mirror of
https://github.com/torvalds/linux.git
synced 2024-11-05 19:41:54 +00:00
fd8e198cfc
gpiolib now exports a new descriptor-based interface which deprecates the older integer-based one. This patch documents this new interface and also takes the opportunity to brush-up the GPIO documentation a little bit. The new descriptor-based interface follows the same consumer/driver model as many other kernel subsystems (e.g. clock, regulator), so its documentation has similarly been splitted into different files. The content of the former documentation has been reused whenever it made sense; however, some of its content did not apply to the new interface anymore and have this been removed. Likewise, new sections like the mapping of GPIOs to devices have been written from scratch. The deprecated legacy-based documentation is still available, untouched, under Documentation/gpio/gpio-legacy.txt. Signed-off-by: Alexandre Courbot <acourbot@nvidia.com> Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
156 lines
6.3 KiB
Plaintext
156 lines
6.3 KiB
Plaintext
GPIO Sysfs Interface for Userspace
|
|
==================================
|
|
|
|
Platforms which use the "gpiolib" implementors framework may choose to
|
|
configure a sysfs user interface to GPIOs. This is different from the
|
|
debugfs interface, since it provides control over GPIO direction and
|
|
value instead of just showing a gpio state summary. Plus, it could be
|
|
present on production systems without debugging support.
|
|
|
|
Given appropriate hardware documentation for the system, userspace could
|
|
know for example that GPIO #23 controls the write protect line used to
|
|
protect boot loader segments in flash memory. System upgrade procedures
|
|
may need to temporarily remove that protection, first importing a GPIO,
|
|
then changing its output state, then updating the code before re-enabling
|
|
the write protection. In normal use, GPIO #23 would never be touched,
|
|
and the kernel would have no need to know about it.
|
|
|
|
Again depending on appropriate hardware documentation, on some systems
|
|
userspace GPIO can be used to determine system configuration data that
|
|
standard kernels won't know about. And for some tasks, simple userspace
|
|
GPIO drivers could be all that the system really needs.
|
|
|
|
Note that standard kernel drivers exist for common "LEDs and Buttons"
|
|
GPIO tasks: "leds-gpio" and "gpio_keys", respectively. Use those
|
|
instead of talking directly to the GPIOs; they integrate with kernel
|
|
frameworks better than your userspace code could.
|
|
|
|
|
|
Paths in Sysfs
|
|
--------------
|
|
There are three kinds of entry in /sys/class/gpio:
|
|
|
|
- Control interfaces used to get userspace control over GPIOs;
|
|
|
|
- GPIOs themselves; and
|
|
|
|
- GPIO controllers ("gpio_chip" instances).
|
|
|
|
That's in addition to standard files including the "device" symlink.
|
|
|
|
The control interfaces are write-only:
|
|
|
|
/sys/class/gpio/
|
|
|
|
"export" ... Userspace may ask the kernel to export control of
|
|
a GPIO to userspace by writing its number to this file.
|
|
|
|
Example: "echo 19 > export" will create a "gpio19" node
|
|
for GPIO #19, if that's not requested by kernel code.
|
|
|
|
"unexport" ... Reverses the effect of exporting to userspace.
|
|
|
|
Example: "echo 19 > unexport" will remove a "gpio19"
|
|
node exported using the "export" file.
|
|
|
|
GPIO signals have paths like /sys/class/gpio/gpio42/ (for GPIO #42)
|
|
and have the following read/write attributes:
|
|
|
|
/sys/class/gpio/gpioN/
|
|
|
|
"direction" ... reads as either "in" or "out". This value may
|
|
normally be written. Writing as "out" defaults to
|
|
initializing the value as low. To ensure glitch free
|
|
operation, values "low" and "high" may be written to
|
|
configure the GPIO as an output with that initial value.
|
|
|
|
Note that this attribute *will not exist* if the kernel
|
|
doesn't support changing the direction of a GPIO, or
|
|
it was exported by kernel code that didn't explicitly
|
|
allow userspace to reconfigure this GPIO's direction.
|
|
|
|
"value" ... reads as either 0 (low) or 1 (high). If the GPIO
|
|
is configured as an output, this value may be written;
|
|
any nonzero value is treated as high.
|
|
|
|
If the pin can be configured as interrupt-generating interrupt
|
|
and if it has been configured to generate interrupts (see the
|
|
description of "edge"), you can poll(2) on that file and
|
|
poll(2) will return whenever the interrupt was triggered. If
|
|
you use poll(2), set the events POLLPRI and POLLERR. If you
|
|
use select(2), set the file descriptor in exceptfds. After
|
|
poll(2) returns, either lseek(2) to the beginning of the sysfs
|
|
file and read the new value or close the file and re-open it
|
|
to read the value.
|
|
|
|
"edge" ... reads as either "none", "rising", "falling", or
|
|
"both". Write these strings to select the signal edge(s)
|
|
that will make poll(2) on the "value" file return.
|
|
|
|
This file exists only if the pin can be configured as an
|
|
interrupt generating input pin.
|
|
|
|
"active_low" ... reads as either 0 (false) or 1 (true). Write
|
|
any nonzero value to invert the value attribute both
|
|
for reading and writing. Existing and subsequent
|
|
poll(2) support configuration via the edge attribute
|
|
for "rising" and "falling" edges will follow this
|
|
setting.
|
|
|
|
GPIO controllers have paths like /sys/class/gpio/gpiochip42/ (for the
|
|
controller implementing GPIOs starting at #42) and have the following
|
|
read-only attributes:
|
|
|
|
/sys/class/gpio/gpiochipN/
|
|
|
|
"base" ... same as N, the first GPIO managed by this chip
|
|
|
|
"label" ... provided for diagnostics (not always unique)
|
|
|
|
"ngpio" ... how many GPIOs this manges (N to N + ngpio - 1)
|
|
|
|
Board documentation should in most cases cover what GPIOs are used for
|
|
what purposes. However, those numbers are not always stable; GPIOs on
|
|
a daughtercard might be different depending on the base board being used,
|
|
or other cards in the stack. In such cases, you may need to use the
|
|
gpiochip nodes (possibly in conjunction with schematics) to determine
|
|
the correct GPIO number to use for a given signal.
|
|
|
|
|
|
Exporting from Kernel code
|
|
--------------------------
|
|
Kernel code can explicitly manage exports of GPIOs which have already been
|
|
requested using gpio_request():
|
|
|
|
/* export the GPIO to userspace */
|
|
int gpiod_export(struct gpio_desc *desc, bool direction_may_change);
|
|
|
|
/* reverse gpio_export() */
|
|
void gpiod_unexport(struct gpio_desc *desc);
|
|
|
|
/* create a sysfs link to an exported GPIO node */
|
|
int gpiod_export_link(struct device *dev, const char *name,
|
|
struct gpio_desc *desc);
|
|
|
|
/* change the polarity of a GPIO node in sysfs */
|
|
int gpiod_sysfs_set_active_low(struct gpio_desc *desc, int value);
|
|
|
|
After a kernel driver requests a GPIO, it may only be made available in
|
|
the sysfs interface by gpiod_export(). The driver can control whether the
|
|
signal direction may change. This helps drivers prevent userspace code
|
|
from accidentally clobbering important system state.
|
|
|
|
This explicit exporting can help with debugging (by making some kinds
|
|
of experiments easier), or can provide an always-there interface that's
|
|
suitable for documenting as part of a board support package.
|
|
|
|
After the GPIO has been exported, gpiod_export_link() allows creating
|
|
symlinks from elsewhere in sysfs to the GPIO sysfs node. Drivers can
|
|
use this to provide the interface under their own device in sysfs with
|
|
a descriptive name.
|
|
|
|
Drivers can use gpiod_sysfs_set_active_low() to hide GPIO line polarity
|
|
differences between boards from user space. Polarity change can be done both
|
|
before and after gpiod_export(), and previously enabled poll(2) support for
|
|
either rising or falling edge will be reconfigured to follow this setting.
|