mirror of
https://github.com/torvalds/linux.git
synced 2024-12-26 21:02:19 +00:00
f2c73464d7
This is the branch where we usually queue up cleanup efforts, moving drivers out of the architecture directory, header file restructuring, etc. Sometimes they tangle with new development so it's hard to keep it strictly to cleanups. Some of the things included in this branch are: * Atmel SAMA5 conversion to common clock * Reset framework conversion for tegra platforms - Some of this depends on tegra clock driver reworks that are shared with Mike Turquette's clk tree. * Tegra DMA refactoring, which are shared branches with the DMA tree. * Removal of some header files on exynos to prepare for multiplatform -----BEGIN PGP SIGNATURE----- Version: GnuPG v1.4.11 (GNU/Linux) iQIcBAABAgAGBQJS4Vf7AAoJEIwa5zzehBx3f9UP/jwMlbfbSZHfNQ/QG0SqZ9RD zvddyDMHY/qXnzgF3Dax+JR9BDDVy8AlQe713FCoiHJZggWRAbbavkx8gxITDrZQ 6NYaEkkuVxqyM8APl3PwMqYm8UZ8MUf4lCltlOA4jkesY9vue91AFnfyKh2CvHrn Leg4XT6mFzf/vYDL6RbvTz/Qr253uv3KvYBxkeiRNa0Y7OXRemEXSOfgxh0YGxUl LZ2IWQFOh/DH4kaeQI8V4G67X3ceHiFyhCnl0CPwfxaZaNBVaxvIFgIUTdetS6Sb zcXa029tE/Dfsr55vZAv9LUHEipCSOeE5rn2EJWehTWyM7vJ42Eozqgh+zfCjXS7 Ib6g2npsvIluQit/RdITu44h5yZlrQsLgKTGJ8jjXqbT4HQ/746W8b/TP0YLtbw7 N8oqr7k4vsZyF0dAYZQtfQUZeGISz67UbFcdzl9tmYOR7HFuAYkAQYst77zkVJf8 om59BAYYTG5FNjQ4I9AKUfJzxXYveI6AKpXSCCZiahpFM2D1CJIzp9Wi0GwK1HRR sFVWhS0dajvz63pVVC2tw5Sq4J7onRRNGIXFPoE5fkmlelm0/q0zzGjw3Z0nTqbZ 8zxuwuy2FfPJK11GbUAIhAgn1sCLYyAhl6IE+FsanGeMOSGIMrH0v5/HphAxoCXt BvqMDogyLoGPce1Gm3pJ =3CcT -----END PGP SIGNATURE----- Merge tag 'cleanup-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc Pull ARM SoC cleanups from Olof Johansson: "This is the branch where we usually queue up cleanup efforts, moving drivers out of the architecture directory, header file restructuring, etc. Sometimes they tangle with new development so it's hard to keep it strictly to cleanups. Some of the things included in this branch are: * Atmel SAMA5 conversion to common clock * Reset framework conversion for tegra platforms - Some of this depends on tegra clock driver reworks that are shared with Mike Turquette's clk tree. * Tegra DMA refactoring, which are shared branches with the DMA tree. * Removal of some header files on exynos to prepare for multiplatform" * tag 'cleanup-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc: (169 commits) ARM: mvebu: move Armada 370/XP specific definitions to armada-370-xp.h ARM: mvebu: remove prototypes of non-existing functions from common.h ARM: mvebu: move ARMADA_XP_MAX_CPUS to armada-370-xp.h serial: sh-sci: Rework baud rate calculation serial: sh-sci: Compute overrun_bit without using baud rate algo serial: sh-sci: Remove unused GPIO request code serial: sh-sci: Move overrun_bit and error_mask fields out of pdata serial: sh-sci: Support resources passed through platform resources serial: sh-sci: Don't check IRQ in verify port operation serial: sh-sci: Set the UPF_FIXED_PORT flag serial: sh-sci: Remove duplicate interrupt check in verify port op serial: sh-sci: Simplify baud rate calculation algorithms serial: sh-sci: Remove baud rate calculation algorithm 5 serial: sh-sci: Sort headers alphabetically ARM: EXYNOS: Kill exynos_pm_late_initcall() ARM: EXYNOS: Consolidate selection of PM_GENERIC_DOMAINS for Exynos4 ARM: at91: switch Calao QIL-A9260 board to DT clk: at91: fix pmc_clk_ids data type attriubte PM / devfreq: use inclusion <mach/map.h> instead of <plat/map-s5p.h> ARM: EXYNOS: remove <mach/regs-clock.h> for exynos ...
1273 lines
33 KiB
C
1273 lines
33 KiB
C
/*
|
|
* Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License as published by the Free
|
|
* Software Foundation; either version 2 of the License, or (at your option)
|
|
* any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
|
* more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along with
|
|
* this program; if not, write to the Free Software Foundation, Inc., 59
|
|
* Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
|
*
|
|
* The full GNU General Public License is included in this distribution in the
|
|
* file called COPYING.
|
|
*/
|
|
|
|
/*
|
|
* This code implements the DMA subsystem. It provides a HW-neutral interface
|
|
* for other kernel code to use asynchronous memory copy capabilities,
|
|
* if present, and allows different HW DMA drivers to register as providing
|
|
* this capability.
|
|
*
|
|
* Due to the fact we are accelerating what is already a relatively fast
|
|
* operation, the code goes to great lengths to avoid additional overhead,
|
|
* such as locking.
|
|
*
|
|
* LOCKING:
|
|
*
|
|
* The subsystem keeps a global list of dma_device structs it is protected by a
|
|
* mutex, dma_list_mutex.
|
|
*
|
|
* A subsystem can get access to a channel by calling dmaengine_get() followed
|
|
* by dma_find_channel(), or if it has need for an exclusive channel it can call
|
|
* dma_request_channel(). Once a channel is allocated a reference is taken
|
|
* against its corresponding driver to disable removal.
|
|
*
|
|
* Each device has a channels list, which runs unlocked but is never modified
|
|
* once the device is registered, it's just setup by the driver.
|
|
*
|
|
* See Documentation/dmaengine.txt for more details
|
|
*/
|
|
|
|
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
|
|
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/init.h>
|
|
#include <linux/module.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/device.h>
|
|
#include <linux/dmaengine.h>
|
|
#include <linux/hardirq.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/percpu.h>
|
|
#include <linux/rcupdate.h>
|
|
#include <linux/mutex.h>
|
|
#include <linux/jiffies.h>
|
|
#include <linux/rculist.h>
|
|
#include <linux/idr.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/acpi.h>
|
|
#include <linux/acpi_dma.h>
|
|
#include <linux/of_dma.h>
|
|
#include <linux/mempool.h>
|
|
|
|
static DEFINE_MUTEX(dma_list_mutex);
|
|
static DEFINE_IDR(dma_idr);
|
|
static LIST_HEAD(dma_device_list);
|
|
static long dmaengine_ref_count;
|
|
|
|
/* --- sysfs implementation --- */
|
|
|
|
/**
|
|
* dev_to_dma_chan - convert a device pointer to the its sysfs container object
|
|
* @dev - device node
|
|
*
|
|
* Must be called under dma_list_mutex
|
|
*/
|
|
static struct dma_chan *dev_to_dma_chan(struct device *dev)
|
|
{
|
|
struct dma_chan_dev *chan_dev;
|
|
|
|
chan_dev = container_of(dev, typeof(*chan_dev), device);
|
|
return chan_dev->chan;
|
|
}
|
|
|
|
static ssize_t memcpy_count_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct dma_chan *chan;
|
|
unsigned long count = 0;
|
|
int i;
|
|
int err;
|
|
|
|
mutex_lock(&dma_list_mutex);
|
|
chan = dev_to_dma_chan(dev);
|
|
if (chan) {
|
|
for_each_possible_cpu(i)
|
|
count += per_cpu_ptr(chan->local, i)->memcpy_count;
|
|
err = sprintf(buf, "%lu\n", count);
|
|
} else
|
|
err = -ENODEV;
|
|
mutex_unlock(&dma_list_mutex);
|
|
|
|
return err;
|
|
}
|
|
static DEVICE_ATTR_RO(memcpy_count);
|
|
|
|
static ssize_t bytes_transferred_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct dma_chan *chan;
|
|
unsigned long count = 0;
|
|
int i;
|
|
int err;
|
|
|
|
mutex_lock(&dma_list_mutex);
|
|
chan = dev_to_dma_chan(dev);
|
|
if (chan) {
|
|
for_each_possible_cpu(i)
|
|
count += per_cpu_ptr(chan->local, i)->bytes_transferred;
|
|
err = sprintf(buf, "%lu\n", count);
|
|
} else
|
|
err = -ENODEV;
|
|
mutex_unlock(&dma_list_mutex);
|
|
|
|
return err;
|
|
}
|
|
static DEVICE_ATTR_RO(bytes_transferred);
|
|
|
|
static ssize_t in_use_show(struct device *dev, struct device_attribute *attr,
|
|
char *buf)
|
|
{
|
|
struct dma_chan *chan;
|
|
int err;
|
|
|
|
mutex_lock(&dma_list_mutex);
|
|
chan = dev_to_dma_chan(dev);
|
|
if (chan)
|
|
err = sprintf(buf, "%d\n", chan->client_count);
|
|
else
|
|
err = -ENODEV;
|
|
mutex_unlock(&dma_list_mutex);
|
|
|
|
return err;
|
|
}
|
|
static DEVICE_ATTR_RO(in_use);
|
|
|
|
static struct attribute *dma_dev_attrs[] = {
|
|
&dev_attr_memcpy_count.attr,
|
|
&dev_attr_bytes_transferred.attr,
|
|
&dev_attr_in_use.attr,
|
|
NULL,
|
|
};
|
|
ATTRIBUTE_GROUPS(dma_dev);
|
|
|
|
static void chan_dev_release(struct device *dev)
|
|
{
|
|
struct dma_chan_dev *chan_dev;
|
|
|
|
chan_dev = container_of(dev, typeof(*chan_dev), device);
|
|
if (atomic_dec_and_test(chan_dev->idr_ref)) {
|
|
mutex_lock(&dma_list_mutex);
|
|
idr_remove(&dma_idr, chan_dev->dev_id);
|
|
mutex_unlock(&dma_list_mutex);
|
|
kfree(chan_dev->idr_ref);
|
|
}
|
|
kfree(chan_dev);
|
|
}
|
|
|
|
static struct class dma_devclass = {
|
|
.name = "dma",
|
|
.dev_groups = dma_dev_groups,
|
|
.dev_release = chan_dev_release,
|
|
};
|
|
|
|
/* --- client and device registration --- */
|
|
|
|
#define dma_device_satisfies_mask(device, mask) \
|
|
__dma_device_satisfies_mask((device), &(mask))
|
|
static int
|
|
__dma_device_satisfies_mask(struct dma_device *device,
|
|
const dma_cap_mask_t *want)
|
|
{
|
|
dma_cap_mask_t has;
|
|
|
|
bitmap_and(has.bits, want->bits, device->cap_mask.bits,
|
|
DMA_TX_TYPE_END);
|
|
return bitmap_equal(want->bits, has.bits, DMA_TX_TYPE_END);
|
|
}
|
|
|
|
static struct module *dma_chan_to_owner(struct dma_chan *chan)
|
|
{
|
|
return chan->device->dev->driver->owner;
|
|
}
|
|
|
|
/**
|
|
* balance_ref_count - catch up the channel reference count
|
|
* @chan - channel to balance ->client_count versus dmaengine_ref_count
|
|
*
|
|
* balance_ref_count must be called under dma_list_mutex
|
|
*/
|
|
static void balance_ref_count(struct dma_chan *chan)
|
|
{
|
|
struct module *owner = dma_chan_to_owner(chan);
|
|
|
|
while (chan->client_count < dmaengine_ref_count) {
|
|
__module_get(owner);
|
|
chan->client_count++;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* dma_chan_get - try to grab a dma channel's parent driver module
|
|
* @chan - channel to grab
|
|
*
|
|
* Must be called under dma_list_mutex
|
|
*/
|
|
static int dma_chan_get(struct dma_chan *chan)
|
|
{
|
|
int err = -ENODEV;
|
|
struct module *owner = dma_chan_to_owner(chan);
|
|
|
|
if (chan->client_count) {
|
|
__module_get(owner);
|
|
err = 0;
|
|
} else if (try_module_get(owner))
|
|
err = 0;
|
|
|
|
if (err == 0)
|
|
chan->client_count++;
|
|
|
|
/* allocate upon first client reference */
|
|
if (chan->client_count == 1 && err == 0) {
|
|
int desc_cnt = chan->device->device_alloc_chan_resources(chan);
|
|
|
|
if (desc_cnt < 0) {
|
|
err = desc_cnt;
|
|
chan->client_count = 0;
|
|
module_put(owner);
|
|
} else if (!dma_has_cap(DMA_PRIVATE, chan->device->cap_mask))
|
|
balance_ref_count(chan);
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* dma_chan_put - drop a reference to a dma channel's parent driver module
|
|
* @chan - channel to release
|
|
*
|
|
* Must be called under dma_list_mutex
|
|
*/
|
|
static void dma_chan_put(struct dma_chan *chan)
|
|
{
|
|
if (!chan->client_count)
|
|
return; /* this channel failed alloc_chan_resources */
|
|
chan->client_count--;
|
|
module_put(dma_chan_to_owner(chan));
|
|
if (chan->client_count == 0)
|
|
chan->device->device_free_chan_resources(chan);
|
|
}
|
|
|
|
enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie)
|
|
{
|
|
enum dma_status status;
|
|
unsigned long dma_sync_wait_timeout = jiffies + msecs_to_jiffies(5000);
|
|
|
|
dma_async_issue_pending(chan);
|
|
do {
|
|
status = dma_async_is_tx_complete(chan, cookie, NULL, NULL);
|
|
if (time_after_eq(jiffies, dma_sync_wait_timeout)) {
|
|
pr_err("%s: timeout!\n", __func__);
|
|
return DMA_ERROR;
|
|
}
|
|
if (status != DMA_IN_PROGRESS)
|
|
break;
|
|
cpu_relax();
|
|
} while (1);
|
|
|
|
return status;
|
|
}
|
|
EXPORT_SYMBOL(dma_sync_wait);
|
|
|
|
/**
|
|
* dma_cap_mask_all - enable iteration over all operation types
|
|
*/
|
|
static dma_cap_mask_t dma_cap_mask_all;
|
|
|
|
/**
|
|
* dma_chan_tbl_ent - tracks channel allocations per core/operation
|
|
* @chan - associated channel for this entry
|
|
*/
|
|
struct dma_chan_tbl_ent {
|
|
struct dma_chan *chan;
|
|
};
|
|
|
|
/**
|
|
* channel_table - percpu lookup table for memory-to-memory offload providers
|
|
*/
|
|
static struct dma_chan_tbl_ent __percpu *channel_table[DMA_TX_TYPE_END];
|
|
|
|
static int __init dma_channel_table_init(void)
|
|
{
|
|
enum dma_transaction_type cap;
|
|
int err = 0;
|
|
|
|
bitmap_fill(dma_cap_mask_all.bits, DMA_TX_TYPE_END);
|
|
|
|
/* 'interrupt', 'private', and 'slave' are channel capabilities,
|
|
* but are not associated with an operation so they do not need
|
|
* an entry in the channel_table
|
|
*/
|
|
clear_bit(DMA_INTERRUPT, dma_cap_mask_all.bits);
|
|
clear_bit(DMA_PRIVATE, dma_cap_mask_all.bits);
|
|
clear_bit(DMA_SLAVE, dma_cap_mask_all.bits);
|
|
|
|
for_each_dma_cap_mask(cap, dma_cap_mask_all) {
|
|
channel_table[cap] = alloc_percpu(struct dma_chan_tbl_ent);
|
|
if (!channel_table[cap]) {
|
|
err = -ENOMEM;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (err) {
|
|
pr_err("initialization failure\n");
|
|
for_each_dma_cap_mask(cap, dma_cap_mask_all)
|
|
if (channel_table[cap])
|
|
free_percpu(channel_table[cap]);
|
|
}
|
|
|
|
return err;
|
|
}
|
|
arch_initcall(dma_channel_table_init);
|
|
|
|
/**
|
|
* dma_find_channel - find a channel to carry out the operation
|
|
* @tx_type: transaction type
|
|
*/
|
|
struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type)
|
|
{
|
|
return this_cpu_read(channel_table[tx_type]->chan);
|
|
}
|
|
EXPORT_SYMBOL(dma_find_channel);
|
|
|
|
/*
|
|
* net_dma_find_channel - find a channel for net_dma
|
|
* net_dma has alignment requirements
|
|
*/
|
|
struct dma_chan *net_dma_find_channel(void)
|
|
{
|
|
struct dma_chan *chan = dma_find_channel(DMA_MEMCPY);
|
|
if (chan && !is_dma_copy_aligned(chan->device, 1, 1, 1))
|
|
return NULL;
|
|
|
|
return chan;
|
|
}
|
|
EXPORT_SYMBOL(net_dma_find_channel);
|
|
|
|
/**
|
|
* dma_issue_pending_all - flush all pending operations across all channels
|
|
*/
|
|
void dma_issue_pending_all(void)
|
|
{
|
|
struct dma_device *device;
|
|
struct dma_chan *chan;
|
|
|
|
rcu_read_lock();
|
|
list_for_each_entry_rcu(device, &dma_device_list, global_node) {
|
|
if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
|
|
continue;
|
|
list_for_each_entry(chan, &device->channels, device_node)
|
|
if (chan->client_count)
|
|
device->device_issue_pending(chan);
|
|
}
|
|
rcu_read_unlock();
|
|
}
|
|
EXPORT_SYMBOL(dma_issue_pending_all);
|
|
|
|
/**
|
|
* dma_chan_is_local - returns true if the channel is in the same numa-node as the cpu
|
|
*/
|
|
static bool dma_chan_is_local(struct dma_chan *chan, int cpu)
|
|
{
|
|
int node = dev_to_node(chan->device->dev);
|
|
return node == -1 || cpumask_test_cpu(cpu, cpumask_of_node(node));
|
|
}
|
|
|
|
/**
|
|
* min_chan - returns the channel with min count and in the same numa-node as the cpu
|
|
* @cap: capability to match
|
|
* @cpu: cpu index which the channel should be close to
|
|
*
|
|
* If some channels are close to the given cpu, the one with the lowest
|
|
* reference count is returned. Otherwise, cpu is ignored and only the
|
|
* reference count is taken into account.
|
|
* Must be called under dma_list_mutex.
|
|
*/
|
|
static struct dma_chan *min_chan(enum dma_transaction_type cap, int cpu)
|
|
{
|
|
struct dma_device *device;
|
|
struct dma_chan *chan;
|
|
struct dma_chan *min = NULL;
|
|
struct dma_chan *localmin = NULL;
|
|
|
|
list_for_each_entry(device, &dma_device_list, global_node) {
|
|
if (!dma_has_cap(cap, device->cap_mask) ||
|
|
dma_has_cap(DMA_PRIVATE, device->cap_mask))
|
|
continue;
|
|
list_for_each_entry(chan, &device->channels, device_node) {
|
|
if (!chan->client_count)
|
|
continue;
|
|
if (!min || chan->table_count < min->table_count)
|
|
min = chan;
|
|
|
|
if (dma_chan_is_local(chan, cpu))
|
|
if (!localmin ||
|
|
chan->table_count < localmin->table_count)
|
|
localmin = chan;
|
|
}
|
|
}
|
|
|
|
chan = localmin ? localmin : min;
|
|
|
|
if (chan)
|
|
chan->table_count++;
|
|
|
|
return chan;
|
|
}
|
|
|
|
/**
|
|
* dma_channel_rebalance - redistribute the available channels
|
|
*
|
|
* Optimize for cpu isolation (each cpu gets a dedicated channel for an
|
|
* operation type) in the SMP case, and operation isolation (avoid
|
|
* multi-tasking channels) in the non-SMP case. Must be called under
|
|
* dma_list_mutex.
|
|
*/
|
|
static void dma_channel_rebalance(void)
|
|
{
|
|
struct dma_chan *chan;
|
|
struct dma_device *device;
|
|
int cpu;
|
|
int cap;
|
|
|
|
/* undo the last distribution */
|
|
for_each_dma_cap_mask(cap, dma_cap_mask_all)
|
|
for_each_possible_cpu(cpu)
|
|
per_cpu_ptr(channel_table[cap], cpu)->chan = NULL;
|
|
|
|
list_for_each_entry(device, &dma_device_list, global_node) {
|
|
if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
|
|
continue;
|
|
list_for_each_entry(chan, &device->channels, device_node)
|
|
chan->table_count = 0;
|
|
}
|
|
|
|
/* don't populate the channel_table if no clients are available */
|
|
if (!dmaengine_ref_count)
|
|
return;
|
|
|
|
/* redistribute available channels */
|
|
for_each_dma_cap_mask(cap, dma_cap_mask_all)
|
|
for_each_online_cpu(cpu) {
|
|
chan = min_chan(cap, cpu);
|
|
per_cpu_ptr(channel_table[cap], cpu)->chan = chan;
|
|
}
|
|
}
|
|
|
|
static struct dma_chan *private_candidate(const dma_cap_mask_t *mask,
|
|
struct dma_device *dev,
|
|
dma_filter_fn fn, void *fn_param)
|
|
{
|
|
struct dma_chan *chan;
|
|
|
|
if (!__dma_device_satisfies_mask(dev, mask)) {
|
|
pr_debug("%s: wrong capabilities\n", __func__);
|
|
return NULL;
|
|
}
|
|
/* devices with multiple channels need special handling as we need to
|
|
* ensure that all channels are either private or public.
|
|
*/
|
|
if (dev->chancnt > 1 && !dma_has_cap(DMA_PRIVATE, dev->cap_mask))
|
|
list_for_each_entry(chan, &dev->channels, device_node) {
|
|
/* some channels are already publicly allocated */
|
|
if (chan->client_count)
|
|
return NULL;
|
|
}
|
|
|
|
list_for_each_entry(chan, &dev->channels, device_node) {
|
|
if (chan->client_count) {
|
|
pr_debug("%s: %s busy\n",
|
|
__func__, dma_chan_name(chan));
|
|
continue;
|
|
}
|
|
if (fn && !fn(chan, fn_param)) {
|
|
pr_debug("%s: %s filter said false\n",
|
|
__func__, dma_chan_name(chan));
|
|
continue;
|
|
}
|
|
return chan;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* dma_request_slave_channel - try to get specific channel exclusively
|
|
* @chan: target channel
|
|
*/
|
|
struct dma_chan *dma_get_slave_channel(struct dma_chan *chan)
|
|
{
|
|
int err = -EBUSY;
|
|
|
|
/* lock against __dma_request_channel */
|
|
mutex_lock(&dma_list_mutex);
|
|
|
|
if (chan->client_count == 0) {
|
|
err = dma_chan_get(chan);
|
|
if (err)
|
|
pr_debug("%s: failed to get %s: (%d)\n",
|
|
__func__, dma_chan_name(chan), err);
|
|
} else
|
|
chan = NULL;
|
|
|
|
mutex_unlock(&dma_list_mutex);
|
|
|
|
|
|
return chan;
|
|
}
|
|
EXPORT_SYMBOL_GPL(dma_get_slave_channel);
|
|
|
|
struct dma_chan *dma_get_any_slave_channel(struct dma_device *device)
|
|
{
|
|
dma_cap_mask_t mask;
|
|
struct dma_chan *chan;
|
|
int err;
|
|
|
|
dma_cap_zero(mask);
|
|
dma_cap_set(DMA_SLAVE, mask);
|
|
|
|
/* lock against __dma_request_channel */
|
|
mutex_lock(&dma_list_mutex);
|
|
|
|
chan = private_candidate(&mask, device, NULL, NULL);
|
|
if (chan) {
|
|
err = dma_chan_get(chan);
|
|
if (err) {
|
|
pr_debug("%s: failed to get %s: (%d)\n",
|
|
__func__, dma_chan_name(chan), err);
|
|
chan = NULL;
|
|
}
|
|
}
|
|
|
|
mutex_unlock(&dma_list_mutex);
|
|
|
|
return chan;
|
|
}
|
|
EXPORT_SYMBOL_GPL(dma_get_any_slave_channel);
|
|
|
|
/**
|
|
* __dma_request_channel - try to allocate an exclusive channel
|
|
* @mask: capabilities that the channel must satisfy
|
|
* @fn: optional callback to disposition available channels
|
|
* @fn_param: opaque parameter to pass to dma_filter_fn
|
|
*
|
|
* Returns pointer to appropriate DMA channel on success or NULL.
|
|
*/
|
|
struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
|
|
dma_filter_fn fn, void *fn_param)
|
|
{
|
|
struct dma_device *device, *_d;
|
|
struct dma_chan *chan = NULL;
|
|
int err;
|
|
|
|
/* Find a channel */
|
|
mutex_lock(&dma_list_mutex);
|
|
list_for_each_entry_safe(device, _d, &dma_device_list, global_node) {
|
|
chan = private_candidate(mask, device, fn, fn_param);
|
|
if (chan) {
|
|
/* Found a suitable channel, try to grab, prep, and
|
|
* return it. We first set DMA_PRIVATE to disable
|
|
* balance_ref_count as this channel will not be
|
|
* published in the general-purpose allocator
|
|
*/
|
|
dma_cap_set(DMA_PRIVATE, device->cap_mask);
|
|
device->privatecnt++;
|
|
err = dma_chan_get(chan);
|
|
|
|
if (err == -ENODEV) {
|
|
pr_debug("%s: %s module removed\n",
|
|
__func__, dma_chan_name(chan));
|
|
list_del_rcu(&device->global_node);
|
|
} else if (err)
|
|
pr_debug("%s: failed to get %s: (%d)\n",
|
|
__func__, dma_chan_name(chan), err);
|
|
else
|
|
break;
|
|
if (--device->privatecnt == 0)
|
|
dma_cap_clear(DMA_PRIVATE, device->cap_mask);
|
|
chan = NULL;
|
|
}
|
|
}
|
|
mutex_unlock(&dma_list_mutex);
|
|
|
|
pr_debug("%s: %s (%s)\n",
|
|
__func__,
|
|
chan ? "success" : "fail",
|
|
chan ? dma_chan_name(chan) : NULL);
|
|
|
|
return chan;
|
|
}
|
|
EXPORT_SYMBOL_GPL(__dma_request_channel);
|
|
|
|
/**
|
|
* dma_request_slave_channel - try to allocate an exclusive slave channel
|
|
* @dev: pointer to client device structure
|
|
* @name: slave channel name
|
|
*
|
|
* Returns pointer to appropriate DMA channel on success or an error pointer.
|
|
*/
|
|
struct dma_chan *dma_request_slave_channel_reason(struct device *dev,
|
|
const char *name)
|
|
{
|
|
struct dma_chan *chan;
|
|
|
|
/* If device-tree is present get slave info from here */
|
|
if (dev->of_node)
|
|
return of_dma_request_slave_channel(dev->of_node, name);
|
|
|
|
/* If device was enumerated by ACPI get slave info from here */
|
|
if (ACPI_HANDLE(dev)) {
|
|
chan = acpi_dma_request_slave_chan_by_name(dev, name);
|
|
if (chan)
|
|
return chan;
|
|
}
|
|
|
|
return ERR_PTR(-ENODEV);
|
|
}
|
|
EXPORT_SYMBOL_GPL(dma_request_slave_channel_reason);
|
|
|
|
/**
|
|
* dma_request_slave_channel - try to allocate an exclusive slave channel
|
|
* @dev: pointer to client device structure
|
|
* @name: slave channel name
|
|
*
|
|
* Returns pointer to appropriate DMA channel on success or NULL.
|
|
*/
|
|
struct dma_chan *dma_request_slave_channel(struct device *dev,
|
|
const char *name)
|
|
{
|
|
struct dma_chan *ch = dma_request_slave_channel_reason(dev, name);
|
|
if (IS_ERR(ch))
|
|
return NULL;
|
|
return ch;
|
|
}
|
|
EXPORT_SYMBOL_GPL(dma_request_slave_channel);
|
|
|
|
void dma_release_channel(struct dma_chan *chan)
|
|
{
|
|
mutex_lock(&dma_list_mutex);
|
|
WARN_ONCE(chan->client_count != 1,
|
|
"chan reference count %d != 1\n", chan->client_count);
|
|
dma_chan_put(chan);
|
|
/* drop PRIVATE cap enabled by __dma_request_channel() */
|
|
if (--chan->device->privatecnt == 0)
|
|
dma_cap_clear(DMA_PRIVATE, chan->device->cap_mask);
|
|
mutex_unlock(&dma_list_mutex);
|
|
}
|
|
EXPORT_SYMBOL_GPL(dma_release_channel);
|
|
|
|
/**
|
|
* dmaengine_get - register interest in dma_channels
|
|
*/
|
|
void dmaengine_get(void)
|
|
{
|
|
struct dma_device *device, *_d;
|
|
struct dma_chan *chan;
|
|
int err;
|
|
|
|
mutex_lock(&dma_list_mutex);
|
|
dmaengine_ref_count++;
|
|
|
|
/* try to grab channels */
|
|
list_for_each_entry_safe(device, _d, &dma_device_list, global_node) {
|
|
if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
|
|
continue;
|
|
list_for_each_entry(chan, &device->channels, device_node) {
|
|
err = dma_chan_get(chan);
|
|
if (err == -ENODEV) {
|
|
/* module removed before we could use it */
|
|
list_del_rcu(&device->global_node);
|
|
break;
|
|
} else if (err)
|
|
pr_debug("%s: failed to get %s: (%d)\n",
|
|
__func__, dma_chan_name(chan), err);
|
|
}
|
|
}
|
|
|
|
/* if this is the first reference and there were channels
|
|
* waiting we need to rebalance to get those channels
|
|
* incorporated into the channel table
|
|
*/
|
|
if (dmaengine_ref_count == 1)
|
|
dma_channel_rebalance();
|
|
mutex_unlock(&dma_list_mutex);
|
|
}
|
|
EXPORT_SYMBOL(dmaengine_get);
|
|
|
|
/**
|
|
* dmaengine_put - let dma drivers be removed when ref_count == 0
|
|
*/
|
|
void dmaengine_put(void)
|
|
{
|
|
struct dma_device *device;
|
|
struct dma_chan *chan;
|
|
|
|
mutex_lock(&dma_list_mutex);
|
|
dmaengine_ref_count--;
|
|
BUG_ON(dmaengine_ref_count < 0);
|
|
/* drop channel references */
|
|
list_for_each_entry(device, &dma_device_list, global_node) {
|
|
if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
|
|
continue;
|
|
list_for_each_entry(chan, &device->channels, device_node)
|
|
dma_chan_put(chan);
|
|
}
|
|
mutex_unlock(&dma_list_mutex);
|
|
}
|
|
EXPORT_SYMBOL(dmaengine_put);
|
|
|
|
static bool device_has_all_tx_types(struct dma_device *device)
|
|
{
|
|
/* A device that satisfies this test has channels that will never cause
|
|
* an async_tx channel switch event as all possible operation types can
|
|
* be handled.
|
|
*/
|
|
#ifdef CONFIG_ASYNC_TX_DMA
|
|
if (!dma_has_cap(DMA_INTERRUPT, device->cap_mask))
|
|
return false;
|
|
#endif
|
|
|
|
#if defined(CONFIG_ASYNC_MEMCPY) || defined(CONFIG_ASYNC_MEMCPY_MODULE)
|
|
if (!dma_has_cap(DMA_MEMCPY, device->cap_mask))
|
|
return false;
|
|
#endif
|
|
|
|
#if defined(CONFIG_ASYNC_XOR) || defined(CONFIG_ASYNC_XOR_MODULE)
|
|
if (!dma_has_cap(DMA_XOR, device->cap_mask))
|
|
return false;
|
|
|
|
#ifndef CONFIG_ASYNC_TX_DISABLE_XOR_VAL_DMA
|
|
if (!dma_has_cap(DMA_XOR_VAL, device->cap_mask))
|
|
return false;
|
|
#endif
|
|
#endif
|
|
|
|
#if defined(CONFIG_ASYNC_PQ) || defined(CONFIG_ASYNC_PQ_MODULE)
|
|
if (!dma_has_cap(DMA_PQ, device->cap_mask))
|
|
return false;
|
|
|
|
#ifndef CONFIG_ASYNC_TX_DISABLE_PQ_VAL_DMA
|
|
if (!dma_has_cap(DMA_PQ_VAL, device->cap_mask))
|
|
return false;
|
|
#endif
|
|
#endif
|
|
|
|
return true;
|
|
}
|
|
|
|
static int get_dma_id(struct dma_device *device)
|
|
{
|
|
int rc;
|
|
|
|
mutex_lock(&dma_list_mutex);
|
|
|
|
rc = idr_alloc(&dma_idr, NULL, 0, 0, GFP_KERNEL);
|
|
if (rc >= 0)
|
|
device->dev_id = rc;
|
|
|
|
mutex_unlock(&dma_list_mutex);
|
|
return rc < 0 ? rc : 0;
|
|
}
|
|
|
|
/**
|
|
* dma_async_device_register - registers DMA devices found
|
|
* @device: &dma_device
|
|
*/
|
|
int dma_async_device_register(struct dma_device *device)
|
|
{
|
|
int chancnt = 0, rc;
|
|
struct dma_chan* chan;
|
|
atomic_t *idr_ref;
|
|
|
|
if (!device)
|
|
return -ENODEV;
|
|
|
|
/* validate device routines */
|
|
BUG_ON(dma_has_cap(DMA_MEMCPY, device->cap_mask) &&
|
|
!device->device_prep_dma_memcpy);
|
|
BUG_ON(dma_has_cap(DMA_XOR, device->cap_mask) &&
|
|
!device->device_prep_dma_xor);
|
|
BUG_ON(dma_has_cap(DMA_XOR_VAL, device->cap_mask) &&
|
|
!device->device_prep_dma_xor_val);
|
|
BUG_ON(dma_has_cap(DMA_PQ, device->cap_mask) &&
|
|
!device->device_prep_dma_pq);
|
|
BUG_ON(dma_has_cap(DMA_PQ_VAL, device->cap_mask) &&
|
|
!device->device_prep_dma_pq_val);
|
|
BUG_ON(dma_has_cap(DMA_INTERRUPT, device->cap_mask) &&
|
|
!device->device_prep_dma_interrupt);
|
|
BUG_ON(dma_has_cap(DMA_SG, device->cap_mask) &&
|
|
!device->device_prep_dma_sg);
|
|
BUG_ON(dma_has_cap(DMA_CYCLIC, device->cap_mask) &&
|
|
!device->device_prep_dma_cyclic);
|
|
BUG_ON(dma_has_cap(DMA_SLAVE, device->cap_mask) &&
|
|
!device->device_control);
|
|
BUG_ON(dma_has_cap(DMA_INTERLEAVE, device->cap_mask) &&
|
|
!device->device_prep_interleaved_dma);
|
|
|
|
BUG_ON(!device->device_alloc_chan_resources);
|
|
BUG_ON(!device->device_free_chan_resources);
|
|
BUG_ON(!device->device_tx_status);
|
|
BUG_ON(!device->device_issue_pending);
|
|
BUG_ON(!device->dev);
|
|
|
|
/* note: this only matters in the
|
|
* CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH=n case
|
|
*/
|
|
if (device_has_all_tx_types(device))
|
|
dma_cap_set(DMA_ASYNC_TX, device->cap_mask);
|
|
|
|
idr_ref = kmalloc(sizeof(*idr_ref), GFP_KERNEL);
|
|
if (!idr_ref)
|
|
return -ENOMEM;
|
|
rc = get_dma_id(device);
|
|
if (rc != 0) {
|
|
kfree(idr_ref);
|
|
return rc;
|
|
}
|
|
|
|
atomic_set(idr_ref, 0);
|
|
|
|
/* represent channels in sysfs. Probably want devs too */
|
|
list_for_each_entry(chan, &device->channels, device_node) {
|
|
rc = -ENOMEM;
|
|
chan->local = alloc_percpu(typeof(*chan->local));
|
|
if (chan->local == NULL)
|
|
goto err_out;
|
|
chan->dev = kzalloc(sizeof(*chan->dev), GFP_KERNEL);
|
|
if (chan->dev == NULL) {
|
|
free_percpu(chan->local);
|
|
chan->local = NULL;
|
|
goto err_out;
|
|
}
|
|
|
|
chan->chan_id = chancnt++;
|
|
chan->dev->device.class = &dma_devclass;
|
|
chan->dev->device.parent = device->dev;
|
|
chan->dev->chan = chan;
|
|
chan->dev->idr_ref = idr_ref;
|
|
chan->dev->dev_id = device->dev_id;
|
|
atomic_inc(idr_ref);
|
|
dev_set_name(&chan->dev->device, "dma%dchan%d",
|
|
device->dev_id, chan->chan_id);
|
|
|
|
rc = device_register(&chan->dev->device);
|
|
if (rc) {
|
|
free_percpu(chan->local);
|
|
chan->local = NULL;
|
|
kfree(chan->dev);
|
|
atomic_dec(idr_ref);
|
|
goto err_out;
|
|
}
|
|
chan->client_count = 0;
|
|
}
|
|
device->chancnt = chancnt;
|
|
|
|
mutex_lock(&dma_list_mutex);
|
|
/* take references on public channels */
|
|
if (dmaengine_ref_count && !dma_has_cap(DMA_PRIVATE, device->cap_mask))
|
|
list_for_each_entry(chan, &device->channels, device_node) {
|
|
/* if clients are already waiting for channels we need
|
|
* to take references on their behalf
|
|
*/
|
|
if (dma_chan_get(chan) == -ENODEV) {
|
|
/* note we can only get here for the first
|
|
* channel as the remaining channels are
|
|
* guaranteed to get a reference
|
|
*/
|
|
rc = -ENODEV;
|
|
mutex_unlock(&dma_list_mutex);
|
|
goto err_out;
|
|
}
|
|
}
|
|
list_add_tail_rcu(&device->global_node, &dma_device_list);
|
|
if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
|
|
device->privatecnt++; /* Always private */
|
|
dma_channel_rebalance();
|
|
mutex_unlock(&dma_list_mutex);
|
|
|
|
return 0;
|
|
|
|
err_out:
|
|
/* if we never registered a channel just release the idr */
|
|
if (atomic_read(idr_ref) == 0) {
|
|
mutex_lock(&dma_list_mutex);
|
|
idr_remove(&dma_idr, device->dev_id);
|
|
mutex_unlock(&dma_list_mutex);
|
|
kfree(idr_ref);
|
|
return rc;
|
|
}
|
|
|
|
list_for_each_entry(chan, &device->channels, device_node) {
|
|
if (chan->local == NULL)
|
|
continue;
|
|
mutex_lock(&dma_list_mutex);
|
|
chan->dev->chan = NULL;
|
|
mutex_unlock(&dma_list_mutex);
|
|
device_unregister(&chan->dev->device);
|
|
free_percpu(chan->local);
|
|
}
|
|
return rc;
|
|
}
|
|
EXPORT_SYMBOL(dma_async_device_register);
|
|
|
|
/**
|
|
* dma_async_device_unregister - unregister a DMA device
|
|
* @device: &dma_device
|
|
*
|
|
* This routine is called by dma driver exit routines, dmaengine holds module
|
|
* references to prevent it being called while channels are in use.
|
|
*/
|
|
void dma_async_device_unregister(struct dma_device *device)
|
|
{
|
|
struct dma_chan *chan;
|
|
|
|
mutex_lock(&dma_list_mutex);
|
|
list_del_rcu(&device->global_node);
|
|
dma_channel_rebalance();
|
|
mutex_unlock(&dma_list_mutex);
|
|
|
|
list_for_each_entry(chan, &device->channels, device_node) {
|
|
WARN_ONCE(chan->client_count,
|
|
"%s called while %d clients hold a reference\n",
|
|
__func__, chan->client_count);
|
|
mutex_lock(&dma_list_mutex);
|
|
chan->dev->chan = NULL;
|
|
mutex_unlock(&dma_list_mutex);
|
|
device_unregister(&chan->dev->device);
|
|
free_percpu(chan->local);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(dma_async_device_unregister);
|
|
|
|
struct dmaengine_unmap_pool {
|
|
struct kmem_cache *cache;
|
|
const char *name;
|
|
mempool_t *pool;
|
|
size_t size;
|
|
};
|
|
|
|
#define __UNMAP_POOL(x) { .size = x, .name = "dmaengine-unmap-" __stringify(x) }
|
|
static struct dmaengine_unmap_pool unmap_pool[] = {
|
|
__UNMAP_POOL(2),
|
|
#if IS_ENABLED(CONFIG_DMA_ENGINE_RAID)
|
|
__UNMAP_POOL(16),
|
|
__UNMAP_POOL(128),
|
|
__UNMAP_POOL(256),
|
|
#endif
|
|
};
|
|
|
|
static struct dmaengine_unmap_pool *__get_unmap_pool(int nr)
|
|
{
|
|
int order = get_count_order(nr);
|
|
|
|
switch (order) {
|
|
case 0 ... 1:
|
|
return &unmap_pool[0];
|
|
case 2 ... 4:
|
|
return &unmap_pool[1];
|
|
case 5 ... 7:
|
|
return &unmap_pool[2];
|
|
case 8:
|
|
return &unmap_pool[3];
|
|
default:
|
|
BUG();
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
static void dmaengine_unmap(struct kref *kref)
|
|
{
|
|
struct dmaengine_unmap_data *unmap = container_of(kref, typeof(*unmap), kref);
|
|
struct device *dev = unmap->dev;
|
|
int cnt, i;
|
|
|
|
cnt = unmap->to_cnt;
|
|
for (i = 0; i < cnt; i++)
|
|
dma_unmap_page(dev, unmap->addr[i], unmap->len,
|
|
DMA_TO_DEVICE);
|
|
cnt += unmap->from_cnt;
|
|
for (; i < cnt; i++)
|
|
dma_unmap_page(dev, unmap->addr[i], unmap->len,
|
|
DMA_FROM_DEVICE);
|
|
cnt += unmap->bidi_cnt;
|
|
for (; i < cnt; i++) {
|
|
if (unmap->addr[i] == 0)
|
|
continue;
|
|
dma_unmap_page(dev, unmap->addr[i], unmap->len,
|
|
DMA_BIDIRECTIONAL);
|
|
}
|
|
mempool_free(unmap, __get_unmap_pool(cnt)->pool);
|
|
}
|
|
|
|
void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap)
|
|
{
|
|
if (unmap)
|
|
kref_put(&unmap->kref, dmaengine_unmap);
|
|
}
|
|
EXPORT_SYMBOL_GPL(dmaengine_unmap_put);
|
|
|
|
static void dmaengine_destroy_unmap_pool(void)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(unmap_pool); i++) {
|
|
struct dmaengine_unmap_pool *p = &unmap_pool[i];
|
|
|
|
if (p->pool)
|
|
mempool_destroy(p->pool);
|
|
p->pool = NULL;
|
|
if (p->cache)
|
|
kmem_cache_destroy(p->cache);
|
|
p->cache = NULL;
|
|
}
|
|
}
|
|
|
|
static int __init dmaengine_init_unmap_pool(void)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(unmap_pool); i++) {
|
|
struct dmaengine_unmap_pool *p = &unmap_pool[i];
|
|
size_t size;
|
|
|
|
size = sizeof(struct dmaengine_unmap_data) +
|
|
sizeof(dma_addr_t) * p->size;
|
|
|
|
p->cache = kmem_cache_create(p->name, size, 0,
|
|
SLAB_HWCACHE_ALIGN, NULL);
|
|
if (!p->cache)
|
|
break;
|
|
p->pool = mempool_create_slab_pool(1, p->cache);
|
|
if (!p->pool)
|
|
break;
|
|
}
|
|
|
|
if (i == ARRAY_SIZE(unmap_pool))
|
|
return 0;
|
|
|
|
dmaengine_destroy_unmap_pool();
|
|
return -ENOMEM;
|
|
}
|
|
|
|
struct dmaengine_unmap_data *
|
|
dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags)
|
|
{
|
|
struct dmaengine_unmap_data *unmap;
|
|
|
|
unmap = mempool_alloc(__get_unmap_pool(nr)->pool, flags);
|
|
if (!unmap)
|
|
return NULL;
|
|
|
|
memset(unmap, 0, sizeof(*unmap));
|
|
kref_init(&unmap->kref);
|
|
unmap->dev = dev;
|
|
|
|
return unmap;
|
|
}
|
|
EXPORT_SYMBOL(dmaengine_get_unmap_data);
|
|
|
|
/**
|
|
* dma_async_memcpy_pg_to_pg - offloaded copy from page to page
|
|
* @chan: DMA channel to offload copy to
|
|
* @dest_pg: destination page
|
|
* @dest_off: offset in page to copy to
|
|
* @src_pg: source page
|
|
* @src_off: offset in page to copy from
|
|
* @len: length
|
|
*
|
|
* Both @dest_page/@dest_off and @src_page/@src_off must be mappable to a bus
|
|
* address according to the DMA mapping API rules for streaming mappings.
|
|
* Both @dest_page/@dest_off and @src_page/@src_off must stay memory resident
|
|
* (kernel memory or locked user space pages).
|
|
*/
|
|
dma_cookie_t
|
|
dma_async_memcpy_pg_to_pg(struct dma_chan *chan, struct page *dest_pg,
|
|
unsigned int dest_off, struct page *src_pg, unsigned int src_off,
|
|
size_t len)
|
|
{
|
|
struct dma_device *dev = chan->device;
|
|
struct dma_async_tx_descriptor *tx;
|
|
struct dmaengine_unmap_data *unmap;
|
|
dma_cookie_t cookie;
|
|
unsigned long flags;
|
|
|
|
unmap = dmaengine_get_unmap_data(dev->dev, 2, GFP_NOWAIT);
|
|
if (!unmap)
|
|
return -ENOMEM;
|
|
|
|
unmap->to_cnt = 1;
|
|
unmap->from_cnt = 1;
|
|
unmap->addr[0] = dma_map_page(dev->dev, src_pg, src_off, len,
|
|
DMA_TO_DEVICE);
|
|
unmap->addr[1] = dma_map_page(dev->dev, dest_pg, dest_off, len,
|
|
DMA_FROM_DEVICE);
|
|
unmap->len = len;
|
|
flags = DMA_CTRL_ACK;
|
|
tx = dev->device_prep_dma_memcpy(chan, unmap->addr[1], unmap->addr[0],
|
|
len, flags);
|
|
|
|
if (!tx) {
|
|
dmaengine_unmap_put(unmap);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
dma_set_unmap(tx, unmap);
|
|
cookie = tx->tx_submit(tx);
|
|
dmaengine_unmap_put(unmap);
|
|
|
|
preempt_disable();
|
|
__this_cpu_add(chan->local->bytes_transferred, len);
|
|
__this_cpu_inc(chan->local->memcpy_count);
|
|
preempt_enable();
|
|
|
|
return cookie;
|
|
}
|
|
EXPORT_SYMBOL(dma_async_memcpy_pg_to_pg);
|
|
|
|
/**
|
|
* dma_async_memcpy_buf_to_buf - offloaded copy between virtual addresses
|
|
* @chan: DMA channel to offload copy to
|
|
* @dest: destination address (virtual)
|
|
* @src: source address (virtual)
|
|
* @len: length
|
|
*
|
|
* Both @dest and @src must be mappable to a bus address according to the
|
|
* DMA mapping API rules for streaming mappings.
|
|
* Both @dest and @src must stay memory resident (kernel memory or locked
|
|
* user space pages).
|
|
*/
|
|
dma_cookie_t
|
|
dma_async_memcpy_buf_to_buf(struct dma_chan *chan, void *dest,
|
|
void *src, size_t len)
|
|
{
|
|
return dma_async_memcpy_pg_to_pg(chan, virt_to_page(dest),
|
|
(unsigned long) dest & ~PAGE_MASK,
|
|
virt_to_page(src),
|
|
(unsigned long) src & ~PAGE_MASK, len);
|
|
}
|
|
EXPORT_SYMBOL(dma_async_memcpy_buf_to_buf);
|
|
|
|
/**
|
|
* dma_async_memcpy_buf_to_pg - offloaded copy from address to page
|
|
* @chan: DMA channel to offload copy to
|
|
* @page: destination page
|
|
* @offset: offset in page to copy to
|
|
* @kdata: source address (virtual)
|
|
* @len: length
|
|
*
|
|
* Both @page/@offset and @kdata must be mappable to a bus address according
|
|
* to the DMA mapping API rules for streaming mappings.
|
|
* Both @page/@offset and @kdata must stay memory resident (kernel memory or
|
|
* locked user space pages)
|
|
*/
|
|
dma_cookie_t
|
|
dma_async_memcpy_buf_to_pg(struct dma_chan *chan, struct page *page,
|
|
unsigned int offset, void *kdata, size_t len)
|
|
{
|
|
return dma_async_memcpy_pg_to_pg(chan, page, offset,
|
|
virt_to_page(kdata),
|
|
(unsigned long) kdata & ~PAGE_MASK, len);
|
|
}
|
|
EXPORT_SYMBOL(dma_async_memcpy_buf_to_pg);
|
|
|
|
void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx,
|
|
struct dma_chan *chan)
|
|
{
|
|
tx->chan = chan;
|
|
#ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
|
|
spin_lock_init(&tx->lock);
|
|
#endif
|
|
}
|
|
EXPORT_SYMBOL(dma_async_tx_descriptor_init);
|
|
|
|
/* dma_wait_for_async_tx - spin wait for a transaction to complete
|
|
* @tx: in-flight transaction to wait on
|
|
*/
|
|
enum dma_status
|
|
dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx)
|
|
{
|
|
unsigned long dma_sync_wait_timeout = jiffies + msecs_to_jiffies(5000);
|
|
|
|
if (!tx)
|
|
return DMA_COMPLETE;
|
|
|
|
while (tx->cookie == -EBUSY) {
|
|
if (time_after_eq(jiffies, dma_sync_wait_timeout)) {
|
|
pr_err("%s timeout waiting for descriptor submission\n",
|
|
__func__);
|
|
return DMA_ERROR;
|
|
}
|
|
cpu_relax();
|
|
}
|
|
return dma_sync_wait(tx->chan, tx->cookie);
|
|
}
|
|
EXPORT_SYMBOL_GPL(dma_wait_for_async_tx);
|
|
|
|
/* dma_run_dependencies - helper routine for dma drivers to process
|
|
* (start) dependent operations on their target channel
|
|
* @tx: transaction with dependencies
|
|
*/
|
|
void dma_run_dependencies(struct dma_async_tx_descriptor *tx)
|
|
{
|
|
struct dma_async_tx_descriptor *dep = txd_next(tx);
|
|
struct dma_async_tx_descriptor *dep_next;
|
|
struct dma_chan *chan;
|
|
|
|
if (!dep)
|
|
return;
|
|
|
|
/* we'll submit tx->next now, so clear the link */
|
|
txd_clear_next(tx);
|
|
chan = dep->chan;
|
|
|
|
/* keep submitting up until a channel switch is detected
|
|
* in that case we will be called again as a result of
|
|
* processing the interrupt from async_tx_channel_switch
|
|
*/
|
|
for (; dep; dep = dep_next) {
|
|
txd_lock(dep);
|
|
txd_clear_parent(dep);
|
|
dep_next = txd_next(dep);
|
|
if (dep_next && dep_next->chan == chan)
|
|
txd_clear_next(dep); /* ->next will be submitted */
|
|
else
|
|
dep_next = NULL; /* submit current dep and terminate */
|
|
txd_unlock(dep);
|
|
|
|
dep->tx_submit(dep);
|
|
}
|
|
|
|
chan->device->device_issue_pending(chan);
|
|
}
|
|
EXPORT_SYMBOL_GPL(dma_run_dependencies);
|
|
|
|
static int __init dma_bus_init(void)
|
|
{
|
|
int err = dmaengine_init_unmap_pool();
|
|
|
|
if (err)
|
|
return err;
|
|
return class_register(&dma_devclass);
|
|
}
|
|
arch_initcall(dma_bus_init);
|
|
|
|
|