1_entity_get_pad_format(entity, config, 0);
code->code = format->code;
mutex_unlock(&entity->lock);
}
return 0;
}
/*
* vsp1_subdev_enum_frame_size - Subdev pad enum_frame_size handler
* @subdev: V4L2 subdevice
* @cfg: V4L2 subdev pad configuration
* @fse: Frame size enumeration
* @min_width: Minimum image width
* @min_height: Minimum image height
* @max_width: Maximum image width
* @max_height: Maximum image height
*
* This function implements the subdev enum_frame_size pad operation for
* entities that do not support scaling or cropping. It reports the given
* minimum and maximum frame width and height on the sink pad, and a fixed
* source pad size identical to the sink pad.
*/
int vsp1_subdev_enum_frame_size(struct v4l2_subdev *subdev,
struct v4l2_subdev_pad_config *cfg,
struct v4l2_subdev_frame_size_enum *fse,
unsigned int min_width, unsigned int min_height,
unsigned int max_width, unsigned int max_height)
{
struct vsp1_entity *entity = to_vsp1_entity(subdev);
struct v4l2_subdev_pad_config *config;
struct v4l2_mbus_framefmt *format;
int ret = 0;
config = vsp1_entity_get_pad_config(entity, cfg, fse->which);
if (!config)
return -EINVAL;
format = vsp1_entity_get_pad_format(entity, config, fse->pad);
mutex_lock(&entity->lock);
if (fse->index || fse->code != format->code) {
ret = -EINVAL;
goto done;
}
if (fse->pad == 0) {
fse->min_width = min_width;
fse->max_width = max_width;
fse->min_height = min_height;
fse->max_height = max_height;
} else {
/*
* The size on the source pad are fixed and always identical to
* the size on the sink pad.
*/
fse->min_width = format->width;
fse->max_width = format->width;
fse->min_height = format->height;
fse->max_height = format->height;
}
done:
mutex_unlock(&entity->lock);
return ret;
}
/* -----------------------------------------------------------------------------
* Media Operations
*/
static int vsp1_entity_link_setup_source(const struct media_pad *source_pad,
const struct media_pad *sink_pad,
u32 flags)
{
struct vsp1_entity *source;
source = media_entity_to_vsp1_entity(source_pad->entity);
if (!source->route)
return 0;
if (flags & MEDIA_LNK_FL_ENABLED) {
struct vsp1_entity *sink
= media_entity_to_vsp1_entity(sink_pad->entity);
/*
* Fan-out is limited to one for the normal data path plus
* optional HGO and HGT. We ignore the HGO and HGT here.
*/
if (sink->type != VSP1_ENTITY_HGO &&
sink->type != VSP1_ENTITY_HGT) {
if (source->sink)
return -EBUSY;
source->sink = sink_pad->entity;
source->sink_pad = sink_pad->index;
}
} else {
source->sink = NULL;
source->sink_pad = 0;
}
return 0;
}
static int vsp1_entity_link_setup_sink(const struct media_pad *source_pad,
const struct media_pad *sink_pad,
u32 flags)
{
struct vsp1_entity *sink;
sink = media_entity_to_vsp1_entity(sink_pad->entity);
if (flags & MEDIA_LNK_FL_ENABLED) {
/* Fan-in is limited to one. */
if (sink->sources[sink_pad->index])
return -EBUSY;
sink->sources[sink_pad->index] = source_pad->entity;
} else {
sink->sources[sink_pad->index] = NULL;
}
return 0;
}
int vsp1_entity_link_setup(struct media_entity *entity,
const struct media_pad *local,
const struct media_pad *remote, u32 flags)
{
if (local->flags & MEDIA_PAD_FL_SOURCE)
return vsp1_entity_link_setup_source(local, remote, flags);
else
return vsp1_entity_link_setup_sink(remote, local, flags);
}
/**
* vsp1_entity_remote_pad - Find the pad at the remote end of a link
* @pad: Pad at the local end of the link
*
* Search for a remote pad connected to the given pad by iterating over all
* links originating or terminating at that pad until an enabled link is found.
*
* Our link setup implementation guarantees that the output fan-out will not be
* higher than one for the data pipelines, except for the links to the HGO and
* HGT that can be enabled in addition to a regular data link. When traversing
* outgoing links this function ignores HGO and HGT entities and should thus be
* used in place of the generic media_entity_remote_pad() function to traverse
* data pipelines.
*
* Return a pointer to the pad at the remote end of the first found enabled
* link, or NULL if no enabled link has been found.
*/
struct media_pad *vsp1_entity_remote_pad(struct media_pad *pad)
{
struct media_link *link;
list_for_each_entry(link, &pad->entity->links, list) {
struct vsp1_entity *entity;
if (!(link->flags & MEDIA_LNK_FL_ENABLED))
continue;
/* If we're the sink the source will never be an HGO or HGT. */
if (link->sink == pad)
return link->source;
if (link->source != pad)
continue;
/* If the sink isn't a subdevice it can't be an HGO or HGT. */
if (!is_media_entity_v4l2_subdev(link->sink->entity))
return link->sink;
entity = media_entity_to_vsp1_entity(link->sink->entity);
if (entity->type != VSP1_ENTITY_HGO &&
entity->type != VSP1_ENTITY_HGT)
return link->sink;
}
return NULL;
}
/* -----------------------------------------------------------------------------
* Initialization
*/
#define VSP1_ENTITY_ROUTE(ent) \
{ VSP1_ENTITY_##ent, 0, VI6_DPR_##ent##_ROUTE, \
{ VI6_DPR_NODE_##ent }, VI6_DPR_NODE_##ent }
#define VSP1_ENTITY_ROUTE_RPF(idx) \
{ VSP1_ENTITY_RPF, idx, VI6_DPR_RPF_ROUTE(idx), \
{ 0, }, VI6_DPR_NODE_RPF(idx) }
#define VSP1_ENTITY_ROUTE_UDS(idx) \
{ VSP1_ENTITY_UDS, idx, VI6_DPR_UDS_ROUTE(idx), \
{ VI6_DPR_NODE_UDS(idx) }, VI6_DPR_NODE_UDS(idx) }
#define VSP1_ENTITY_ROUTE_WPF(idx) \
{ VSP1_ENTITY_WPF, idx, 0, \
{ VI6_DPR_NODE_WPF(idx) }, VI6_DPR_NODE_WPF(idx) }
static const struct vsp1_route vsp1_routes[] = {
{ VSP1_ENTITY_BRU, 0, VI6_DPR_BRU_ROUTE,
{ VI6_DPR_NODE_BRU_IN(0), VI6_DPR_NODE_BRU_IN(1),
VI6_DPR_NODE_BRU_IN(2), VI6_DPR_NODE_BRU_IN(3),
VI6_DPR_NODE_BRU_IN(4) }, VI6_DPR_NODE_BRU_OUT },
VSP1_ENTITY_ROUTE(CLU),
{ VSP1_ENTITY_HGO, 0, 0, { 0, }, 0 },
{ VSP1_ENTITY_HGT, 0, 0, { 0, }, 0 },
VSP1_ENTITY_ROUTE(HSI),
VSP1_ENTITY_ROUTE(HST),
{ VSP1_ENTITY_LIF, 0, 0, { VI6_DPR_NODE_LIF, }, VI6_DPR_NODE_LIF },
VSP1_ENTITY_ROUTE(LUT),
VSP1_ENTITY_ROUTE_RPF(0),
VSP1_ENTITY_ROUTE_RPF(1),
VSP1_ENTITY_ROUTE_RPF(2),
VSP1_ENTITY_ROUTE_RPF(3),
VSP1_ENTITY_ROUTE_RPF(4),
VSP1_ENTITY_ROUTE(SRU),
VSP1_ENTITY_ROUTE_UDS(0),
VSP1_ENTITY_ROUTE_UDS(1),
VSP1_ENTITY_ROUTE_UDS(2),
VSP1_ENTITY_ROUTE_WPF(0),
VSP1_ENTITY_ROUTE_WPF(1),
VSP1_ENTITY_ROUTE_WPF(2),
VSP1_ENTITY_ROUTE_WPF(3),
};
int vsp1_entity_init(struct vsp1_device *vsp1, struct vsp1_entity *entity,
const char *name, unsigned int num_pads,
const struct v4l2_subdev_ops *ops, u32 function)
{
struct v4l2_subdev *subdev;
unsigned int i;
int ret;
for (i = 0; i < ARRAY_SIZE(vsp1_routes); ++i) {
if (vsp1_routes[i].type == entity->type &&
vsp1_routes[i].index == entity->index) {
entity->route = &vsp1_routes[i];
break;
}
}
if (i == ARRAY_SIZE(vsp1_routes))
return -EINVAL;
mutex_init(&entity->lock);
entity->vsp1 = vsp1;
entity->source_pad = num_pads - 1;
/* Allocate and initialize pads. */
entity->pads = devm_kzalloc(vsp1->dev, num_pads * sizeof(*entity->pads),
GFP_KERNEL);
if (entity->pads == NULL)
return -ENOMEM;
for (i = 0; i < num_pads - 1; ++i)
entity->pads[i].flags = MEDIA_PAD_FL_SINK;
entity->sources = devm_kcalloc(vsp1->dev, max(num_pads - 1, 1U),
sizeof(*entity->sources), GFP_KERNEL);
if (entity->sources == NULL)
return -ENOMEM;
/* Single-pad entities only have a sink. */
entity->pads[num_pads - 1].flags = num_pads > 1 ? MEDIA_PAD_FL_SOURCE
: MEDIA_PAD_FL_SINK;
/* Initialize the media entity. */
ret = media_entity_pads_init(&entity->subdev.entity, num_pads,
entity->pads);
if (ret < 0)
return ret;
/* Initialize the V4L2 subdev. */
subdev = &entity->subdev;
v4l2_subdev_init(subdev, ops);
subdev->entity.function = function;
subdev->entity.ops = &vsp1->media_ops;
subdev->flags |= V4L2_SUBDEV_FL_HAS_DEVNODE;
snprintf(subdev->name, sizeof(subdev->name), "%s %s",
dev_name(vsp1->dev), name);
vsp1_entity_init_cfg(subdev, NULL);
/*
* Allocate the pad configuration to store formats and selection
* rectangles.
*/
entity->config = v4l2_subdev_alloc_pad_config(&entity->subdev);
if (entity->config == NULL) {
media_entity_cleanup(&entity->subdev.entity);
return -ENOMEM;
}
return 0;
}
void vsp1_entity_destroy(struct vsp1_entity *entity)
{
if (entity->ops && entity->ops->destroy)
entity->ops->destroy(entity);
if (entity->subdev.ctrl_handler)
v4l2_ctrl_handler_free(entity->subdev.ctrl_handler);
v4l2_subdev_free_pad_config(entity->config);
media_entity_cleanup(&entity->subdev.entity);
}