linux/arch/sparc64/kernel/pci.c
David S. Miller 34768bc832 [SPARC64] PCI: Use root list of pbm's instead of pci_controller_info's
The idea is to move more and more things into the pbm,
with the eventual goal of eliminating the pci_controller_info
entirely as there really isn't any need for it.

This stage of the transformations requires some reworking of
the PCI error interrupt handling.

It might be tricky to get rid of the pci_controller_info parenting for
a few reasons:

1) When we get an uncorrectable or correctable error we want
   to interrogate the IOMMU and streaming cache of both
   PBMs for error status.  These errors come from the UPA
   front-end which is shared between the two PBM PCI bus
   segments.

   Historically speaking this is why I choose the datastructure
   hierarchy of pci_controller_info-->pci_pbm_info

2) The probing does a portid/devhandle match to look for the
   'other' pbm, but this is entirely an artifact and can be
   eliminated trivially.

What we could do to solve #1 is to have a "buddy" pointer from one pbm
to another.

Signed-off-by: David S. Miller <davem@davemloft.net>
2007-05-08 16:41:24 -07:00

1130 lines
29 KiB
C

/* pci.c: UltraSparc PCI controller support.
*
* Copyright (C) 1997, 1998, 1999 David S. Miller (davem@redhat.com)
* Copyright (C) 1998, 1999 Eddie C. Dost (ecd@skynet.be)
* Copyright (C) 1999 Jakub Jelinek (jj@ultra.linux.cz)
*
* OF tree based PCI bus probing taken from the PowerPC port
* with minor modifications, see there for credits.
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/sched.h>
#include <linux/capability.h>
#include <linux/errno.h>
#include <linux/msi.h>
#include <linux/irq.h>
#include <linux/init.h>
#include <asm/uaccess.h>
#include <asm/pbm.h>
#include <asm/pgtable.h>
#include <asm/irq.h>
#include <asm/ebus.h>
#include <asm/isa.h>
#include <asm/prom.h>
#include <asm/apb.h>
#include "pci_impl.h"
unsigned long pci_memspace_mask = 0xffffffffUL;
#ifndef CONFIG_PCI
/* A "nop" PCI implementation. */
asmlinkage int sys_pciconfig_read(unsigned long bus, unsigned long dfn,
unsigned long off, unsigned long len,
unsigned char *buf)
{
return 0;
}
asmlinkage int sys_pciconfig_write(unsigned long bus, unsigned long dfn,
unsigned long off, unsigned long len,
unsigned char *buf)
{
return 0;
}
#else
/* List of all PCI controllers found in the system. */
struct pci_pbm_info *pci_pbm_root = NULL;
/* Each PCI controller found gets a unique index. */
int pci_num_controllers = 0;
volatile int pci_poke_in_progress;
volatile int pci_poke_cpu = -1;
volatile int pci_poke_faulted;
static DEFINE_SPINLOCK(pci_poke_lock);
void pci_config_read8(u8 *addr, u8 *ret)
{
unsigned long flags;
u8 byte;
spin_lock_irqsave(&pci_poke_lock, flags);
pci_poke_cpu = smp_processor_id();
pci_poke_in_progress = 1;
pci_poke_faulted = 0;
__asm__ __volatile__("membar #Sync\n\t"
"lduba [%1] %2, %0\n\t"
"membar #Sync"
: "=r" (byte)
: "r" (addr), "i" (ASI_PHYS_BYPASS_EC_E_L)
: "memory");
pci_poke_in_progress = 0;
pci_poke_cpu = -1;
if (!pci_poke_faulted)
*ret = byte;
spin_unlock_irqrestore(&pci_poke_lock, flags);
}
void pci_config_read16(u16 *addr, u16 *ret)
{
unsigned long flags;
u16 word;
spin_lock_irqsave(&pci_poke_lock, flags);
pci_poke_cpu = smp_processor_id();
pci_poke_in_progress = 1;
pci_poke_faulted = 0;
__asm__ __volatile__("membar #Sync\n\t"
"lduha [%1] %2, %0\n\t"
"membar #Sync"
: "=r" (word)
: "r" (addr), "i" (ASI_PHYS_BYPASS_EC_E_L)
: "memory");
pci_poke_in_progress = 0;
pci_poke_cpu = -1;
if (!pci_poke_faulted)
*ret = word;
spin_unlock_irqrestore(&pci_poke_lock, flags);
}
void pci_config_read32(u32 *addr, u32 *ret)
{
unsigned long flags;
u32 dword;
spin_lock_irqsave(&pci_poke_lock, flags);
pci_poke_cpu = smp_processor_id();
pci_poke_in_progress = 1;
pci_poke_faulted = 0;
__asm__ __volatile__("membar #Sync\n\t"
"lduwa [%1] %2, %0\n\t"
"membar #Sync"
: "=r" (dword)
: "r" (addr), "i" (ASI_PHYS_BYPASS_EC_E_L)
: "memory");
pci_poke_in_progress = 0;
pci_poke_cpu = -1;
if (!pci_poke_faulted)
*ret = dword;
spin_unlock_irqrestore(&pci_poke_lock, flags);
}
void pci_config_write8(u8 *addr, u8 val)
{
unsigned long flags;
spin_lock_irqsave(&pci_poke_lock, flags);
pci_poke_cpu = smp_processor_id();
pci_poke_in_progress = 1;
pci_poke_faulted = 0;
__asm__ __volatile__("membar #Sync\n\t"
"stba %0, [%1] %2\n\t"
"membar #Sync"
: /* no outputs */
: "r" (val), "r" (addr), "i" (ASI_PHYS_BYPASS_EC_E_L)
: "memory");
pci_poke_in_progress = 0;
pci_poke_cpu = -1;
spin_unlock_irqrestore(&pci_poke_lock, flags);
}
void pci_config_write16(u16 *addr, u16 val)
{
unsigned long flags;
spin_lock_irqsave(&pci_poke_lock, flags);
pci_poke_cpu = smp_processor_id();
pci_poke_in_progress = 1;
pci_poke_faulted = 0;
__asm__ __volatile__("membar #Sync\n\t"
"stha %0, [%1] %2\n\t"
"membar #Sync"
: /* no outputs */
: "r" (val), "r" (addr), "i" (ASI_PHYS_BYPASS_EC_E_L)
: "memory");
pci_poke_in_progress = 0;
pci_poke_cpu = -1;
spin_unlock_irqrestore(&pci_poke_lock, flags);
}
void pci_config_write32(u32 *addr, u32 val)
{
unsigned long flags;
spin_lock_irqsave(&pci_poke_lock, flags);
pci_poke_cpu = smp_processor_id();
pci_poke_in_progress = 1;
pci_poke_faulted = 0;
__asm__ __volatile__("membar #Sync\n\t"
"stwa %0, [%1] %2\n\t"
"membar #Sync"
: /* no outputs */
: "r" (val), "r" (addr), "i" (ASI_PHYS_BYPASS_EC_E_L)
: "memory");
pci_poke_in_progress = 0;
pci_poke_cpu = -1;
spin_unlock_irqrestore(&pci_poke_lock, flags);
}
/* Probe for all PCI controllers in the system. */
extern void sabre_init(struct device_node *, const char *);
extern void psycho_init(struct device_node *, const char *);
extern void schizo_init(struct device_node *, const char *);
extern void schizo_plus_init(struct device_node *, const char *);
extern void tomatillo_init(struct device_node *, const char *);
extern void sun4v_pci_init(struct device_node *, const char *);
extern void fire_pci_init(struct device_node *, const char *);
static struct {
char *model_name;
void (*init)(struct device_node *, const char *);
} pci_controller_table[] __initdata = {
{ "SUNW,sabre", sabre_init },
{ "pci108e,a000", sabre_init },
{ "pci108e,a001", sabre_init },
{ "SUNW,psycho", psycho_init },
{ "pci108e,8000", psycho_init },
{ "SUNW,schizo", schizo_init },
{ "pci108e,8001", schizo_init },
{ "SUNW,schizo+", schizo_plus_init },
{ "pci108e,8002", schizo_plus_init },
{ "SUNW,tomatillo", tomatillo_init },
{ "pci108e,a801", tomatillo_init },
{ "SUNW,sun4v-pci", sun4v_pci_init },
{ "pciex108e,80f0", fire_pci_init },
};
#define PCI_NUM_CONTROLLER_TYPES (sizeof(pci_controller_table) / \
sizeof(pci_controller_table[0]))
static int __init pci_controller_init(const char *model_name, int namelen, struct device_node *dp)
{
int i;
for (i = 0; i < PCI_NUM_CONTROLLER_TYPES; i++) {
if (!strncmp(model_name,
pci_controller_table[i].model_name,
namelen)) {
pci_controller_table[i].init(dp, model_name);
return 1;
}
}
return 0;
}
static int __init pci_is_controller(const char *model_name, int namelen, struct device_node *dp)
{
int i;
for (i = 0; i < PCI_NUM_CONTROLLER_TYPES; i++) {
if (!strncmp(model_name,
pci_controller_table[i].model_name,
namelen)) {
return 1;
}
}
return 0;
}
static int __init pci_controller_scan(int (*handler)(const char *, int, struct device_node *))
{
struct device_node *dp;
int count = 0;
for_each_node_by_name(dp, "pci") {
struct property *prop;
int len;
prop = of_find_property(dp, "model", &len);
if (!prop)
prop = of_find_property(dp, "compatible", &len);
if (prop) {
const char *model = prop->value;
int item_len = 0;
/* Our value may be a multi-valued string in the
* case of some compatible properties. For sanity,
* only try the first one.
*/
while (model[item_len] && len) {
len--;
item_len++;
}
if (handler(model, item_len, dp))
count++;
}
}
return count;
}
/* Is there some PCI controller in the system? */
int __init pcic_present(void)
{
return pci_controller_scan(pci_is_controller);
}
const struct pci_iommu_ops *pci_iommu_ops;
EXPORT_SYMBOL(pci_iommu_ops);
extern const struct pci_iommu_ops pci_sun4u_iommu_ops,
pci_sun4v_iommu_ops;
/* Find each controller in the system, attach and initialize
* software state structure for each and link into the
* pci_pbm_root. Setup the controller enough such
* that bus scanning can be done.
*/
static void __init pci_controller_probe(void)
{
if (tlb_type == hypervisor)
pci_iommu_ops = &pci_sun4v_iommu_ops;
else
pci_iommu_ops = &pci_sun4u_iommu_ops;
printk("PCI: Probing for controllers.\n");
pci_controller_scan(pci_controller_init);
}
static unsigned long pci_parse_of_flags(u32 addr0)
{
unsigned long flags = 0;
if (addr0 & 0x02000000) {
flags = IORESOURCE_MEM | PCI_BASE_ADDRESS_SPACE_MEMORY;
flags |= (addr0 >> 22) & PCI_BASE_ADDRESS_MEM_TYPE_64;
flags |= (addr0 >> 28) & PCI_BASE_ADDRESS_MEM_TYPE_1M;
if (addr0 & 0x40000000)
flags |= IORESOURCE_PREFETCH
| PCI_BASE_ADDRESS_MEM_PREFETCH;
} else if (addr0 & 0x01000000)
flags = IORESOURCE_IO | PCI_BASE_ADDRESS_SPACE_IO;
return flags;
}
/* The of_device layer has translated all of the assigned-address properties
* into physical address resources, we only have to figure out the register
* mapping.
*/
static void pci_parse_of_addrs(struct of_device *op,
struct device_node *node,
struct pci_dev *dev)
{
struct resource *op_res;
const u32 *addrs;
int proplen;
addrs = of_get_property(node, "assigned-addresses", &proplen);
if (!addrs)
return;
printk(" parse addresses (%d bytes) @ %p\n", proplen, addrs);
op_res = &op->resource[0];
for (; proplen >= 20; proplen -= 20, addrs += 5, op_res++) {
struct resource *res;
unsigned long flags;
int i;
flags = pci_parse_of_flags(addrs[0]);
if (!flags)
continue;
i = addrs[0] & 0xff;
printk(" start: %lx, end: %lx, i: %x\n",
op_res->start, op_res->end, i);
if (PCI_BASE_ADDRESS_0 <= i && i <= PCI_BASE_ADDRESS_5) {
res = &dev->resource[(i - PCI_BASE_ADDRESS_0) >> 2];
} else if (i == dev->rom_base_reg) {
res = &dev->resource[PCI_ROM_RESOURCE];
flags |= IORESOURCE_READONLY | IORESOURCE_CACHEABLE;
} else {
printk(KERN_ERR "PCI: bad cfg reg num 0x%x\n", i);
continue;
}
res->start = op_res->start;
res->end = op_res->end;
res->flags = flags;
res->name = pci_name(dev);
}
}
struct pci_dev *of_create_pci_dev(struct pci_pbm_info *pbm,
struct device_node *node,
struct pci_bus *bus, int devfn,
int host_controller)
{
struct dev_archdata *sd;
struct pci_dev *dev;
const char *type;
u32 class;
dev = kzalloc(sizeof(struct pci_dev), GFP_KERNEL);
if (!dev)
return NULL;
sd = &dev->dev.archdata;
sd->iommu = pbm->iommu;
sd->stc = &pbm->stc;
sd->host_controller = pbm;
sd->prom_node = node;
sd->op = of_find_device_by_node(node);
sd->msi_num = 0xffffffff;
type = of_get_property(node, "device_type", NULL);
if (type == NULL)
type = "";
printk(" create device, devfn: %x, type: %s hostcontroller(%d)\n",
devfn, type, host_controller);
dev->bus = bus;
dev->sysdata = node;
dev->dev.parent = bus->bridge;
dev->dev.bus = &pci_bus_type;
dev->devfn = devfn;
dev->multifunction = 0; /* maybe a lie? */
if (host_controller) {
dev->vendor = 0x108e;
dev->device = 0x8000;
dev->subsystem_vendor = 0x0000;
dev->subsystem_device = 0x0000;
dev->cfg_size = 256;
dev->class = PCI_CLASS_BRIDGE_HOST << 8;
sprintf(pci_name(dev), "%04x:%02x:%02x.%d", pci_domain_nr(bus),
0x00, PCI_SLOT(devfn), PCI_FUNC(devfn));
} else {
dev->vendor = of_getintprop_default(node, "vendor-id", 0xffff);
dev->device = of_getintprop_default(node, "device-id", 0xffff);
dev->subsystem_vendor =
of_getintprop_default(node, "subsystem-vendor-id", 0);
dev->subsystem_device =
of_getintprop_default(node, "subsystem-id", 0);
dev->cfg_size = pci_cfg_space_size(dev);
/* We can't actually use the firmware value, we have
* to read what is in the register right now. One
* reason is that in the case of IDE interfaces the
* firmware can sample the value before the the IDE
* interface is programmed into native mode.
*/
pci_read_config_dword(dev, PCI_CLASS_REVISION, &class);
dev->class = class >> 8;
sprintf(pci_name(dev), "%04x:%02x:%02x.%d", pci_domain_nr(bus),
dev->bus->number, PCI_SLOT(devfn), PCI_FUNC(devfn));
}
printk(" class: 0x%x device name: %s\n",
dev->class, pci_name(dev));
/* I have seen IDE devices which will not respond to
* the bmdma simplex check reads if bus mastering is
* disabled.
*/
if ((dev->class >> 8) == PCI_CLASS_STORAGE_IDE)
pci_set_master(dev);
dev->current_state = 4; /* unknown power state */
dev->error_state = pci_channel_io_normal;
if (host_controller) {
dev->hdr_type = PCI_HEADER_TYPE_BRIDGE;
dev->rom_base_reg = PCI_ROM_ADDRESS1;
dev->irq = PCI_IRQ_NONE;
} else {
if (!strcmp(type, "pci") || !strcmp(type, "pciex")) {
/* a PCI-PCI bridge */
dev->hdr_type = PCI_HEADER_TYPE_BRIDGE;
dev->rom_base_reg = PCI_ROM_ADDRESS1;
} else if (!strcmp(type, "cardbus")) {
dev->hdr_type = PCI_HEADER_TYPE_CARDBUS;
} else {
dev->hdr_type = PCI_HEADER_TYPE_NORMAL;
dev->rom_base_reg = PCI_ROM_ADDRESS;
dev->irq = sd->op->irqs[0];
if (dev->irq == 0xffffffff)
dev->irq = PCI_IRQ_NONE;
}
}
pci_parse_of_addrs(sd->op, node, dev);
printk(" adding to system ...\n");
pci_device_add(dev, bus);
return dev;
}
static void __devinit apb_calc_first_last(u8 map, u32 *first_p, u32 *last_p)
{
u32 idx, first, last;
first = 8;
last = 0;
for (idx = 0; idx < 8; idx++) {
if ((map & (1 << idx)) != 0) {
if (first > idx)
first = idx;
if (last < idx)
last = idx;
}
}
*first_p = first;
*last_p = last;
}
static void __init pci_resource_adjust(struct resource *res,
struct resource *root)
{
res->start += root->start;
res->end += root->start;
}
/* Cook up fake bus resources for SUNW,simba PCI bridges which lack
* a proper 'ranges' property.
*/
static void __devinit apb_fake_ranges(struct pci_dev *dev,
struct pci_bus *bus,
struct pci_pbm_info *pbm)
{
struct resource *res;
u32 first, last;
u8 map;
pci_read_config_byte(dev, APB_IO_ADDRESS_MAP, &map);
apb_calc_first_last(map, &first, &last);
res = bus->resource[0];
res->start = (first << 21);
res->end = (last << 21) + ((1 << 21) - 1);
res->flags = IORESOURCE_IO;
pci_resource_adjust(res, &pbm->io_space);
pci_read_config_byte(dev, APB_MEM_ADDRESS_MAP, &map);
apb_calc_first_last(map, &first, &last);
res = bus->resource[1];
res->start = (first << 21);
res->end = (last << 21) + ((1 << 21) - 1);
res->flags = IORESOURCE_MEM;
pci_resource_adjust(res, &pbm->mem_space);
}
static void __devinit pci_of_scan_bus(struct pci_pbm_info *pbm,
struct device_node *node,
struct pci_bus *bus);
#define GET_64BIT(prop, i) ((((u64) (prop)[(i)]) << 32) | (prop)[(i)+1])
static void __devinit of_scan_pci_bridge(struct pci_pbm_info *pbm,
struct device_node *node,
struct pci_dev *dev)
{
struct pci_bus *bus;
const u32 *busrange, *ranges;
int len, i, simba;
struct resource *res;
unsigned int flags;
u64 size;
printk("of_scan_pci_bridge(%s)\n", node->full_name);
/* parse bus-range property */
busrange = of_get_property(node, "bus-range", &len);
if (busrange == NULL || len != 8) {
printk(KERN_DEBUG "Can't get bus-range for PCI-PCI bridge %s\n",
node->full_name);
return;
}
ranges = of_get_property(node, "ranges", &len);
simba = 0;
if (ranges == NULL) {
const char *model = of_get_property(node, "model", NULL);
if (model && !strcmp(model, "SUNW,simba")) {
simba = 1;
} else {
printk(KERN_DEBUG "Can't get ranges for PCI-PCI bridge %s\n",
node->full_name);
return;
}
}
bus = pci_add_new_bus(dev->bus, dev, busrange[0]);
if (!bus) {
printk(KERN_ERR "Failed to create pci bus for %s\n",
node->full_name);
return;
}
bus->primary = dev->bus->number;
bus->subordinate = busrange[1];
bus->bridge_ctl = 0;
/* parse ranges property, or cook one up by hand for Simba */
/* PCI #address-cells == 3 and #size-cells == 2 always */
res = &dev->resource[PCI_BRIDGE_RESOURCES];
for (i = 0; i < PCI_NUM_RESOURCES - PCI_BRIDGE_RESOURCES; ++i) {
res->flags = 0;
bus->resource[i] = res;
++res;
}
if (simba) {
apb_fake_ranges(dev, bus, pbm);
goto simba_cont;
}
i = 1;
for (; len >= 32; len -= 32, ranges += 8) {
struct resource *root;
flags = pci_parse_of_flags(ranges[0]);
size = GET_64BIT(ranges, 6);
if (flags == 0 || size == 0)
continue;
if (flags & IORESOURCE_IO) {
res = bus->resource[0];
if (res->flags) {
printk(KERN_ERR "PCI: ignoring extra I/O range"
" for bridge %s\n", node->full_name);
continue;
}
root = &pbm->io_space;
} else {
if (i >= PCI_NUM_RESOURCES - PCI_BRIDGE_RESOURCES) {
printk(KERN_ERR "PCI: too many memory ranges"
" for bridge %s\n", node->full_name);
continue;
}
res = bus->resource[i];
++i;
root = &pbm->mem_space;
}
res->start = GET_64BIT(ranges, 1);
res->end = res->start + size - 1;
res->flags = flags;
/* Another way to implement this would be to add an of_device
* layer routine that can calculate a resource for a given
* range property value in a PCI device.
*/
pci_resource_adjust(res, root);
}
simba_cont:
sprintf(bus->name, "PCI Bus %04x:%02x", pci_domain_nr(bus),
bus->number);
printk(" bus name: %s\n", bus->name);
pci_of_scan_bus(pbm, node, bus);
}
static void __devinit pci_of_scan_bus(struct pci_pbm_info *pbm,
struct device_node *node,
struct pci_bus *bus)
{
struct device_node *child;
const u32 *reg;
int reglen, devfn;
struct pci_dev *dev;
printk("PCI: scan_bus[%s] bus no %d\n",
node->full_name, bus->number);
child = NULL;
while ((child = of_get_next_child(node, child)) != NULL) {
printk(" * %s\n", child->full_name);
reg = of_get_property(child, "reg", &reglen);
if (reg == NULL || reglen < 20)
continue;
devfn = (reg[0] >> 8) & 0xff;
/* create a new pci_dev for this device */
dev = of_create_pci_dev(pbm, child, bus, devfn, 0);
if (!dev)
continue;
printk("PCI: dev header type: %x\n", dev->hdr_type);
if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE ||
dev->hdr_type == PCI_HEADER_TYPE_CARDBUS)
of_scan_pci_bridge(pbm, child, dev);
}
}
static ssize_t
show_pciobppath_attr(struct device * dev, struct device_attribute * attr, char * buf)
{
struct pci_dev *pdev;
struct device_node *dp;
pdev = to_pci_dev(dev);
dp = pdev->dev.archdata.prom_node;
return snprintf (buf, PAGE_SIZE, "%s\n", dp->full_name);
}
static DEVICE_ATTR(obppath, S_IRUSR | S_IRGRP | S_IROTH, show_pciobppath_attr, NULL);
static void __devinit pci_bus_register_of_sysfs(struct pci_bus *bus)
{
struct pci_dev *dev;
struct pci_bus *child_bus;
int err;
list_for_each_entry(dev, &bus->devices, bus_list) {
/* we don't really care if we can create this file or
* not, but we need to assign the result of the call
* or the world will fall under alien invasion and
* everybody will be frozen on a spaceship ready to be
* eaten on alpha centauri by some green and jelly
* humanoid.
*/
err = sysfs_create_file(&dev->dev.kobj, &dev_attr_obppath.attr);
}
list_for_each_entry(child_bus, &bus->children, node)
pci_bus_register_of_sysfs(child_bus);
}
int pci_host_bridge_read_pci_cfg(struct pci_bus *bus_dev,
unsigned int devfn,
int where, int size,
u32 *value)
{
static u8 fake_pci_config[] = {
0x8e, 0x10, /* Vendor: 0x108e (Sun) */
0x00, 0x80, /* Device: 0x8000 (PBM) */
0x46, 0x01, /* Command: 0x0146 (SERR, PARITY, MASTER, MEM) */
0xa0, 0x22, /* Status: 0x02a0 (DEVSEL_MED, FB2B, 66MHZ) */
0x00, 0x00, 0x00, 0x06, /* Class: 0x06000000 host bridge */
0x00, /* Cacheline: 0x00 */
0x40, /* Latency: 0x40 */
0x00, /* Header-Type: 0x00 normal */
};
*value = 0;
if (where >= 0 && where < sizeof(fake_pci_config) &&
(where + size) >= 0 &&
(where + size) < sizeof(fake_pci_config) &&
size <= sizeof(u32)) {
while (size--) {
*value <<= 8;
*value |= fake_pci_config[where + size];
}
}
return PCIBIOS_SUCCESSFUL;
}
int pci_host_bridge_write_pci_cfg(struct pci_bus *bus_dev,
unsigned int devfn,
int where, int size,
u32 value)
{
return PCIBIOS_SUCCESSFUL;
}
struct pci_bus * __devinit pci_scan_one_pbm(struct pci_pbm_info *pbm)
{
struct pci_controller_info *p = pbm->parent;
struct device_node *node = pbm->prom_node;
struct pci_dev *host_pdev;
struct pci_bus *bus;
printk("PCI: Scanning PBM %s\n", node->full_name);
/* XXX parent device? XXX */
bus = pci_create_bus(NULL, pbm->pci_first_busno, p->pci_ops, pbm);
if (!bus) {
printk(KERN_ERR "Failed to create bus for %s\n",
node->full_name);
return NULL;
}
bus->secondary = pbm->pci_first_busno;
bus->subordinate = pbm->pci_last_busno;
bus->resource[0] = &pbm->io_space;
bus->resource[1] = &pbm->mem_space;
/* Create the dummy host bridge and link it in. */
host_pdev = of_create_pci_dev(pbm, node, bus, 0x00, 1);
bus->self = host_pdev;
pci_of_scan_bus(pbm, node, bus);
pci_bus_add_devices(bus);
pci_bus_register_of_sysfs(bus);
return bus;
}
static void __init pci_scan_each_controller_bus(void)
{
struct pci_pbm_info *pbm;
for (pbm = pci_pbm_root; pbm; pbm = pbm->next)
pbm->scan_bus(pbm);
}
extern void power_init(void);
static int __init pcibios_init(void)
{
pci_controller_probe();
if (pci_pbm_root == NULL)
return 0;
pci_scan_each_controller_bus();
isa_init();
ebus_init();
power_init();
return 0;
}
subsys_initcall(pcibios_init);
void __devinit pcibios_fixup_bus(struct pci_bus *pbus)
{
struct pci_pbm_info *pbm = pbus->sysdata;
/* Generic PCI bus probing sets these to point at
* &io{port,mem}_resouce which is wrong for us.
*/
pbus->resource[0] = &pbm->io_space;
pbus->resource[1] = &pbm->mem_space;
}
struct resource *pcibios_select_root(struct pci_dev *pdev, struct resource *r)
{
struct pci_pbm_info *pbm = pdev->bus->sysdata;
struct resource *root = NULL;
if (r->flags & IORESOURCE_IO)
root = &pbm->io_space;
if (r->flags & IORESOURCE_MEM)
root = &pbm->mem_space;
return root;
}
void pcibios_update_irq(struct pci_dev *pdev, int irq)
{
}
void pcibios_align_resource(void *data, struct resource *res,
resource_size_t size, resource_size_t align)
{
}
int pcibios_enable_device(struct pci_dev *dev, int mask)
{
u16 cmd, oldcmd;
int i;
pci_read_config_word(dev, PCI_COMMAND, &cmd);
oldcmd = cmd;
for (i = 0; i < PCI_NUM_RESOURCES; i++) {
struct resource *res = &dev->resource[i];
/* Only set up the requested stuff */
if (!(mask & (1<<i)))
continue;
if (res->flags & IORESOURCE_IO)
cmd |= PCI_COMMAND_IO;
if (res->flags & IORESOURCE_MEM)
cmd |= PCI_COMMAND_MEMORY;
}
if (cmd != oldcmd) {
printk(KERN_DEBUG "PCI: Enabling device: (%s), cmd %x\n",
pci_name(dev), cmd);
/* Enable the appropriate bits in the PCI command register. */
pci_write_config_word(dev, PCI_COMMAND, cmd);
}
return 0;
}
void pcibios_resource_to_bus(struct pci_dev *pdev, struct pci_bus_region *region,
struct resource *res)
{
struct pci_pbm_info *pbm = pdev->bus->sysdata;
struct resource zero_res, *root;
zero_res.start = 0;
zero_res.end = 0;
zero_res.flags = res->flags;
if (res->flags & IORESOURCE_IO)
root = &pbm->io_space;
else
root = &pbm->mem_space;
pci_resource_adjust(&zero_res, root);
region->start = res->start - zero_res.start;
region->end = res->end - zero_res.start;
}
EXPORT_SYMBOL(pcibios_resource_to_bus);
void pcibios_bus_to_resource(struct pci_dev *pdev, struct resource *res,
struct pci_bus_region *region)
{
struct pci_pbm_info *pbm = pdev->bus->sysdata;
struct resource *root;
res->start = region->start;
res->end = region->end;
if (res->flags & IORESOURCE_IO)
root = &pbm->io_space;
else
root = &pbm->mem_space;
pci_resource_adjust(res, root);
}
EXPORT_SYMBOL(pcibios_bus_to_resource);
char * __devinit pcibios_setup(char *str)
{
return str;
}
/* Platform support for /proc/bus/pci/X/Y mmap()s. */
/* If the user uses a host-bridge as the PCI device, he may use
* this to perform a raw mmap() of the I/O or MEM space behind
* that controller.
*
* This can be useful for execution of x86 PCI bios initialization code
* on a PCI card, like the xfree86 int10 stuff does.
*/
static int __pci_mmap_make_offset_bus(struct pci_dev *pdev, struct vm_area_struct *vma,
enum pci_mmap_state mmap_state)
{
struct pci_pbm_info *pbm = pdev->dev.archdata.host_controller;
struct pci_controller_info *p;
unsigned long space_size, user_offset, user_size;
p = pbm->parent;
if (mmap_state == pci_mmap_io) {
space_size = (pbm->io_space.end -
pbm->io_space.start) + 1;
} else {
space_size = (pbm->mem_space.end -
pbm->mem_space.start) + 1;
}
/* Make sure the request is in range. */
user_offset = vma->vm_pgoff << PAGE_SHIFT;
user_size = vma->vm_end - vma->vm_start;
if (user_offset >= space_size ||
(user_offset + user_size) > space_size)
return -EINVAL;
if (mmap_state == pci_mmap_io) {
vma->vm_pgoff = (pbm->io_space.start +
user_offset) >> PAGE_SHIFT;
} else {
vma->vm_pgoff = (pbm->mem_space.start +
user_offset) >> PAGE_SHIFT;
}
return 0;
}
/* Adjust vm_pgoff of VMA such that it is the physical page offset corresponding
* to the 32-bit pci bus offset for DEV requested by the user.
*
* Basically, the user finds the base address for his device which he wishes
* to mmap. They read the 32-bit value from the config space base register,
* add whatever PAGE_SIZE multiple offset they wish, and feed this into the
* offset parameter of mmap on /proc/bus/pci/XXX for that device.
*
* Returns negative error code on failure, zero on success.
*/
static int __pci_mmap_make_offset(struct pci_dev *dev, struct vm_area_struct *vma,
enum pci_mmap_state mmap_state)
{
unsigned long user_offset = vma->vm_pgoff << PAGE_SHIFT;
unsigned long user32 = user_offset & pci_memspace_mask;
unsigned long largest_base, this_base, addr32;
int i;
if ((dev->class >> 8) == PCI_CLASS_BRIDGE_HOST)
return __pci_mmap_make_offset_bus(dev, vma, mmap_state);
/* Figure out which base address this is for. */
largest_base = 0UL;
for (i = 0; i <= PCI_ROM_RESOURCE; i++) {
struct resource *rp = &dev->resource[i];
/* Active? */
if (!rp->flags)
continue;
/* Same type? */
if (i == PCI_ROM_RESOURCE) {
if (mmap_state != pci_mmap_mem)
continue;
} else {
if ((mmap_state == pci_mmap_io &&
(rp->flags & IORESOURCE_IO) == 0) ||
(mmap_state == pci_mmap_mem &&
(rp->flags & IORESOURCE_MEM) == 0))
continue;
}
this_base = rp->start;
addr32 = (this_base & PAGE_MASK) & pci_memspace_mask;
if (mmap_state == pci_mmap_io)
addr32 &= 0xffffff;
if (addr32 <= user32 && this_base > largest_base)
largest_base = this_base;
}
if (largest_base == 0UL)
return -EINVAL;
/* Now construct the final physical address. */
if (mmap_state == pci_mmap_io)
vma->vm_pgoff = (((largest_base & ~0xffffffUL) | user32) >> PAGE_SHIFT);
else
vma->vm_pgoff = (((largest_base & ~(pci_memspace_mask)) | user32) >> PAGE_SHIFT);
return 0;
}
/* Set vm_flags of VMA, as appropriate for this architecture, for a pci device
* mapping.
*/
static void __pci_mmap_set_flags(struct pci_dev *dev, struct vm_area_struct *vma,
enum pci_mmap_state mmap_state)
{
vma->vm_flags |= (VM_IO | VM_RESERVED);
}
/* Set vm_page_prot of VMA, as appropriate for this architecture, for a pci
* device mapping.
*/
static void __pci_mmap_set_pgprot(struct pci_dev *dev, struct vm_area_struct *vma,
enum pci_mmap_state mmap_state)
{
/* Our io_remap_pfn_range takes care of this, do nothing. */
}
/* Perform the actual remap of the pages for a PCI device mapping, as appropriate
* for this architecture. The region in the process to map is described by vm_start
* and vm_end members of VMA, the base physical address is found in vm_pgoff.
* The pci device structure is provided so that architectures may make mapping
* decisions on a per-device or per-bus basis.
*
* Returns a negative error code on failure, zero on success.
*/
int pci_mmap_page_range(struct pci_dev *dev, struct vm_area_struct *vma,
enum pci_mmap_state mmap_state,
int write_combine)
{
int ret;
ret = __pci_mmap_make_offset(dev, vma, mmap_state);
if (ret < 0)
return ret;
__pci_mmap_set_flags(dev, vma, mmap_state);
__pci_mmap_set_pgprot(dev, vma, mmap_state);
vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
ret = io_remap_pfn_range(vma, vma->vm_start,
vma->vm_pgoff,
vma->vm_end - vma->vm_start,
vma->vm_page_prot);
if (ret)
return ret;
return 0;
}
/* Return the domain nuber for this pci bus */
int pci_domain_nr(struct pci_bus *pbus)
{
struct pci_pbm_info *pbm = pbus->sysdata;
int ret;
if (pbm == NULL || pbm->parent == NULL) {
ret = -ENXIO;
} else {
struct pci_controller_info *p = pbm->parent;
ret = p->index;
ret = ((ret << 1) +
((pbm == &pbm->parent->pbm_B) ? 1 : 0));
}
return ret;
}
EXPORT_SYMBOL(pci_domain_nr);
#ifdef CONFIG_PCI_MSI
int arch_setup_msi_irq(struct pci_dev *pdev, struct msi_desc *desc)
{
struct pci_pbm_info *pbm = pdev->dev.archdata.host_controller;
struct pci_controller_info *p = pbm->parent;
int virt_irq, err;
if (!pbm->msi_num || !p->setup_msi_irq)
return -EINVAL;
err = p->setup_msi_irq(&virt_irq, pdev, desc);
if (err)
return err;
return 0;
}
void arch_teardown_msi_irq(unsigned int virt_irq)
{
struct msi_desc *entry = get_irq_msi(virt_irq);
struct pci_dev *pdev = entry->dev;
struct pci_pbm_info *pbm = pdev->dev.archdata.host_controller;
struct pci_controller_info *p = pbm->parent;
if (!pbm->msi_num || !p->setup_msi_irq)
return;
return p->teardown_msi_irq(virt_irq, pdev);
}
#endif /* !(CONFIG_PCI_MSI) */
struct device_node *pci_device_to_OF_node(struct pci_dev *pdev)
{
return pdev->dev.archdata.prom_node;
}
EXPORT_SYMBOL(pci_device_to_OF_node);
#endif /* !(CONFIG_PCI) */