linux/drivers/net/wireless/rtlwifi/efuse.c
Joe Perches 23677ce317 drivers/net: Remove boolean comparisons to true/false
Booleans should not be compared to true or false
but be directly tested or tested with !.

Done via cocci script:

@@
bool t;
@@
- t == true
+ t
@@
bool t;
@@
- t != true
+ !t
@@
bool t;
@@
- t == false
+ !t
@@
bool t;
@@
- t != false
+ t

Signed-off-by: Joe Perches <joe@perches.com>
Reviewed-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2012-02-13 00:47:40 -05:00

1209 lines
32 KiB
C

/******************************************************************************
*
* Copyright(c) 2009-2012 Realtek Corporation.
*
* Tmis program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* Tmis program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* tmis program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
*
* Tme full GNU General Public License is included in this distribution in the
* file called LICENSE.
*
* Contact Information:
* wlanfae <wlanfae@realtek.com>
* Realtek Corporation, No. 2, Innovation Road II, Hsinchu Science Park,
* Hsinchu 300, Taiwan.
*
* Larry Finger <Larry.Finger@lwfinger.net>
*
*****************************************************************************/
#include <linux/export.h>
#include "wifi.h"
#include "efuse.h"
static const u8 MAX_PGPKT_SIZE = 9;
static const u8 PGPKT_DATA_SIZE = 8;
static const int EFUSE_MAX_SIZE = 512;
static const u8 EFUSE_OOB_PROTECT_BYTES = 15;
static const struct efuse_map RTL8712_SDIO_EFUSE_TABLE[] = {
{0, 0, 0, 2},
{0, 1, 0, 2},
{0, 2, 0, 2},
{1, 0, 0, 1},
{1, 0, 1, 1},
{1, 1, 0, 1},
{1, 1, 1, 3},
{1, 3, 0, 17},
{3, 3, 1, 48},
{10, 0, 0, 6},
{10, 3, 0, 1},
{10, 3, 1, 1},
{11, 0, 0, 28}
};
static void efuse_shadow_read_1byte(struct ieee80211_hw *hw, u16 offset,
u8 *value);
static void efuse_shadow_read_2byte(struct ieee80211_hw *hw, u16 offset,
u16 *value);
static void efuse_shadow_read_4byte(struct ieee80211_hw *hw, u16 offset,
u32 *value);
static void efuse_shadow_write_1byte(struct ieee80211_hw *hw, u16 offset,
u8 value);
static void efuse_shadow_write_2byte(struct ieee80211_hw *hw, u16 offset,
u16 value);
static void efuse_shadow_write_4byte(struct ieee80211_hw *hw, u16 offset,
u32 value);
static int efuse_one_byte_read(struct ieee80211_hw *hw, u16 addr,
u8 *data);
static int efuse_one_byte_write(struct ieee80211_hw *hw, u16 addr,
u8 data);
static void efuse_read_all_map(struct ieee80211_hw *hw, u8 *efuse);
static int efuse_pg_packet_read(struct ieee80211_hw *hw, u8 offset,
u8 *data);
static int efuse_pg_packet_write(struct ieee80211_hw *hw, u8 offset,
u8 word_en, u8 *data);
static void efuse_word_enable_data_read(u8 word_en, u8 *sourdata,
u8 *targetdata);
static u8 efuse_word_enable_data_write(struct ieee80211_hw *hw,
u16 efuse_addr, u8 word_en, u8 *data);
static void efuse_power_switch(struct ieee80211_hw *hw, u8 write,
u8 pwrstate);
static u16 efuse_get_current_size(struct ieee80211_hw *hw);
static u8 efuse_calculate_word_cnts(u8 word_en);
void efuse_initialize(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
u8 bytetemp;
u8 temp;
bytetemp = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[SYS_FUNC_EN] + 1);
temp = bytetemp | 0x20;
rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[SYS_FUNC_EN] + 1, temp);
bytetemp = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[SYS_ISO_CTRL] + 1);
temp = bytetemp & 0xFE;
rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[SYS_ISO_CTRL] + 1, temp);
bytetemp = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_TEST] + 3);
temp = bytetemp | 0x80;
rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_TEST] + 3, temp);
rtl_write_byte(rtlpriv, 0x2F8, 0x3);
rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3, 0x72);
}
u8 efuse_read_1byte(struct ieee80211_hw *hw, u16 address)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
u8 data;
u8 bytetemp;
u8 temp;
u32 k = 0;
const u32 efuse_len =
rtlpriv->cfg->maps[EFUSE_REAL_CONTENT_SIZE];
if (address < efuse_len) {
temp = address & 0xFF;
rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1,
temp);
bytetemp = rtl_read_byte(rtlpriv,
rtlpriv->cfg->maps[EFUSE_CTRL] + 2);
temp = ((address >> 8) & 0x03) | (bytetemp & 0xFC);
rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2,
temp);
bytetemp = rtl_read_byte(rtlpriv,
rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
temp = bytetemp & 0x7F;
rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3,
temp);
bytetemp = rtl_read_byte(rtlpriv,
rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
while (!(bytetemp & 0x80)) {
bytetemp = rtl_read_byte(rtlpriv,
rtlpriv->cfg->
maps[EFUSE_CTRL] + 3);
k++;
if (k == 1000) {
k = 0;
break;
}
}
data = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]);
return data;
} else
return 0xFF;
}
EXPORT_SYMBOL(efuse_read_1byte);
void efuse_write_1byte(struct ieee80211_hw *hw, u16 address, u8 value)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
u8 bytetemp;
u8 temp;
u32 k = 0;
const u32 efuse_len =
rtlpriv->cfg->maps[EFUSE_REAL_CONTENT_SIZE];
RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD, "Addr=%x Data =%x\n",
address, value);
if (address < efuse_len) {
rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL], value);
temp = address & 0xFF;
rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1,
temp);
bytetemp = rtl_read_byte(rtlpriv,
rtlpriv->cfg->maps[EFUSE_CTRL] + 2);
temp = ((address >> 8) & 0x03) | (bytetemp & 0xFC);
rtl_write_byte(rtlpriv,
rtlpriv->cfg->maps[EFUSE_CTRL] + 2, temp);
bytetemp = rtl_read_byte(rtlpriv,
rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
temp = bytetemp | 0x80;
rtl_write_byte(rtlpriv,
rtlpriv->cfg->maps[EFUSE_CTRL] + 3, temp);
bytetemp = rtl_read_byte(rtlpriv,
rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
while (bytetemp & 0x80) {
bytetemp = rtl_read_byte(rtlpriv,
rtlpriv->cfg->
maps[EFUSE_CTRL] + 3);
k++;
if (k == 100) {
k = 0;
break;
}
}
}
}
void read_efuse_byte(struct ieee80211_hw *hw, u16 _offset, u8 *pbuf)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
u32 value32;
u8 readbyte;
u16 retry;
rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1,
(_offset & 0xff));
readbyte = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2);
rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2,
((_offset >> 8) & 0x03) | (readbyte & 0xfc));
readbyte = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3,
(readbyte & 0x7f));
retry = 0;
value32 = rtl_read_dword(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]);
while (!(((value32 >> 24) & 0xff) & 0x80) && (retry < 10000)) {
value32 = rtl_read_dword(rtlpriv,
rtlpriv->cfg->maps[EFUSE_CTRL]);
retry++;
}
udelay(50);
value32 = rtl_read_dword(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]);
*pbuf = (u8) (value32 & 0xff);
}
void read_efuse(struct ieee80211_hw *hw, u16 _offset, u16 _size_byte, u8 *pbuf)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
u8 *efuse_tbl;
u8 rtemp8[1];
u16 efuse_addr = 0;
u8 offset, wren;
u16 i;
u16 j;
const u16 efuse_max_section =
rtlpriv->cfg->maps[EFUSE_MAX_SECTION_MAP];
const u32 efuse_len =
rtlpriv->cfg->maps[EFUSE_REAL_CONTENT_SIZE];
u16 **efuse_word;
u16 efuse_utilized = 0;
u8 efuse_usage;
if ((_offset + _size_byte) > rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]) {
RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
"read_efuse(): Invalid offset(%#x) with read bytes(%#x)!!\n",
_offset, _size_byte);
return;
}
/* allocate memory for efuse_tbl and efuse_word */
efuse_tbl = kmalloc(rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE] *
sizeof(u8), GFP_ATOMIC);
if (!efuse_tbl)
return;
efuse_word = kmalloc(EFUSE_MAX_WORD_UNIT * sizeof(u16 *), GFP_ATOMIC);
if (!efuse_word)
goto done;
for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) {
efuse_word[i] = kmalloc(efuse_max_section * sizeof(u16),
GFP_ATOMIC);
if (!efuse_word[i])
goto done;
}
for (i = 0; i < efuse_max_section; i++)
for (j = 0; j < EFUSE_MAX_WORD_UNIT; j++)
efuse_word[j][i] = 0xFFFF;
read_efuse_byte(hw, efuse_addr, rtemp8);
if (*rtemp8 != 0xFF) {
efuse_utilized++;
RTPRINT(rtlpriv, FEEPROM, EFUSE_READ_ALL,
"Addr=%d\n", efuse_addr);
efuse_addr++;
}
while ((*rtemp8 != 0xFF) && (efuse_addr < efuse_len)) {
offset = ((*rtemp8 >> 4) & 0x0f);
if (offset < efuse_max_section) {
wren = (*rtemp8 & 0x0f);
RTPRINT(rtlpriv, FEEPROM, EFUSE_READ_ALL,
"offset-%d Worden=%x\n", offset, wren);
for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) {
if (!(wren & 0x01)) {
RTPRINT(rtlpriv, FEEPROM,
EFUSE_READ_ALL,
"Addr=%d\n", efuse_addr);
read_efuse_byte(hw, efuse_addr, rtemp8);
efuse_addr++;
efuse_utilized++;
efuse_word[i][offset] =
(*rtemp8 & 0xff);
if (efuse_addr >= efuse_len)
break;
RTPRINT(rtlpriv, FEEPROM,
EFUSE_READ_ALL,
"Addr=%d\n", efuse_addr);
read_efuse_byte(hw, efuse_addr, rtemp8);
efuse_addr++;
efuse_utilized++;
efuse_word[i][offset] |=
(((u16)*rtemp8 << 8) & 0xff00);
if (efuse_addr >= efuse_len)
break;
}
wren >>= 1;
}
}
RTPRINT(rtlpriv, FEEPROM, EFUSE_READ_ALL,
"Addr=%d\n", efuse_addr);
read_efuse_byte(hw, efuse_addr, rtemp8);
if (*rtemp8 != 0xFF && (efuse_addr < efuse_len)) {
efuse_utilized++;
efuse_addr++;
}
}
for (i = 0; i < efuse_max_section; i++) {
for (j = 0; j < EFUSE_MAX_WORD_UNIT; j++) {
efuse_tbl[(i * 8) + (j * 2)] =
(efuse_word[j][i] & 0xff);
efuse_tbl[(i * 8) + ((j * 2) + 1)] =
((efuse_word[j][i] >> 8) & 0xff);
}
}
for (i = 0; i < _size_byte; i++)
pbuf[i] = efuse_tbl[_offset + i];
rtlefuse->efuse_usedbytes = efuse_utilized;
efuse_usage = (u8) ((efuse_utilized * 100) / efuse_len);
rtlefuse->efuse_usedpercentage = efuse_usage;
rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_EFUSE_BYTES,
(u8 *)&efuse_utilized);
rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_EFUSE_USAGE,
(u8 *)&efuse_usage);
done:
for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++)
kfree(efuse_word[i]);
kfree(efuse_word);
kfree(efuse_tbl);
}
bool efuse_shadow_update_chk(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
u8 section_idx, i, Base;
u16 words_need = 0, hdr_num = 0, totalbytes, efuse_used;
bool wordchanged, result = true;
for (section_idx = 0; section_idx < 16; section_idx++) {
Base = section_idx * 8;
wordchanged = false;
for (i = 0; i < 8; i = i + 2) {
if ((rtlefuse->efuse_map[EFUSE_INIT_MAP][Base + i] !=
rtlefuse->efuse_map[EFUSE_MODIFY_MAP][Base + i]) ||
(rtlefuse->efuse_map[EFUSE_INIT_MAP][Base + i + 1] !=
rtlefuse->efuse_map[EFUSE_MODIFY_MAP][Base + i +
1])) {
words_need++;
wordchanged = true;
}
}
if (wordchanged)
hdr_num++;
}
totalbytes = hdr_num + words_need * 2;
efuse_used = rtlefuse->efuse_usedbytes;
if ((totalbytes + efuse_used) >=
(EFUSE_MAX_SIZE - EFUSE_OOB_PROTECT_BYTES))
result = false;
RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
"efuse_shadow_update_chk(): totalbytes(%#x), hdr_num(%#x), words_need(%#x), efuse_used(%d)\n",
totalbytes, hdr_num, words_need, efuse_used);
return result;
}
void efuse_shadow_read(struct ieee80211_hw *hw, u8 type,
u16 offset, u32 *value)
{
if (type == 1)
efuse_shadow_read_1byte(hw, offset, (u8 *) value);
else if (type == 2)
efuse_shadow_read_2byte(hw, offset, (u16 *) value);
else if (type == 4)
efuse_shadow_read_4byte(hw, offset, (u32 *) value);
}
void efuse_shadow_write(struct ieee80211_hw *hw, u8 type, u16 offset,
u32 value)
{
if (type == 1)
efuse_shadow_write_1byte(hw, offset, (u8) value);
else if (type == 2)
efuse_shadow_write_2byte(hw, offset, (u16) value);
else if (type == 4)
efuse_shadow_write_4byte(hw, offset, value);
}
bool efuse_shadow_update(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
u16 i, offset, base;
u8 word_en = 0x0F;
u8 first_pg = false;
RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD, "--->\n");
if (!efuse_shadow_update_chk(hw)) {
efuse_read_all_map(hw, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0]);
memcpy(&rtlefuse->efuse_map[EFUSE_MODIFY_MAP][0],
&rtlefuse->efuse_map[EFUSE_INIT_MAP][0],
rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]);
RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
"<---efuse out of capacity!!\n");
return false;
}
efuse_power_switch(hw, true, true);
for (offset = 0; offset < 16; offset++) {
word_en = 0x0F;
base = offset * 8;
for (i = 0; i < 8; i++) {
if (first_pg) {
word_en &= ~(BIT(i / 2));
rtlefuse->efuse_map[EFUSE_INIT_MAP][base + i] =
rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base + i];
} else {
if (rtlefuse->efuse_map[EFUSE_INIT_MAP][base + i] !=
rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base + i]) {
word_en &= ~(BIT(i / 2));
rtlefuse->efuse_map[EFUSE_INIT_MAP][base + i] =
rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base + i];
}
}
}
if (word_en != 0x0F) {
u8 tmpdata[8];
memcpy(tmpdata,
&rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base],
8);
RT_PRINT_DATA(rtlpriv, COMP_INIT, DBG_LOUD,
"U-efuse", tmpdata, 8);
if (!efuse_pg_packet_write(hw, (u8) offset, word_en,
tmpdata)) {
RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
"PG section(%#x) fail!!\n", offset);
break;
}
}
}
efuse_power_switch(hw, true, false);
efuse_read_all_map(hw, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0]);
memcpy(&rtlefuse->efuse_map[EFUSE_MODIFY_MAP][0],
&rtlefuse->efuse_map[EFUSE_INIT_MAP][0],
rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]);
RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD, "<---\n");
return true;
}
void rtl_efuse_shadow_map_update(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
if (rtlefuse->autoload_failflag)
memset(&rtlefuse->efuse_map[EFUSE_INIT_MAP][0], 0xFF,
rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]);
else
efuse_read_all_map(hw, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0]);
memcpy(&rtlefuse->efuse_map[EFUSE_MODIFY_MAP][0],
&rtlefuse->efuse_map[EFUSE_INIT_MAP][0],
rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]);
}
EXPORT_SYMBOL(rtl_efuse_shadow_map_update);
void efuse_force_write_vendor_Id(struct ieee80211_hw *hw)
{
u8 tmpdata[8] = { 0xFF, 0xFF, 0xEC, 0x10, 0xFF, 0xFF, 0xFF, 0xFF };
efuse_power_switch(hw, true, true);
efuse_pg_packet_write(hw, 1, 0xD, tmpdata);
efuse_power_switch(hw, true, false);
}
void efuse_re_pg_section(struct ieee80211_hw *hw, u8 section_idx)
{
}
static void efuse_shadow_read_1byte(struct ieee80211_hw *hw,
u16 offset, u8 *value)
{
struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
*value = rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset];
}
static void efuse_shadow_read_2byte(struct ieee80211_hw *hw,
u16 offset, u16 *value)
{
struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
*value = rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset];
*value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] << 8;
}
static void efuse_shadow_read_4byte(struct ieee80211_hw *hw,
u16 offset, u32 *value)
{
struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
*value = rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset];
*value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] << 8;
*value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 2] << 16;
*value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 3] << 24;
}
static void efuse_shadow_write_1byte(struct ieee80211_hw *hw,
u16 offset, u8 value)
{
struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset] = value;
}
static void efuse_shadow_write_2byte(struct ieee80211_hw *hw,
u16 offset, u16 value)
{
struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset] = value & 0x00FF;
rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] = value >> 8;
}
static void efuse_shadow_write_4byte(struct ieee80211_hw *hw,
u16 offset, u32 value)
{
struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset] =
(u8) (value & 0x000000FF);
rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] =
(u8) ((value >> 8) & 0x0000FF);
rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 2] =
(u8) ((value >> 16) & 0x00FF);
rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 3] =
(u8) ((value >> 24) & 0xFF);
}
static int efuse_one_byte_read(struct ieee80211_hw *hw, u16 addr, u8 *data)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
u8 tmpidx = 0;
int result;
rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1,
(u8) (addr & 0xff));
rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2,
((u8) ((addr >> 8) & 0x03)) |
(rtl_read_byte(rtlpriv,
rtlpriv->cfg->maps[EFUSE_CTRL] + 2) &
0xFC));
rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3, 0x72);
while (!(0x80 & rtl_read_byte(rtlpriv,
rtlpriv->cfg->maps[EFUSE_CTRL] + 3))
&& (tmpidx < 100)) {
tmpidx++;
}
if (tmpidx < 100) {
*data = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]);
result = true;
} else {
*data = 0xff;
result = false;
}
return result;
}
static int efuse_one_byte_write(struct ieee80211_hw *hw, u16 addr, u8 data)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
u8 tmpidx = 0;
RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD, "Addr = %x Data=%x\n",
addr, data);
rtl_write_byte(rtlpriv,
rtlpriv->cfg->maps[EFUSE_CTRL] + 1, (u8) (addr & 0xff));
rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2,
(rtl_read_byte(rtlpriv,
rtlpriv->cfg->maps[EFUSE_CTRL] +
2) & 0xFC) | (u8) ((addr >> 8) & 0x03));
rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL], data);
rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3, 0xF2);
while ((0x80 & rtl_read_byte(rtlpriv,
rtlpriv->cfg->maps[EFUSE_CTRL] + 3))
&& (tmpidx < 100)) {
tmpidx++;
}
if (tmpidx < 100)
return true;
return false;
}
static void efuse_read_all_map(struct ieee80211_hw *hw, u8 * efuse)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
efuse_power_switch(hw, false, true);
read_efuse(hw, 0, rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE], efuse);
efuse_power_switch(hw, false, false);
}
static void efuse_read_data_case1(struct ieee80211_hw *hw, u16 *efuse_addr,
u8 efuse_data, u8 offset, u8 *tmpdata,
u8 *readstate)
{
bool dataempty = true;
u8 hoffset;
u8 tmpidx;
u8 hworden;
u8 word_cnts;
hoffset = (efuse_data >> 4) & 0x0F;
hworden = efuse_data & 0x0F;
word_cnts = efuse_calculate_word_cnts(hworden);
if (hoffset == offset) {
for (tmpidx = 0; tmpidx < word_cnts * 2; tmpidx++) {
if (efuse_one_byte_read(hw, *efuse_addr + 1 + tmpidx,
&efuse_data)) {
tmpdata[tmpidx] = efuse_data;
if (efuse_data != 0xff)
dataempty = true;
}
}
if (dataempty) {
*readstate = PG_STATE_DATA;
} else {
*efuse_addr = *efuse_addr + (word_cnts * 2) + 1;
*readstate = PG_STATE_HEADER;
}
} else {
*efuse_addr = *efuse_addr + (word_cnts * 2) + 1;
*readstate = PG_STATE_HEADER;
}
}
static int efuse_pg_packet_read(struct ieee80211_hw *hw, u8 offset, u8 *data)
{
u8 readstate = PG_STATE_HEADER;
bool continual = true;
u8 efuse_data, word_cnts = 0;
u16 efuse_addr = 0;
u8 tmpdata[8];
if (data == NULL)
return false;
if (offset > 15)
return false;
memset(data, 0xff, PGPKT_DATA_SIZE * sizeof(u8));
memset(tmpdata, 0xff, PGPKT_DATA_SIZE * sizeof(u8));
while (continual && (efuse_addr < EFUSE_MAX_SIZE)) {
if (readstate & PG_STATE_HEADER) {
if (efuse_one_byte_read(hw, efuse_addr, &efuse_data)
&& (efuse_data != 0xFF))
efuse_read_data_case1(hw, &efuse_addr,
efuse_data,
offset, tmpdata,
&readstate);
else
continual = false;
} else if (readstate & PG_STATE_DATA) {
efuse_word_enable_data_read(0, tmpdata, data);
efuse_addr = efuse_addr + (word_cnts * 2) + 1;
readstate = PG_STATE_HEADER;
}
}
if ((data[0] == 0xff) && (data[1] == 0xff) &&
(data[2] == 0xff) && (data[3] == 0xff) &&
(data[4] == 0xff) && (data[5] == 0xff) &&
(data[6] == 0xff) && (data[7] == 0xff))
return false;
else
return true;
}
static void efuse_write_data_case1(struct ieee80211_hw *hw, u16 *efuse_addr,
u8 efuse_data, u8 offset, int *continual,
u8 *write_state, struct pgpkt_struct *target_pkt,
int *repeat_times, int *result, u8 word_en)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct pgpkt_struct tmp_pkt;
bool dataempty = true;
u8 originaldata[8 * sizeof(u8)];
u8 badworden = 0x0F;
u8 match_word_en, tmp_word_en;
u8 tmpindex;
u8 tmp_header = efuse_data;
u8 tmp_word_cnts;
tmp_pkt.offset = (tmp_header >> 4) & 0x0F;
tmp_pkt.word_en = tmp_header & 0x0F;
tmp_word_cnts = efuse_calculate_word_cnts(tmp_pkt.word_en);
if (tmp_pkt.offset != target_pkt->offset) {
*efuse_addr = *efuse_addr + (tmp_word_cnts * 2) + 1;
*write_state = PG_STATE_HEADER;
} else {
for (tmpindex = 0; tmpindex < (tmp_word_cnts * 2); tmpindex++) {
u16 address = *efuse_addr + 1 + tmpindex;
if (efuse_one_byte_read(hw, address,
&efuse_data) && (efuse_data != 0xFF))
dataempty = false;
}
if (!dataempty) {
*efuse_addr = *efuse_addr + (tmp_word_cnts * 2) + 1;
*write_state = PG_STATE_HEADER;
} else {
match_word_en = 0x0F;
if (!((target_pkt->word_en & BIT(0)) |
(tmp_pkt.word_en & BIT(0))))
match_word_en &= (~BIT(0));
if (!((target_pkt->word_en & BIT(1)) |
(tmp_pkt.word_en & BIT(1))))
match_word_en &= (~BIT(1));
if (!((target_pkt->word_en & BIT(2)) |
(tmp_pkt.word_en & BIT(2))))
match_word_en &= (~BIT(2));
if (!((target_pkt->word_en & BIT(3)) |
(tmp_pkt.word_en & BIT(3))))
match_word_en &= (~BIT(3));
if ((match_word_en & 0x0F) != 0x0F) {
badworden = efuse_word_enable_data_write(
hw, *efuse_addr + 1,
tmp_pkt.word_en,
target_pkt->data);
if (0x0F != (badworden & 0x0F)) {
u8 reorg_offset = offset;
u8 reorg_worden = badworden;
efuse_pg_packet_write(hw, reorg_offset,
reorg_worden,
originaldata);
}
tmp_word_en = 0x0F;
if ((target_pkt->word_en & BIT(0)) ^
(match_word_en & BIT(0)))
tmp_word_en &= (~BIT(0));
if ((target_pkt->word_en & BIT(1)) ^
(match_word_en & BIT(1)))
tmp_word_en &= (~BIT(1));
if ((target_pkt->word_en & BIT(2)) ^
(match_word_en & BIT(2)))
tmp_word_en &= (~BIT(2));
if ((target_pkt->word_en & BIT(3)) ^
(match_word_en & BIT(3)))
tmp_word_en &= (~BIT(3));
if ((tmp_word_en & 0x0F) != 0x0F) {
*efuse_addr = efuse_get_current_size(hw);
target_pkt->offset = offset;
target_pkt->word_en = tmp_word_en;
} else {
*continual = false;
}
*write_state = PG_STATE_HEADER;
*repeat_times += 1;
if (*repeat_times > EFUSE_REPEAT_THRESHOLD_) {
*continual = false;
*result = false;
}
} else {
*efuse_addr += (2 * tmp_word_cnts) + 1;
target_pkt->offset = offset;
target_pkt->word_en = word_en;
*write_state = PG_STATE_HEADER;
}
}
}
RTPRINT(rtlpriv, FEEPROM, EFUSE_PG, "efuse PG_STATE_HEADER-1\n");
}
static void efuse_write_data_case2(struct ieee80211_hw *hw, u16 *efuse_addr,
int *continual, u8 *write_state,
struct pgpkt_struct target_pkt,
int *repeat_times, int *result)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct pgpkt_struct tmp_pkt;
u8 pg_header;
u8 tmp_header;
u8 originaldata[8 * sizeof(u8)];
u8 tmp_word_cnts;
u8 badworden = 0x0F;
pg_header = ((target_pkt.offset << 4) & 0xf0) | target_pkt.word_en;
efuse_one_byte_write(hw, *efuse_addr, pg_header);
efuse_one_byte_read(hw, *efuse_addr, &tmp_header);
if (tmp_header == pg_header) {
*write_state = PG_STATE_DATA;
} else if (tmp_header == 0xFF) {
*write_state = PG_STATE_HEADER;
*repeat_times += 1;
if (*repeat_times > EFUSE_REPEAT_THRESHOLD_) {
*continual = false;
*result = false;
}
} else {
tmp_pkt.offset = (tmp_header >> 4) & 0x0F;
tmp_pkt.word_en = tmp_header & 0x0F;
tmp_word_cnts = efuse_calculate_word_cnts(tmp_pkt.word_en);
memset(originaldata, 0xff, 8 * sizeof(u8));
if (efuse_pg_packet_read(hw, tmp_pkt.offset, originaldata)) {
badworden = efuse_word_enable_data_write(hw,
*efuse_addr + 1, tmp_pkt.word_en,
originaldata);
if (0x0F != (badworden & 0x0F)) {
u8 reorg_offset = tmp_pkt.offset;
u8 reorg_worden = badworden;
efuse_pg_packet_write(hw, reorg_offset,
reorg_worden,
originaldata);
*efuse_addr = efuse_get_current_size(hw);
} else {
*efuse_addr = *efuse_addr + (tmp_word_cnts * 2)
+ 1;
}
} else {
*efuse_addr = *efuse_addr + (tmp_word_cnts * 2) + 1;
}
*write_state = PG_STATE_HEADER;
*repeat_times += 1;
if (*repeat_times > EFUSE_REPEAT_THRESHOLD_) {
*continual = false;
*result = false;
}
RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
"efuse PG_STATE_HEADER-2\n");
}
}
static int efuse_pg_packet_write(struct ieee80211_hw *hw,
u8 offset, u8 word_en, u8 *data)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct pgpkt_struct target_pkt;
u8 write_state = PG_STATE_HEADER;
int continual = true, result = true;
u16 efuse_addr = 0;
u8 efuse_data;
u8 target_word_cnts = 0;
u8 badworden = 0x0F;
static int repeat_times;
if (efuse_get_current_size(hw) >=
(EFUSE_MAX_SIZE - EFUSE_OOB_PROTECT_BYTES)) {
RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
"efuse_pg_packet_write error\n");
return false;
}
target_pkt.offset = offset;
target_pkt.word_en = word_en;
memset(target_pkt.data, 0xFF, 8 * sizeof(u8));
efuse_word_enable_data_read(word_en, data, target_pkt.data);
target_word_cnts = efuse_calculate_word_cnts(target_pkt.word_en);
RTPRINT(rtlpriv, FEEPROM, EFUSE_PG, "efuse Power ON\n");
while (continual && (efuse_addr <
(EFUSE_MAX_SIZE - EFUSE_OOB_PROTECT_BYTES))) {
if (write_state == PG_STATE_HEADER) {
badworden = 0x0F;
RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
"efuse PG_STATE_HEADER\n");
if (efuse_one_byte_read(hw, efuse_addr, &efuse_data) &&
(efuse_data != 0xFF))
efuse_write_data_case1(hw, &efuse_addr,
efuse_data, offset,
&continual,
&write_state, &target_pkt,
&repeat_times, &result,
word_en);
else
efuse_write_data_case2(hw, &efuse_addr,
&continual,
&write_state,
target_pkt,
&repeat_times,
&result);
} else if (write_state == PG_STATE_DATA) {
RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
"efuse PG_STATE_DATA\n");
badworden =
efuse_word_enable_data_write(hw, efuse_addr + 1,
target_pkt.word_en,
target_pkt.data);
if ((badworden & 0x0F) == 0x0F) {
continual = false;
} else {
efuse_addr += (2 * target_word_cnts) + 1;
target_pkt.offset = offset;
target_pkt.word_en = badworden;
target_word_cnts =
efuse_calculate_word_cnts(target_pkt.
word_en);
write_state = PG_STATE_HEADER;
repeat_times++;
if (repeat_times > EFUSE_REPEAT_THRESHOLD_) {
continual = false;
result = false;
}
RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
"efuse PG_STATE_HEADER-3\n");
}
}
}
if (efuse_addr >= (EFUSE_MAX_SIZE - EFUSE_OOB_PROTECT_BYTES)) {
RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
"efuse_addr(%#x) Out of size!!\n", efuse_addr);
}
return true;
}
static void efuse_word_enable_data_read(u8 word_en,
u8 *sourdata, u8 *targetdata)
{
if (!(word_en & BIT(0))) {
targetdata[0] = sourdata[0];
targetdata[1] = sourdata[1];
}
if (!(word_en & BIT(1))) {
targetdata[2] = sourdata[2];
targetdata[3] = sourdata[3];
}
if (!(word_en & BIT(2))) {
targetdata[4] = sourdata[4];
targetdata[5] = sourdata[5];
}
if (!(word_en & BIT(3))) {
targetdata[6] = sourdata[6];
targetdata[7] = sourdata[7];
}
}
static u8 efuse_word_enable_data_write(struct ieee80211_hw *hw,
u16 efuse_addr, u8 word_en, u8 *data)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
u16 tmpaddr;
u16 start_addr = efuse_addr;
u8 badworden = 0x0F;
u8 tmpdata[8];
memset(tmpdata, 0xff, PGPKT_DATA_SIZE);
RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD, "word_en = %x efuse_addr=%x\n",
word_en, efuse_addr);
if (!(word_en & BIT(0))) {
tmpaddr = start_addr;
efuse_one_byte_write(hw, start_addr++, data[0]);
efuse_one_byte_write(hw, start_addr++, data[1]);
efuse_one_byte_read(hw, tmpaddr, &tmpdata[0]);
efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[1]);
if ((data[0] != tmpdata[0]) || (data[1] != tmpdata[1]))
badworden &= (~BIT(0));
}
if (!(word_en & BIT(1))) {
tmpaddr = start_addr;
efuse_one_byte_write(hw, start_addr++, data[2]);
efuse_one_byte_write(hw, start_addr++, data[3]);
efuse_one_byte_read(hw, tmpaddr, &tmpdata[2]);
efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[3]);
if ((data[2] != tmpdata[2]) || (data[3] != tmpdata[3]))
badworden &= (~BIT(1));
}
if (!(word_en & BIT(2))) {
tmpaddr = start_addr;
efuse_one_byte_write(hw, start_addr++, data[4]);
efuse_one_byte_write(hw, start_addr++, data[5]);
efuse_one_byte_read(hw, tmpaddr, &tmpdata[4]);
efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[5]);
if ((data[4] != tmpdata[4]) || (data[5] != tmpdata[5]))
badworden &= (~BIT(2));
}
if (!(word_en & BIT(3))) {
tmpaddr = start_addr;
efuse_one_byte_write(hw, start_addr++, data[6]);
efuse_one_byte_write(hw, start_addr++, data[7]);
efuse_one_byte_read(hw, tmpaddr, &tmpdata[6]);
efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[7]);
if ((data[6] != tmpdata[6]) || (data[7] != tmpdata[7]))
badworden &= (~BIT(3));
}
return badworden;
}
static void efuse_power_switch(struct ieee80211_hw *hw, u8 write, u8 pwrstate)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
u8 tempval;
u16 tmpV16;
if (pwrstate && (rtlhal->hw_type !=
HARDWARE_TYPE_RTL8192SE)) {
tmpV16 = rtl_read_word(rtlpriv,
rtlpriv->cfg->maps[SYS_ISO_CTRL]);
if (!(tmpV16 & rtlpriv->cfg->maps[EFUSE_PWC_EV12V])) {
tmpV16 |= rtlpriv->cfg->maps[EFUSE_PWC_EV12V];
rtl_write_word(rtlpriv,
rtlpriv->cfg->maps[SYS_ISO_CTRL],
tmpV16);
}
tmpV16 = rtl_read_word(rtlpriv,
rtlpriv->cfg->maps[SYS_FUNC_EN]);
if (!(tmpV16 & rtlpriv->cfg->maps[EFUSE_FEN_ELDR])) {
tmpV16 |= rtlpriv->cfg->maps[EFUSE_FEN_ELDR];
rtl_write_word(rtlpriv,
rtlpriv->cfg->maps[SYS_FUNC_EN], tmpV16);
}
tmpV16 = rtl_read_word(rtlpriv, rtlpriv->cfg->maps[SYS_CLK]);
if ((!(tmpV16 & rtlpriv->cfg->maps[EFUSE_LOADER_CLK_EN])) ||
(!(tmpV16 & rtlpriv->cfg->maps[EFUSE_ANA8M]))) {
tmpV16 |= (rtlpriv->cfg->maps[EFUSE_LOADER_CLK_EN] |
rtlpriv->cfg->maps[EFUSE_ANA8M]);
rtl_write_word(rtlpriv,
rtlpriv->cfg->maps[SYS_CLK], tmpV16);
}
}
if (pwrstate) {
if (write) {
tempval = rtl_read_byte(rtlpriv,
rtlpriv->cfg->maps[EFUSE_TEST] +
3);
if (rtlhal->hw_type != HARDWARE_TYPE_RTL8192SE) {
tempval &= 0x0F;
tempval |= (VOLTAGE_V25 << 4);
}
rtl_write_byte(rtlpriv,
rtlpriv->cfg->maps[EFUSE_TEST] + 3,
(tempval | 0x80));
}
if (rtlhal->hw_type == HARDWARE_TYPE_RTL8192SE) {
rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CLK],
0x03);
}
} else {
if (write) {
tempval = rtl_read_byte(rtlpriv,
rtlpriv->cfg->maps[EFUSE_TEST] +
3);
rtl_write_byte(rtlpriv,
rtlpriv->cfg->maps[EFUSE_TEST] + 3,
(tempval & 0x7F));
}
if (rtlhal->hw_type == HARDWARE_TYPE_RTL8192SE) {
rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CLK],
0x02);
}
}
}
static u16 efuse_get_current_size(struct ieee80211_hw *hw)
{
int continual = true;
u16 efuse_addr = 0;
u8 hworden;
u8 efuse_data, word_cnts;
while (continual && efuse_one_byte_read(hw, efuse_addr, &efuse_data)
&& (efuse_addr < EFUSE_MAX_SIZE)) {
if (efuse_data != 0xFF) {
hworden = efuse_data & 0x0F;
word_cnts = efuse_calculate_word_cnts(hworden);
efuse_addr = efuse_addr + (word_cnts * 2) + 1;
} else {
continual = false;
}
}
return efuse_addr;
}
static u8 efuse_calculate_word_cnts(u8 word_en)
{
u8 word_cnts = 0;
if (!(word_en & BIT(0)))
word_cnts++;
if (!(word_en & BIT(1)))
word_cnts++;
if (!(word_en & BIT(2)))
word_cnts++;
if (!(word_en & BIT(3)))
word_cnts++;
return word_cnts;
}