mirror of
https://github.com/torvalds/linux.git
synced 2024-11-25 13:41:51 +00:00
1a52a094c2
The members "start" and "end" of struct resource are of type "resource_size_t" which can be 32bit wide. Values read from OF however are always 64bit wide. Refactor the diff overflow checks into a helper function. Also extend the checks to validate each calculation step. Signed-off-by: Thomas Weißschuh <thomas.weissschuh@linutronix.de> Link: https://lore.kernel.org/r/20240906-of-address-overflow-v1-1-19567aaa61da@linutronix.de [robh: Fix to not return error on 0 sized resource] Signed-off-by: Rob Herring (Arm) <robh@kernel.org>
1175 lines
30 KiB
C
1175 lines
30 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
#define pr_fmt(fmt) "OF: " fmt
|
|
|
|
#include <linux/device.h>
|
|
#include <linux/fwnode.h>
|
|
#include <linux/io.h>
|
|
#include <linux/ioport.h>
|
|
#include <linux/logic_pio.h>
|
|
#include <linux/module.h>
|
|
#include <linux/of_address.h>
|
|
#include <linux/overflow.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/pci_regs.h>
|
|
#include <linux/sizes.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/string.h>
|
|
#include <linux/dma-direct.h> /* for bus_dma_region */
|
|
|
|
#include "of_private.h"
|
|
|
|
/* Max address size we deal with */
|
|
#define OF_MAX_ADDR_CELLS 4
|
|
#define OF_CHECK_ADDR_COUNT(na) ((na) > 0 && (na) <= OF_MAX_ADDR_CELLS)
|
|
#define OF_CHECK_COUNTS(na, ns) (OF_CHECK_ADDR_COUNT(na) && (ns) > 0)
|
|
|
|
/* Debug utility */
|
|
#ifdef DEBUG
|
|
static void of_dump_addr(const char *s, const __be32 *addr, int na)
|
|
{
|
|
pr_debug("%s", s);
|
|
while (na--)
|
|
pr_cont(" %08x", be32_to_cpu(*(addr++)));
|
|
pr_cont("\n");
|
|
}
|
|
#else
|
|
static void of_dump_addr(const char *s, const __be32 *addr, int na) { }
|
|
#endif
|
|
|
|
/* Callbacks for bus specific translators */
|
|
struct of_bus {
|
|
const char *name;
|
|
const char *addresses;
|
|
int (*match)(struct device_node *parent);
|
|
void (*count_cells)(struct device_node *child,
|
|
int *addrc, int *sizec);
|
|
u64 (*map)(__be32 *addr, const __be32 *range,
|
|
int na, int ns, int pna, int fna);
|
|
int (*translate)(__be32 *addr, u64 offset, int na);
|
|
int flag_cells;
|
|
unsigned int (*get_flags)(const __be32 *addr);
|
|
};
|
|
|
|
/*
|
|
* Default translator (generic bus)
|
|
*/
|
|
|
|
static void of_bus_default_count_cells(struct device_node *dev,
|
|
int *addrc, int *sizec)
|
|
{
|
|
if (addrc)
|
|
*addrc = of_n_addr_cells(dev);
|
|
if (sizec)
|
|
*sizec = of_n_size_cells(dev);
|
|
}
|
|
|
|
static u64 of_bus_default_map(__be32 *addr, const __be32 *range,
|
|
int na, int ns, int pna, int fna)
|
|
{
|
|
u64 cp, s, da;
|
|
|
|
cp = of_read_number(range + fna, na - fna);
|
|
s = of_read_number(range + na + pna, ns);
|
|
da = of_read_number(addr + fna, na - fna);
|
|
|
|
pr_debug("default map, cp=%llx, s=%llx, da=%llx\n", cp, s, da);
|
|
|
|
if (da < cp || da >= (cp + s))
|
|
return OF_BAD_ADDR;
|
|
return da - cp;
|
|
}
|
|
|
|
static int of_bus_default_translate(__be32 *addr, u64 offset, int na)
|
|
{
|
|
u64 a = of_read_number(addr, na);
|
|
memset(addr, 0, na * 4);
|
|
a += offset;
|
|
if (na > 1)
|
|
addr[na - 2] = cpu_to_be32(a >> 32);
|
|
addr[na - 1] = cpu_to_be32(a & 0xffffffffu);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static unsigned int of_bus_default_flags_get_flags(const __be32 *addr)
|
|
{
|
|
return of_read_number(addr, 1);
|
|
}
|
|
|
|
static unsigned int of_bus_default_get_flags(const __be32 *addr)
|
|
{
|
|
return IORESOURCE_MEM;
|
|
}
|
|
|
|
static u64 of_bus_default_flags_map(__be32 *addr, const __be32 *range, int na,
|
|
int ns, int pna, int fna)
|
|
{
|
|
/* Check that flags match */
|
|
if (*addr != *range)
|
|
return OF_BAD_ADDR;
|
|
|
|
return of_bus_default_map(addr, range, na, ns, pna, fna);
|
|
}
|
|
|
|
static int of_bus_default_flags_translate(__be32 *addr, u64 offset, int na)
|
|
{
|
|
/* Keep "flags" part (high cell) in translated address */
|
|
return of_bus_default_translate(addr + 1, offset, na - 1);
|
|
}
|
|
|
|
#ifdef CONFIG_PCI
|
|
static unsigned int of_bus_pci_get_flags(const __be32 *addr)
|
|
{
|
|
unsigned int flags = 0;
|
|
u32 w = be32_to_cpup(addr);
|
|
|
|
if (!IS_ENABLED(CONFIG_PCI))
|
|
return 0;
|
|
|
|
switch((w >> 24) & 0x03) {
|
|
case 0x01:
|
|
flags |= IORESOURCE_IO;
|
|
break;
|
|
case 0x02: /* 32 bits */
|
|
flags |= IORESOURCE_MEM;
|
|
break;
|
|
|
|
case 0x03: /* 64 bits */
|
|
flags |= IORESOURCE_MEM | IORESOURCE_MEM_64;
|
|
break;
|
|
}
|
|
if (w & 0x40000000)
|
|
flags |= IORESOURCE_PREFETCH;
|
|
return flags;
|
|
}
|
|
|
|
/*
|
|
* PCI bus specific translator
|
|
*/
|
|
|
|
static bool of_node_is_pcie(struct device_node *np)
|
|
{
|
|
bool is_pcie = of_node_name_eq(np, "pcie");
|
|
|
|
if (is_pcie)
|
|
pr_warn_once("%pOF: Missing device_type\n", np);
|
|
|
|
return is_pcie;
|
|
}
|
|
|
|
static int of_bus_pci_match(struct device_node *np)
|
|
{
|
|
/*
|
|
* "pciex" is PCI Express
|
|
* "vci" is for the /chaos bridge on 1st-gen PCI powermacs
|
|
* "ht" is hypertransport
|
|
*
|
|
* If none of the device_type match, and that the node name is
|
|
* "pcie", accept the device as PCI (with a warning).
|
|
*/
|
|
return of_node_is_type(np, "pci") || of_node_is_type(np, "pciex") ||
|
|
of_node_is_type(np, "vci") || of_node_is_type(np, "ht") ||
|
|
of_node_is_pcie(np);
|
|
}
|
|
|
|
static void of_bus_pci_count_cells(struct device_node *np,
|
|
int *addrc, int *sizec)
|
|
{
|
|
if (addrc)
|
|
*addrc = 3;
|
|
if (sizec)
|
|
*sizec = 2;
|
|
}
|
|
|
|
static u64 of_bus_pci_map(__be32 *addr, const __be32 *range, int na, int ns,
|
|
int pna, int fna)
|
|
{
|
|
unsigned int af, rf;
|
|
|
|
af = of_bus_pci_get_flags(addr);
|
|
rf = of_bus_pci_get_flags(range);
|
|
|
|
/* Check address type match */
|
|
if ((af ^ rf) & (IORESOURCE_MEM | IORESOURCE_IO))
|
|
return OF_BAD_ADDR;
|
|
|
|
return of_bus_default_map(addr, range, na, ns, pna, fna);
|
|
}
|
|
|
|
#endif /* CONFIG_PCI */
|
|
|
|
static int __of_address_resource_bounds(struct resource *r, u64 start, u64 size)
|
|
{
|
|
u64 end = start;
|
|
|
|
if (overflows_type(start, r->start))
|
|
return -EOVERFLOW;
|
|
if (size && check_add_overflow(end, size - 1, &end))
|
|
return -EOVERFLOW;
|
|
if (overflows_type(end, r->end))
|
|
return -EOVERFLOW;
|
|
|
|
r->start = start;
|
|
r->end = end;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* of_pci_range_to_resource - Create a resource from an of_pci_range
|
|
* @range: the PCI range that describes the resource
|
|
* @np: device node where the range belongs to
|
|
* @res: pointer to a valid resource that will be updated to
|
|
* reflect the values contained in the range.
|
|
*
|
|
* Returns -EINVAL if the range cannot be converted to resource.
|
|
*
|
|
* Note that if the range is an IO range, the resource will be converted
|
|
* using pci_address_to_pio() which can fail if it is called too early or
|
|
* if the range cannot be matched to any host bridge IO space (our case here).
|
|
* To guard against that we try to register the IO range first.
|
|
* If that fails we know that pci_address_to_pio() will do too.
|
|
*/
|
|
int of_pci_range_to_resource(struct of_pci_range *range,
|
|
struct device_node *np, struct resource *res)
|
|
{
|
|
u64 start;
|
|
int err;
|
|
res->flags = range->flags;
|
|
res->parent = res->child = res->sibling = NULL;
|
|
res->name = np->full_name;
|
|
|
|
if (res->flags & IORESOURCE_IO) {
|
|
unsigned long port;
|
|
err = pci_register_io_range(&np->fwnode, range->cpu_addr,
|
|
range->size);
|
|
if (err)
|
|
goto invalid_range;
|
|
port = pci_address_to_pio(range->cpu_addr);
|
|
if (port == (unsigned long)-1) {
|
|
err = -EINVAL;
|
|
goto invalid_range;
|
|
}
|
|
start = port;
|
|
} else {
|
|
start = range->cpu_addr;
|
|
}
|
|
return __of_address_resource_bounds(res, start, range->size);
|
|
|
|
invalid_range:
|
|
res->start = (resource_size_t)OF_BAD_ADDR;
|
|
res->end = (resource_size_t)OF_BAD_ADDR;
|
|
return err;
|
|
}
|
|
EXPORT_SYMBOL(of_pci_range_to_resource);
|
|
|
|
/*
|
|
* of_range_to_resource - Create a resource from a ranges entry
|
|
* @np: device node where the range belongs to
|
|
* @index: the 'ranges' index to convert to a resource
|
|
* @res: pointer to a valid resource that will be updated to
|
|
* reflect the values contained in the range.
|
|
*
|
|
* Returns -ENOENT if the entry is not found or -EOVERFLOW if the range
|
|
* cannot be converted to resource.
|
|
*/
|
|
int of_range_to_resource(struct device_node *np, int index, struct resource *res)
|
|
{
|
|
int ret, i = 0;
|
|
struct of_range_parser parser;
|
|
struct of_range range;
|
|
|
|
ret = of_range_parser_init(&parser, np);
|
|
if (ret)
|
|
return ret;
|
|
|
|
for_each_of_range(&parser, &range)
|
|
if (i++ == index)
|
|
return of_pci_range_to_resource(&range, np, res);
|
|
|
|
return -ENOENT;
|
|
}
|
|
EXPORT_SYMBOL(of_range_to_resource);
|
|
|
|
/*
|
|
* ISA bus specific translator
|
|
*/
|
|
|
|
static int of_bus_isa_match(struct device_node *np)
|
|
{
|
|
return of_node_name_eq(np, "isa");
|
|
}
|
|
|
|
static void of_bus_isa_count_cells(struct device_node *child,
|
|
int *addrc, int *sizec)
|
|
{
|
|
if (addrc)
|
|
*addrc = 2;
|
|
if (sizec)
|
|
*sizec = 1;
|
|
}
|
|
|
|
static u64 of_bus_isa_map(__be32 *addr, const __be32 *range, int na, int ns,
|
|
int pna, int fna)
|
|
{
|
|
/* Check address type match */
|
|
if ((addr[0] ^ range[0]) & cpu_to_be32(1))
|
|
return OF_BAD_ADDR;
|
|
|
|
return of_bus_default_map(addr, range, na, ns, pna, fna);
|
|
}
|
|
|
|
static unsigned int of_bus_isa_get_flags(const __be32 *addr)
|
|
{
|
|
unsigned int flags = 0;
|
|
u32 w = be32_to_cpup(addr);
|
|
|
|
if (w & 1)
|
|
flags |= IORESOURCE_IO;
|
|
else
|
|
flags |= IORESOURCE_MEM;
|
|
return flags;
|
|
}
|
|
|
|
static int of_bus_default_flags_match(struct device_node *np)
|
|
{
|
|
return of_bus_n_addr_cells(np) == 3;
|
|
}
|
|
|
|
/*
|
|
* Array of bus specific translators
|
|
*/
|
|
|
|
static struct of_bus of_busses[] = {
|
|
#ifdef CONFIG_PCI
|
|
/* PCI */
|
|
{
|
|
.name = "pci",
|
|
.addresses = "assigned-addresses",
|
|
.match = of_bus_pci_match,
|
|
.count_cells = of_bus_pci_count_cells,
|
|
.map = of_bus_pci_map,
|
|
.translate = of_bus_default_flags_translate,
|
|
.flag_cells = 1,
|
|
.get_flags = of_bus_pci_get_flags,
|
|
},
|
|
#endif /* CONFIG_PCI */
|
|
/* ISA */
|
|
{
|
|
.name = "isa",
|
|
.addresses = "reg",
|
|
.match = of_bus_isa_match,
|
|
.count_cells = of_bus_isa_count_cells,
|
|
.map = of_bus_isa_map,
|
|
.translate = of_bus_default_flags_translate,
|
|
.flag_cells = 1,
|
|
.get_flags = of_bus_isa_get_flags,
|
|
},
|
|
/* Default with flags cell */
|
|
{
|
|
.name = "default-flags",
|
|
.addresses = "reg",
|
|
.match = of_bus_default_flags_match,
|
|
.count_cells = of_bus_default_count_cells,
|
|
.map = of_bus_default_flags_map,
|
|
.translate = of_bus_default_flags_translate,
|
|
.flag_cells = 1,
|
|
.get_flags = of_bus_default_flags_get_flags,
|
|
},
|
|
/* Default */
|
|
{
|
|
.name = "default",
|
|
.addresses = "reg",
|
|
.match = NULL,
|
|
.count_cells = of_bus_default_count_cells,
|
|
.map = of_bus_default_map,
|
|
.translate = of_bus_default_translate,
|
|
.get_flags = of_bus_default_get_flags,
|
|
},
|
|
};
|
|
|
|
static struct of_bus *of_match_bus(struct device_node *np)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(of_busses); i++)
|
|
if (!of_busses[i].match || of_busses[i].match(np))
|
|
return &of_busses[i];
|
|
BUG();
|
|
return NULL;
|
|
}
|
|
|
|
static int of_empty_ranges_quirk(struct device_node *np)
|
|
{
|
|
if (IS_ENABLED(CONFIG_PPC)) {
|
|
/* To save cycles, we cache the result for global "Mac" setting */
|
|
static int quirk_state = -1;
|
|
|
|
/* PA-SEMI sdc DT bug */
|
|
if (of_device_is_compatible(np, "1682m-sdc"))
|
|
return true;
|
|
|
|
/* Make quirk cached */
|
|
if (quirk_state < 0)
|
|
quirk_state =
|
|
of_machine_is_compatible("Power Macintosh") ||
|
|
of_machine_is_compatible("MacRISC");
|
|
return quirk_state;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static int of_translate_one(struct device_node *parent, struct of_bus *bus,
|
|
struct of_bus *pbus, __be32 *addr,
|
|
int na, int ns, int pna, const char *rprop)
|
|
{
|
|
const __be32 *ranges;
|
|
unsigned int rlen;
|
|
int rone;
|
|
u64 offset = OF_BAD_ADDR;
|
|
|
|
/*
|
|
* Normally, an absence of a "ranges" property means we are
|
|
* crossing a non-translatable boundary, and thus the addresses
|
|
* below the current cannot be converted to CPU physical ones.
|
|
* Unfortunately, while this is very clear in the spec, it's not
|
|
* what Apple understood, and they do have things like /uni-n or
|
|
* /ht nodes with no "ranges" property and a lot of perfectly
|
|
* useable mapped devices below them. Thus we treat the absence of
|
|
* "ranges" as equivalent to an empty "ranges" property which means
|
|
* a 1:1 translation at that level. It's up to the caller not to try
|
|
* to translate addresses that aren't supposed to be translated in
|
|
* the first place. --BenH.
|
|
*
|
|
* As far as we know, this damage only exists on Apple machines, so
|
|
* This code is only enabled on powerpc. --gcl
|
|
*
|
|
* This quirk also applies for 'dma-ranges' which frequently exist in
|
|
* child nodes without 'dma-ranges' in the parent nodes. --RobH
|
|
*/
|
|
ranges = of_get_property(parent, rprop, &rlen);
|
|
if (ranges == NULL && !of_empty_ranges_quirk(parent) &&
|
|
strcmp(rprop, "dma-ranges")) {
|
|
pr_debug("no ranges; cannot translate\n");
|
|
return 1;
|
|
}
|
|
if (ranges == NULL || rlen == 0) {
|
|
offset = of_read_number(addr, na);
|
|
memset(addr, 0, pna * 4);
|
|
pr_debug("empty ranges; 1:1 translation\n");
|
|
goto finish;
|
|
}
|
|
|
|
pr_debug("walking ranges...\n");
|
|
|
|
/* Now walk through the ranges */
|
|
rlen /= 4;
|
|
rone = na + pna + ns;
|
|
for (; rlen >= rone; rlen -= rone, ranges += rone) {
|
|
offset = bus->map(addr, ranges, na, ns, pna, bus->flag_cells);
|
|
if (offset != OF_BAD_ADDR)
|
|
break;
|
|
}
|
|
if (offset == OF_BAD_ADDR) {
|
|
pr_debug("not found !\n");
|
|
return 1;
|
|
}
|
|
memcpy(addr, ranges + na, 4 * pna);
|
|
|
|
finish:
|
|
of_dump_addr("parent translation for:", addr, pna);
|
|
pr_debug("with offset: %llx\n", offset);
|
|
|
|
/* Translate it into parent bus space */
|
|
return pbus->translate(addr, offset, pna);
|
|
}
|
|
|
|
/*
|
|
* Translate an address from the device-tree into a CPU physical address,
|
|
* this walks up the tree and applies the various bus mappings on the
|
|
* way.
|
|
*
|
|
* Note: We consider that crossing any level with #size-cells == 0 to mean
|
|
* that translation is impossible (that is we are not dealing with a value
|
|
* that can be mapped to a cpu physical address). This is not really specified
|
|
* that way, but this is traditionally the way IBM at least do things
|
|
*
|
|
* Whenever the translation fails, the *host pointer will be set to the
|
|
* device that had registered logical PIO mapping, and the return code is
|
|
* relative to that node.
|
|
*/
|
|
static u64 __of_translate_address(struct device_node *node,
|
|
struct device_node *(*get_parent)(const struct device_node *),
|
|
const __be32 *in_addr, const char *rprop,
|
|
struct device_node **host)
|
|
{
|
|
struct device_node *dev __free(device_node) = of_node_get(node);
|
|
struct device_node *parent __free(device_node) = get_parent(dev);
|
|
struct of_bus *bus, *pbus;
|
|
__be32 addr[OF_MAX_ADDR_CELLS];
|
|
int na, ns, pna, pns;
|
|
|
|
pr_debug("** translation for device %pOF **\n", dev);
|
|
|
|
*host = NULL;
|
|
|
|
if (parent == NULL)
|
|
return OF_BAD_ADDR;
|
|
bus = of_match_bus(parent);
|
|
|
|
/* Count address cells & copy address locally */
|
|
bus->count_cells(dev, &na, &ns);
|
|
if (!OF_CHECK_COUNTS(na, ns)) {
|
|
pr_debug("Bad cell count for %pOF\n", dev);
|
|
return OF_BAD_ADDR;
|
|
}
|
|
memcpy(addr, in_addr, na * 4);
|
|
|
|
pr_debug("bus is %s (na=%d, ns=%d) on %pOF\n",
|
|
bus->name, na, ns, parent);
|
|
of_dump_addr("translating address:", addr, na);
|
|
|
|
/* Translate */
|
|
for (;;) {
|
|
struct logic_pio_hwaddr *iorange;
|
|
|
|
/* Switch to parent bus */
|
|
of_node_put(dev);
|
|
dev = parent;
|
|
parent = get_parent(dev);
|
|
|
|
/* If root, we have finished */
|
|
if (parent == NULL) {
|
|
pr_debug("reached root node\n");
|
|
return of_read_number(addr, na);
|
|
}
|
|
|
|
/*
|
|
* For indirectIO device which has no ranges property, get
|
|
* the address from reg directly.
|
|
*/
|
|
iorange = find_io_range_by_fwnode(&dev->fwnode);
|
|
if (iorange && (iorange->flags != LOGIC_PIO_CPU_MMIO)) {
|
|
u64 result = of_read_number(addr + 1, na - 1);
|
|
pr_debug("indirectIO matched(%pOF) 0x%llx\n",
|
|
dev, result);
|
|
*host = no_free_ptr(dev);
|
|
return result;
|
|
}
|
|
|
|
/* Get new parent bus and counts */
|
|
pbus = of_match_bus(parent);
|
|
pbus->count_cells(dev, &pna, &pns);
|
|
if (!OF_CHECK_COUNTS(pna, pns)) {
|
|
pr_err("Bad cell count for %pOF\n", dev);
|
|
return OF_BAD_ADDR;
|
|
}
|
|
|
|
pr_debug("parent bus is %s (na=%d, ns=%d) on %pOF\n",
|
|
pbus->name, pna, pns, parent);
|
|
|
|
/* Apply bus translation */
|
|
if (of_translate_one(dev, bus, pbus, addr, na, ns, pna, rprop))
|
|
return OF_BAD_ADDR;
|
|
|
|
/* Complete the move up one level */
|
|
na = pna;
|
|
ns = pns;
|
|
bus = pbus;
|
|
|
|
of_dump_addr("one level translation:", addr, na);
|
|
}
|
|
|
|
unreachable();
|
|
}
|
|
|
|
u64 of_translate_address(struct device_node *dev, const __be32 *in_addr)
|
|
{
|
|
struct device_node *host;
|
|
u64 ret;
|
|
|
|
ret = __of_translate_address(dev, of_get_parent,
|
|
in_addr, "ranges", &host);
|
|
if (host) {
|
|
of_node_put(host);
|
|
return OF_BAD_ADDR;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(of_translate_address);
|
|
|
|
#ifdef CONFIG_HAS_DMA
|
|
struct device_node *__of_get_dma_parent(const struct device_node *np)
|
|
{
|
|
struct of_phandle_args args;
|
|
int ret, index;
|
|
|
|
index = of_property_match_string(np, "interconnect-names", "dma-mem");
|
|
if (index < 0)
|
|
return of_get_parent(np);
|
|
|
|
ret = of_parse_phandle_with_args(np, "interconnects",
|
|
"#interconnect-cells",
|
|
index, &args);
|
|
if (ret < 0)
|
|
return of_get_parent(np);
|
|
|
|
return of_node_get(args.np);
|
|
}
|
|
#endif
|
|
|
|
static struct device_node *of_get_next_dma_parent(struct device_node *np)
|
|
{
|
|
struct device_node *parent;
|
|
|
|
parent = __of_get_dma_parent(np);
|
|
of_node_put(np);
|
|
|
|
return parent;
|
|
}
|
|
|
|
u64 of_translate_dma_address(struct device_node *dev, const __be32 *in_addr)
|
|
{
|
|
struct device_node *host;
|
|
u64 ret;
|
|
|
|
ret = __of_translate_address(dev, __of_get_dma_parent,
|
|
in_addr, "dma-ranges", &host);
|
|
|
|
if (host) {
|
|
of_node_put(host);
|
|
return OF_BAD_ADDR;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(of_translate_dma_address);
|
|
|
|
/**
|
|
* of_translate_dma_region - Translate device tree address and size tuple
|
|
* @dev: device tree node for which to translate
|
|
* @prop: pointer into array of cells
|
|
* @start: return value for the start of the DMA range
|
|
* @length: return value for the length of the DMA range
|
|
*
|
|
* Returns a pointer to the cell immediately following the translated DMA region.
|
|
*/
|
|
const __be32 *of_translate_dma_region(struct device_node *dev, const __be32 *prop,
|
|
phys_addr_t *start, size_t *length)
|
|
{
|
|
struct device_node *parent __free(device_node) = __of_get_dma_parent(dev);
|
|
u64 address, size;
|
|
int na, ns;
|
|
|
|
if (!parent)
|
|
return NULL;
|
|
|
|
na = of_bus_n_addr_cells(parent);
|
|
ns = of_bus_n_size_cells(parent);
|
|
|
|
address = of_translate_dma_address(dev, prop);
|
|
if (address == OF_BAD_ADDR)
|
|
return NULL;
|
|
|
|
size = of_read_number(prop + na, ns);
|
|
|
|
if (start)
|
|
*start = address;
|
|
|
|
if (length)
|
|
*length = size;
|
|
|
|
return prop + na + ns;
|
|
}
|
|
EXPORT_SYMBOL(of_translate_dma_region);
|
|
|
|
const __be32 *__of_get_address(struct device_node *dev, int index, int bar_no,
|
|
u64 *size, unsigned int *flags)
|
|
{
|
|
const __be32 *prop;
|
|
unsigned int psize;
|
|
struct device_node *parent __free(device_node) = of_get_parent(dev);
|
|
struct of_bus *bus;
|
|
int onesize, i, na, ns;
|
|
|
|
if (parent == NULL)
|
|
return NULL;
|
|
|
|
/* match the parent's bus type */
|
|
bus = of_match_bus(parent);
|
|
if (strcmp(bus->name, "pci") && (bar_no >= 0))
|
|
return NULL;
|
|
|
|
bus->count_cells(dev, &na, &ns);
|
|
if (!OF_CHECK_ADDR_COUNT(na))
|
|
return NULL;
|
|
|
|
/* Get "reg" or "assigned-addresses" property */
|
|
prop = of_get_property(dev, bus->addresses, &psize);
|
|
if (prop == NULL)
|
|
return NULL;
|
|
psize /= 4;
|
|
|
|
onesize = na + ns;
|
|
for (i = 0; psize >= onesize; psize -= onesize, prop += onesize, i++) {
|
|
u32 val = be32_to_cpu(prop[0]);
|
|
/* PCI bus matches on BAR number instead of index */
|
|
if (((bar_no >= 0) && ((val & 0xff) == ((bar_no * 4) + PCI_BASE_ADDRESS_0))) ||
|
|
((index >= 0) && (i == index))) {
|
|
if (size)
|
|
*size = of_read_number(prop + na, ns);
|
|
if (flags)
|
|
*flags = bus->get_flags(prop);
|
|
return prop;
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
EXPORT_SYMBOL(__of_get_address);
|
|
|
|
/**
|
|
* of_property_read_reg - Retrieve the specified "reg" entry index without translating
|
|
* @np: device tree node for which to retrieve "reg" from
|
|
* @idx: "reg" entry index to read
|
|
* @addr: return value for the untranslated address
|
|
* @size: return value for the entry size
|
|
*
|
|
* Returns -EINVAL if "reg" is not found. Returns 0 on success with addr and
|
|
* size values filled in.
|
|
*/
|
|
int of_property_read_reg(struct device_node *np, int idx, u64 *addr, u64 *size)
|
|
{
|
|
const __be32 *prop = of_get_address(np, idx, size, NULL);
|
|
|
|
if (!prop)
|
|
return -EINVAL;
|
|
|
|
*addr = of_read_number(prop, of_n_addr_cells(np));
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(of_property_read_reg);
|
|
|
|
static int parser_init(struct of_pci_range_parser *parser,
|
|
struct device_node *node, const char *name)
|
|
{
|
|
int rlen;
|
|
|
|
parser->node = node;
|
|
parser->pna = of_n_addr_cells(node);
|
|
parser->na = of_bus_n_addr_cells(node);
|
|
parser->ns = of_bus_n_size_cells(node);
|
|
parser->dma = !strcmp(name, "dma-ranges");
|
|
parser->bus = of_match_bus(node);
|
|
|
|
parser->range = of_get_property(node, name, &rlen);
|
|
if (parser->range == NULL)
|
|
return -ENOENT;
|
|
|
|
parser->end = parser->range + rlen / sizeof(__be32);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int of_pci_range_parser_init(struct of_pci_range_parser *parser,
|
|
struct device_node *node)
|
|
{
|
|
return parser_init(parser, node, "ranges");
|
|
}
|
|
EXPORT_SYMBOL_GPL(of_pci_range_parser_init);
|
|
|
|
int of_pci_dma_range_parser_init(struct of_pci_range_parser *parser,
|
|
struct device_node *node)
|
|
{
|
|
return parser_init(parser, node, "dma-ranges");
|
|
}
|
|
EXPORT_SYMBOL_GPL(of_pci_dma_range_parser_init);
|
|
#define of_dma_range_parser_init of_pci_dma_range_parser_init
|
|
|
|
struct of_pci_range *of_pci_range_parser_one(struct of_pci_range_parser *parser,
|
|
struct of_pci_range *range)
|
|
{
|
|
int na = parser->na;
|
|
int ns = parser->ns;
|
|
int np = parser->pna + na + ns;
|
|
int busflag_na = parser->bus->flag_cells;
|
|
|
|
if (!range)
|
|
return NULL;
|
|
|
|
if (!parser->range || parser->range + np > parser->end)
|
|
return NULL;
|
|
|
|
range->flags = parser->bus->get_flags(parser->range);
|
|
|
|
range->bus_addr = of_read_number(parser->range + busflag_na, na - busflag_na);
|
|
|
|
if (parser->dma)
|
|
range->cpu_addr = of_translate_dma_address(parser->node,
|
|
parser->range + na);
|
|
else
|
|
range->cpu_addr = of_translate_address(parser->node,
|
|
parser->range + na);
|
|
range->size = of_read_number(parser->range + parser->pna + na, ns);
|
|
|
|
parser->range += np;
|
|
|
|
/* Now consume following elements while they are contiguous */
|
|
while (parser->range + np <= parser->end) {
|
|
u32 flags = 0;
|
|
u64 bus_addr, cpu_addr, size;
|
|
|
|
flags = parser->bus->get_flags(parser->range);
|
|
bus_addr = of_read_number(parser->range + busflag_na, na - busflag_na);
|
|
if (parser->dma)
|
|
cpu_addr = of_translate_dma_address(parser->node,
|
|
parser->range + na);
|
|
else
|
|
cpu_addr = of_translate_address(parser->node,
|
|
parser->range + na);
|
|
size = of_read_number(parser->range + parser->pna + na, ns);
|
|
|
|
if (flags != range->flags)
|
|
break;
|
|
if (bus_addr != range->bus_addr + range->size ||
|
|
cpu_addr != range->cpu_addr + range->size)
|
|
break;
|
|
|
|
range->size += size;
|
|
parser->range += np;
|
|
}
|
|
|
|
return range;
|
|
}
|
|
EXPORT_SYMBOL_GPL(of_pci_range_parser_one);
|
|
|
|
static u64 of_translate_ioport(struct device_node *dev, const __be32 *in_addr,
|
|
u64 size)
|
|
{
|
|
u64 taddr;
|
|
unsigned long port;
|
|
struct device_node *host;
|
|
|
|
taddr = __of_translate_address(dev, of_get_parent,
|
|
in_addr, "ranges", &host);
|
|
if (host) {
|
|
/* host-specific port access */
|
|
port = logic_pio_trans_hwaddr(&host->fwnode, taddr, size);
|
|
of_node_put(host);
|
|
} else {
|
|
/* memory-mapped I/O range */
|
|
port = pci_address_to_pio(taddr);
|
|
}
|
|
|
|
if (port == (unsigned long)-1)
|
|
return OF_BAD_ADDR;
|
|
|
|
return port;
|
|
}
|
|
|
|
#ifdef CONFIG_HAS_DMA
|
|
/**
|
|
* of_dma_get_range - Get DMA range info and put it into a map array
|
|
* @np: device node to get DMA range info
|
|
* @map: dma range structure to return
|
|
*
|
|
* Look in bottom up direction for the first "dma-ranges" property
|
|
* and parse it. Put the information into a DMA offset map array.
|
|
*
|
|
* dma-ranges format:
|
|
* DMA addr (dma_addr) : naddr cells
|
|
* CPU addr (phys_addr_t) : pna cells
|
|
* size : nsize cells
|
|
*
|
|
* It returns -ENODEV if "dma-ranges" property was not found for this
|
|
* device in the DT.
|
|
*/
|
|
int of_dma_get_range(struct device_node *np, const struct bus_dma_region **map)
|
|
{
|
|
struct device_node *node __free(device_node) = of_node_get(np);
|
|
const __be32 *ranges = NULL;
|
|
bool found_dma_ranges = false;
|
|
struct of_range_parser parser;
|
|
struct of_range range;
|
|
struct bus_dma_region *r;
|
|
int len, num_ranges = 0;
|
|
|
|
while (node) {
|
|
ranges = of_get_property(node, "dma-ranges", &len);
|
|
|
|
/* Ignore empty ranges, they imply no translation required */
|
|
if (ranges && len > 0)
|
|
break;
|
|
|
|
/* Once we find 'dma-ranges', then a missing one is an error */
|
|
if (found_dma_ranges && !ranges)
|
|
return -ENODEV;
|
|
|
|
found_dma_ranges = true;
|
|
|
|
node = of_get_next_dma_parent(node);
|
|
}
|
|
|
|
if (!node || !ranges) {
|
|
pr_debug("no dma-ranges found for node(%pOF)\n", np);
|
|
return -ENODEV;
|
|
}
|
|
of_dma_range_parser_init(&parser, node);
|
|
for_each_of_range(&parser, &range) {
|
|
if (range.cpu_addr == OF_BAD_ADDR) {
|
|
pr_err("translation of DMA address(%llx) to CPU address failed node(%pOF)\n",
|
|
range.bus_addr, node);
|
|
continue;
|
|
}
|
|
num_ranges++;
|
|
}
|
|
|
|
if (!num_ranges)
|
|
return -EINVAL;
|
|
|
|
r = kcalloc(num_ranges + 1, sizeof(*r), GFP_KERNEL);
|
|
if (!r)
|
|
return -ENOMEM;
|
|
|
|
/*
|
|
* Record all info in the generic DMA ranges array for struct device,
|
|
* returning an error if we don't find any parsable ranges.
|
|
*/
|
|
*map = r;
|
|
of_dma_range_parser_init(&parser, node);
|
|
for_each_of_range(&parser, &range) {
|
|
pr_debug("dma_addr(%llx) cpu_addr(%llx) size(%llx)\n",
|
|
range.bus_addr, range.cpu_addr, range.size);
|
|
if (range.cpu_addr == OF_BAD_ADDR)
|
|
continue;
|
|
r->cpu_start = range.cpu_addr;
|
|
r->dma_start = range.bus_addr;
|
|
r->size = range.size;
|
|
r++;
|
|
}
|
|
return 0;
|
|
}
|
|
#endif /* CONFIG_HAS_DMA */
|
|
|
|
/**
|
|
* of_dma_get_max_cpu_address - Gets highest CPU address suitable for DMA
|
|
* @np: The node to start searching from or NULL to start from the root
|
|
*
|
|
* Gets the highest CPU physical address that is addressable by all DMA masters
|
|
* in the sub-tree pointed by np, or the whole tree if NULL is passed. If no
|
|
* DMA constrained device is found, it returns PHYS_ADDR_MAX.
|
|
*/
|
|
phys_addr_t __init of_dma_get_max_cpu_address(struct device_node *np)
|
|
{
|
|
phys_addr_t max_cpu_addr = PHYS_ADDR_MAX;
|
|
struct of_range_parser parser;
|
|
phys_addr_t subtree_max_addr;
|
|
struct device_node *child;
|
|
struct of_range range;
|
|
const __be32 *ranges;
|
|
u64 cpu_end = 0;
|
|
int len;
|
|
|
|
if (!np)
|
|
np = of_root;
|
|
|
|
ranges = of_get_property(np, "dma-ranges", &len);
|
|
if (ranges && len) {
|
|
of_dma_range_parser_init(&parser, np);
|
|
for_each_of_range(&parser, &range)
|
|
if (range.cpu_addr + range.size > cpu_end)
|
|
cpu_end = range.cpu_addr + range.size - 1;
|
|
|
|
if (max_cpu_addr > cpu_end)
|
|
max_cpu_addr = cpu_end;
|
|
}
|
|
|
|
for_each_available_child_of_node(np, child) {
|
|
subtree_max_addr = of_dma_get_max_cpu_address(child);
|
|
if (max_cpu_addr > subtree_max_addr)
|
|
max_cpu_addr = subtree_max_addr;
|
|
}
|
|
|
|
return max_cpu_addr;
|
|
}
|
|
|
|
/**
|
|
* of_dma_is_coherent - Check if device is coherent
|
|
* @np: device node
|
|
*
|
|
* It returns true if "dma-coherent" property was found
|
|
* for this device in the DT, or if DMA is coherent by
|
|
* default for OF devices on the current platform and no
|
|
* "dma-noncoherent" property was found for this device.
|
|
*/
|
|
bool of_dma_is_coherent(struct device_node *np)
|
|
{
|
|
struct device_node *node __free(device_node) = of_node_get(np);
|
|
|
|
while (node) {
|
|
if (of_property_read_bool(node, "dma-coherent"))
|
|
return true;
|
|
|
|
if (of_property_read_bool(node, "dma-noncoherent"))
|
|
return false;
|
|
|
|
node = of_get_next_dma_parent(node);
|
|
}
|
|
return dma_default_coherent;
|
|
}
|
|
EXPORT_SYMBOL_GPL(of_dma_is_coherent);
|
|
|
|
/**
|
|
* of_mmio_is_nonposted - Check if device uses non-posted MMIO
|
|
* @np: device node
|
|
*
|
|
* Returns true if the "nonposted-mmio" property was found for
|
|
* the device's bus.
|
|
*
|
|
* This is currently only enabled on builds that support Apple ARM devices, as
|
|
* an optimization.
|
|
*/
|
|
static bool of_mmio_is_nonposted(struct device_node *np)
|
|
{
|
|
if (!IS_ENABLED(CONFIG_ARCH_APPLE))
|
|
return false;
|
|
|
|
struct device_node *parent __free(device_node) = of_get_parent(np);
|
|
if (!parent)
|
|
return false;
|
|
|
|
return of_property_read_bool(parent, "nonposted-mmio");
|
|
}
|
|
|
|
static int __of_address_to_resource(struct device_node *dev, int index, int bar_no,
|
|
struct resource *r)
|
|
{
|
|
u64 taddr;
|
|
const __be32 *addrp;
|
|
u64 size;
|
|
unsigned int flags;
|
|
const char *name = NULL;
|
|
|
|
addrp = __of_get_address(dev, index, bar_no, &size, &flags);
|
|
if (addrp == NULL)
|
|
return -EINVAL;
|
|
|
|
/* Get optional "reg-names" property to add a name to a resource */
|
|
if (index >= 0)
|
|
of_property_read_string_index(dev, "reg-names", index, &name);
|
|
|
|
if (flags & IORESOURCE_MEM)
|
|
taddr = of_translate_address(dev, addrp);
|
|
else if (flags & IORESOURCE_IO)
|
|
taddr = of_translate_ioport(dev, addrp, size);
|
|
else
|
|
return -EINVAL;
|
|
|
|
if (taddr == OF_BAD_ADDR)
|
|
return -EINVAL;
|
|
memset(r, 0, sizeof(struct resource));
|
|
|
|
if (of_mmio_is_nonposted(dev))
|
|
flags |= IORESOURCE_MEM_NONPOSTED;
|
|
|
|
r->flags = flags;
|
|
r->name = name ? name : dev->full_name;
|
|
|
|
return __of_address_resource_bounds(r, taddr, size);
|
|
}
|
|
|
|
/**
|
|
* of_address_to_resource - Translate device tree address and return as resource
|
|
* @dev: Caller's Device Node
|
|
* @index: Index into the array
|
|
* @r: Pointer to resource array
|
|
*
|
|
* Returns -EINVAL if the range cannot be converted to resource.
|
|
*
|
|
* Note that if your address is a PIO address, the conversion will fail if
|
|
* the physical address can't be internally converted to an IO token with
|
|
* pci_address_to_pio(), that is because it's either called too early or it
|
|
* can't be matched to any host bridge IO space
|
|
*/
|
|
int of_address_to_resource(struct device_node *dev, int index,
|
|
struct resource *r)
|
|
{
|
|
return __of_address_to_resource(dev, index, -1, r);
|
|
}
|
|
EXPORT_SYMBOL_GPL(of_address_to_resource);
|
|
|
|
int of_pci_address_to_resource(struct device_node *dev, int bar,
|
|
struct resource *r)
|
|
{
|
|
|
|
if (!IS_ENABLED(CONFIG_PCI))
|
|
return -ENOSYS;
|
|
|
|
return __of_address_to_resource(dev, -1, bar, r);
|
|
}
|
|
EXPORT_SYMBOL_GPL(of_pci_address_to_resource);
|
|
|
|
/**
|
|
* of_iomap - Maps the memory mapped IO for a given device_node
|
|
* @np: the device whose io range will be mapped
|
|
* @index: index of the io range
|
|
*
|
|
* Returns a pointer to the mapped memory
|
|
*/
|
|
void __iomem *of_iomap(struct device_node *np, int index)
|
|
{
|
|
struct resource res;
|
|
|
|
if (of_address_to_resource(np, index, &res))
|
|
return NULL;
|
|
|
|
if (res.flags & IORESOURCE_MEM_NONPOSTED)
|
|
return ioremap_np(res.start, resource_size(&res));
|
|
else
|
|
return ioremap(res.start, resource_size(&res));
|
|
}
|
|
EXPORT_SYMBOL(of_iomap);
|
|
|
|
/*
|
|
* of_io_request_and_map - Requests a resource and maps the memory mapped IO
|
|
* for a given device_node
|
|
* @device: the device whose io range will be mapped
|
|
* @index: index of the io range
|
|
* @name: name "override" for the memory region request or NULL
|
|
*
|
|
* Returns a pointer to the requested and mapped memory or an ERR_PTR() encoded
|
|
* error code on failure. Usage example:
|
|
*
|
|
* base = of_io_request_and_map(node, 0, "foo");
|
|
* if (IS_ERR(base))
|
|
* return PTR_ERR(base);
|
|
*/
|
|
void __iomem *of_io_request_and_map(struct device_node *np, int index,
|
|
const char *name)
|
|
{
|
|
struct resource res;
|
|
void __iomem *mem;
|
|
|
|
if (of_address_to_resource(np, index, &res))
|
|
return IOMEM_ERR_PTR(-EINVAL);
|
|
|
|
if (!name)
|
|
name = res.name;
|
|
if (!request_mem_region(res.start, resource_size(&res), name))
|
|
return IOMEM_ERR_PTR(-EBUSY);
|
|
|
|
if (res.flags & IORESOURCE_MEM_NONPOSTED)
|
|
mem = ioremap_np(res.start, resource_size(&res));
|
|
else
|
|
mem = ioremap(res.start, resource_size(&res));
|
|
|
|
if (!mem) {
|
|
release_mem_region(res.start, resource_size(&res));
|
|
return IOMEM_ERR_PTR(-ENOMEM);
|
|
}
|
|
|
|
return mem;
|
|
}
|
|
EXPORT_SYMBOL(of_io_request_and_map);
|