mirror of
https://github.com/torvalds/linux.git
synced 2024-12-07 03:21:32 +00:00
bdc4fd3d48
Add the description of @req and @boost_supported in struct amd_cpudata kernel-doc comment to remove warnings found by running scripts/kernel-doc, which is caused by using 'make W=1'. drivers/cpufreq/amd-pstate.c:104: warning: Function parameter or member 'req' not described in 'amd_cpudata' drivers/cpufreq/amd-pstate.c:104: warning: Function parameter or member 'boost_supported' not described in 'amd_cpudata' Reported-by: Abaci Robot <abaci@linux.alibaba.com> Signed-off-by: Yang Li <yang.lee@linux.alibaba.com> Acked-by: Huang Rui <ray.huang@amd.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
646 lines
17 KiB
C
646 lines
17 KiB
C
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
/*
|
|
* amd-pstate.c - AMD Processor P-state Frequency Driver
|
|
*
|
|
* Copyright (C) 2021 Advanced Micro Devices, Inc. All Rights Reserved.
|
|
*
|
|
* Author: Huang Rui <ray.huang@amd.com>
|
|
*
|
|
* AMD P-State introduces a new CPU performance scaling design for AMD
|
|
* processors using the ACPI Collaborative Performance and Power Control (CPPC)
|
|
* feature which works with the AMD SMU firmware providing a finer grained
|
|
* frequency control range. It is to replace the legacy ACPI P-States control,
|
|
* allows a flexible, low-latency interface for the Linux kernel to directly
|
|
* communicate the performance hints to hardware.
|
|
*
|
|
* AMD P-State is supported on recent AMD Zen base CPU series include some of
|
|
* Zen2 and Zen3 processors. _CPC needs to be present in the ACPI tables of AMD
|
|
* P-State supported system. And there are two types of hardware implementations
|
|
* for AMD P-State: 1) Full MSR Solution and 2) Shared Memory Solution.
|
|
* X86_FEATURE_CPPC CPU feature flag is used to distinguish the different types.
|
|
*/
|
|
|
|
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/module.h>
|
|
#include <linux/init.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/cpufreq.h>
|
|
#include <linux/compiler.h>
|
|
#include <linux/dmi.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/acpi.h>
|
|
#include <linux/io.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/uaccess.h>
|
|
#include <linux/static_call.h>
|
|
|
|
#include <acpi/processor.h>
|
|
#include <acpi/cppc_acpi.h>
|
|
|
|
#include <asm/msr.h>
|
|
#include <asm/processor.h>
|
|
#include <asm/cpufeature.h>
|
|
#include <asm/cpu_device_id.h>
|
|
#include "amd-pstate-trace.h"
|
|
|
|
#define AMD_PSTATE_TRANSITION_LATENCY 0x20000
|
|
#define AMD_PSTATE_TRANSITION_DELAY 500
|
|
|
|
/*
|
|
* TODO: We need more time to fine tune processors with shared memory solution
|
|
* with community together.
|
|
*
|
|
* There are some performance drops on the CPU benchmarks which reports from
|
|
* Suse. We are co-working with them to fine tune the shared memory solution. So
|
|
* we disable it by default to go acpi-cpufreq on these processors and add a
|
|
* module parameter to be able to enable it manually for debugging.
|
|
*/
|
|
static bool shared_mem = false;
|
|
module_param(shared_mem, bool, 0444);
|
|
MODULE_PARM_DESC(shared_mem,
|
|
"enable amd-pstate on processors with shared memory solution (false = disabled (default), true = enabled)");
|
|
|
|
static struct cpufreq_driver amd_pstate_driver;
|
|
|
|
/**
|
|
* struct amd_cpudata - private CPU data for AMD P-State
|
|
* @cpu: CPU number
|
|
* @req: constraint request to apply
|
|
* @cppc_req_cached: cached performance request hints
|
|
* @highest_perf: the maximum performance an individual processor may reach,
|
|
* assuming ideal conditions
|
|
* @nominal_perf: the maximum sustained performance level of the processor,
|
|
* assuming ideal operating conditions
|
|
* @lowest_nonlinear_perf: the lowest performance level at which nonlinear power
|
|
* savings are achieved
|
|
* @lowest_perf: the absolute lowest performance level of the processor
|
|
* @max_freq: the frequency that mapped to highest_perf
|
|
* @min_freq: the frequency that mapped to lowest_perf
|
|
* @nominal_freq: the frequency that mapped to nominal_perf
|
|
* @lowest_nonlinear_freq: the frequency that mapped to lowest_nonlinear_perf
|
|
* @boost_supported: check whether the Processor or SBIOS supports boost mode
|
|
*
|
|
* The amd_cpudata is key private data for each CPU thread in AMD P-State, and
|
|
* represents all the attributes and goals that AMD P-State requests at runtime.
|
|
*/
|
|
struct amd_cpudata {
|
|
int cpu;
|
|
|
|
struct freq_qos_request req[2];
|
|
u64 cppc_req_cached;
|
|
|
|
u32 highest_perf;
|
|
u32 nominal_perf;
|
|
u32 lowest_nonlinear_perf;
|
|
u32 lowest_perf;
|
|
|
|
u32 max_freq;
|
|
u32 min_freq;
|
|
u32 nominal_freq;
|
|
u32 lowest_nonlinear_freq;
|
|
|
|
bool boost_supported;
|
|
};
|
|
|
|
static inline int pstate_enable(bool enable)
|
|
{
|
|
return wrmsrl_safe(MSR_AMD_CPPC_ENABLE, enable);
|
|
}
|
|
|
|
static int cppc_enable(bool enable)
|
|
{
|
|
int cpu, ret = 0;
|
|
|
|
for_each_present_cpu(cpu) {
|
|
ret = cppc_set_enable(cpu, enable);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
DEFINE_STATIC_CALL(amd_pstate_enable, pstate_enable);
|
|
|
|
static inline int amd_pstate_enable(bool enable)
|
|
{
|
|
return static_call(amd_pstate_enable)(enable);
|
|
}
|
|
|
|
static int pstate_init_perf(struct amd_cpudata *cpudata)
|
|
{
|
|
u64 cap1;
|
|
|
|
int ret = rdmsrl_safe_on_cpu(cpudata->cpu, MSR_AMD_CPPC_CAP1,
|
|
&cap1);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/*
|
|
* TODO: Introduce AMD specific power feature.
|
|
*
|
|
* CPPC entry doesn't indicate the highest performance in some ASICs.
|
|
*/
|
|
WRITE_ONCE(cpudata->highest_perf, amd_get_highest_perf());
|
|
|
|
WRITE_ONCE(cpudata->nominal_perf, AMD_CPPC_NOMINAL_PERF(cap1));
|
|
WRITE_ONCE(cpudata->lowest_nonlinear_perf, AMD_CPPC_LOWNONLIN_PERF(cap1));
|
|
WRITE_ONCE(cpudata->lowest_perf, AMD_CPPC_LOWEST_PERF(cap1));
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int cppc_init_perf(struct amd_cpudata *cpudata)
|
|
{
|
|
struct cppc_perf_caps cppc_perf;
|
|
|
|
int ret = cppc_get_perf_caps(cpudata->cpu, &cppc_perf);
|
|
if (ret)
|
|
return ret;
|
|
|
|
WRITE_ONCE(cpudata->highest_perf, amd_get_highest_perf());
|
|
|
|
WRITE_ONCE(cpudata->nominal_perf, cppc_perf.nominal_perf);
|
|
WRITE_ONCE(cpudata->lowest_nonlinear_perf,
|
|
cppc_perf.lowest_nonlinear_perf);
|
|
WRITE_ONCE(cpudata->lowest_perf, cppc_perf.lowest_perf);
|
|
|
|
return 0;
|
|
}
|
|
|
|
DEFINE_STATIC_CALL(amd_pstate_init_perf, pstate_init_perf);
|
|
|
|
static inline int amd_pstate_init_perf(struct amd_cpudata *cpudata)
|
|
{
|
|
return static_call(amd_pstate_init_perf)(cpudata);
|
|
}
|
|
|
|
static void pstate_update_perf(struct amd_cpudata *cpudata, u32 min_perf,
|
|
u32 des_perf, u32 max_perf, bool fast_switch)
|
|
{
|
|
if (fast_switch)
|
|
wrmsrl(MSR_AMD_CPPC_REQ, READ_ONCE(cpudata->cppc_req_cached));
|
|
else
|
|
wrmsrl_on_cpu(cpudata->cpu, MSR_AMD_CPPC_REQ,
|
|
READ_ONCE(cpudata->cppc_req_cached));
|
|
}
|
|
|
|
static void cppc_update_perf(struct amd_cpudata *cpudata,
|
|
u32 min_perf, u32 des_perf,
|
|
u32 max_perf, bool fast_switch)
|
|
{
|
|
struct cppc_perf_ctrls perf_ctrls;
|
|
|
|
perf_ctrls.max_perf = max_perf;
|
|
perf_ctrls.min_perf = min_perf;
|
|
perf_ctrls.desired_perf = des_perf;
|
|
|
|
cppc_set_perf(cpudata->cpu, &perf_ctrls);
|
|
}
|
|
|
|
DEFINE_STATIC_CALL(amd_pstate_update_perf, pstate_update_perf);
|
|
|
|
static inline void amd_pstate_update_perf(struct amd_cpudata *cpudata,
|
|
u32 min_perf, u32 des_perf,
|
|
u32 max_perf, bool fast_switch)
|
|
{
|
|
static_call(amd_pstate_update_perf)(cpudata, min_perf, des_perf,
|
|
max_perf, fast_switch);
|
|
}
|
|
|
|
static void amd_pstate_update(struct amd_cpudata *cpudata, u32 min_perf,
|
|
u32 des_perf, u32 max_perf, bool fast_switch)
|
|
{
|
|
u64 prev = READ_ONCE(cpudata->cppc_req_cached);
|
|
u64 value = prev;
|
|
|
|
value &= ~AMD_CPPC_MIN_PERF(~0L);
|
|
value |= AMD_CPPC_MIN_PERF(min_perf);
|
|
|
|
value &= ~AMD_CPPC_DES_PERF(~0L);
|
|
value |= AMD_CPPC_DES_PERF(des_perf);
|
|
|
|
value &= ~AMD_CPPC_MAX_PERF(~0L);
|
|
value |= AMD_CPPC_MAX_PERF(max_perf);
|
|
|
|
trace_amd_pstate_perf(min_perf, des_perf, max_perf,
|
|
cpudata->cpu, (value != prev), fast_switch);
|
|
|
|
if (value == prev)
|
|
return;
|
|
|
|
WRITE_ONCE(cpudata->cppc_req_cached, value);
|
|
|
|
amd_pstate_update_perf(cpudata, min_perf, des_perf,
|
|
max_perf, fast_switch);
|
|
}
|
|
|
|
static int amd_pstate_verify(struct cpufreq_policy_data *policy)
|
|
{
|
|
cpufreq_verify_within_cpu_limits(policy);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int amd_pstate_target(struct cpufreq_policy *policy,
|
|
unsigned int target_freq,
|
|
unsigned int relation)
|
|
{
|
|
struct cpufreq_freqs freqs;
|
|
struct amd_cpudata *cpudata = policy->driver_data;
|
|
unsigned long max_perf, min_perf, des_perf, cap_perf;
|
|
|
|
if (!cpudata->max_freq)
|
|
return -ENODEV;
|
|
|
|
cap_perf = READ_ONCE(cpudata->highest_perf);
|
|
min_perf = READ_ONCE(cpudata->lowest_nonlinear_perf);
|
|
max_perf = cap_perf;
|
|
|
|
freqs.old = policy->cur;
|
|
freqs.new = target_freq;
|
|
|
|
des_perf = DIV_ROUND_CLOSEST(target_freq * cap_perf,
|
|
cpudata->max_freq);
|
|
|
|
cpufreq_freq_transition_begin(policy, &freqs);
|
|
amd_pstate_update(cpudata, min_perf, des_perf,
|
|
max_perf, false);
|
|
cpufreq_freq_transition_end(policy, &freqs, false);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void amd_pstate_adjust_perf(unsigned int cpu,
|
|
unsigned long _min_perf,
|
|
unsigned long target_perf,
|
|
unsigned long capacity)
|
|
{
|
|
unsigned long max_perf, min_perf, des_perf,
|
|
cap_perf, lowest_nonlinear_perf;
|
|
struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
|
|
struct amd_cpudata *cpudata = policy->driver_data;
|
|
|
|
cap_perf = READ_ONCE(cpudata->highest_perf);
|
|
lowest_nonlinear_perf = READ_ONCE(cpudata->lowest_nonlinear_perf);
|
|
|
|
des_perf = cap_perf;
|
|
if (target_perf < capacity)
|
|
des_perf = DIV_ROUND_UP(cap_perf * target_perf, capacity);
|
|
|
|
min_perf = READ_ONCE(cpudata->highest_perf);
|
|
if (_min_perf < capacity)
|
|
min_perf = DIV_ROUND_UP(cap_perf * _min_perf, capacity);
|
|
|
|
if (min_perf < lowest_nonlinear_perf)
|
|
min_perf = lowest_nonlinear_perf;
|
|
|
|
max_perf = cap_perf;
|
|
if (max_perf < min_perf)
|
|
max_perf = min_perf;
|
|
|
|
des_perf = clamp_t(unsigned long, des_perf, min_perf, max_perf);
|
|
|
|
amd_pstate_update(cpudata, min_perf, des_perf, max_perf, true);
|
|
}
|
|
|
|
static int amd_get_min_freq(struct amd_cpudata *cpudata)
|
|
{
|
|
struct cppc_perf_caps cppc_perf;
|
|
|
|
int ret = cppc_get_perf_caps(cpudata->cpu, &cppc_perf);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Switch to khz */
|
|
return cppc_perf.lowest_freq * 1000;
|
|
}
|
|
|
|
static int amd_get_max_freq(struct amd_cpudata *cpudata)
|
|
{
|
|
struct cppc_perf_caps cppc_perf;
|
|
u32 max_perf, max_freq, nominal_freq, nominal_perf;
|
|
u64 boost_ratio;
|
|
|
|
int ret = cppc_get_perf_caps(cpudata->cpu, &cppc_perf);
|
|
if (ret)
|
|
return ret;
|
|
|
|
nominal_freq = cppc_perf.nominal_freq;
|
|
nominal_perf = READ_ONCE(cpudata->nominal_perf);
|
|
max_perf = READ_ONCE(cpudata->highest_perf);
|
|
|
|
boost_ratio = div_u64(max_perf << SCHED_CAPACITY_SHIFT,
|
|
nominal_perf);
|
|
|
|
max_freq = nominal_freq * boost_ratio >> SCHED_CAPACITY_SHIFT;
|
|
|
|
/* Switch to khz */
|
|
return max_freq * 1000;
|
|
}
|
|
|
|
static int amd_get_nominal_freq(struct amd_cpudata *cpudata)
|
|
{
|
|
struct cppc_perf_caps cppc_perf;
|
|
|
|
int ret = cppc_get_perf_caps(cpudata->cpu, &cppc_perf);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Switch to khz */
|
|
return cppc_perf.nominal_freq * 1000;
|
|
}
|
|
|
|
static int amd_get_lowest_nonlinear_freq(struct amd_cpudata *cpudata)
|
|
{
|
|
struct cppc_perf_caps cppc_perf;
|
|
u32 lowest_nonlinear_freq, lowest_nonlinear_perf,
|
|
nominal_freq, nominal_perf;
|
|
u64 lowest_nonlinear_ratio;
|
|
|
|
int ret = cppc_get_perf_caps(cpudata->cpu, &cppc_perf);
|
|
if (ret)
|
|
return ret;
|
|
|
|
nominal_freq = cppc_perf.nominal_freq;
|
|
nominal_perf = READ_ONCE(cpudata->nominal_perf);
|
|
|
|
lowest_nonlinear_perf = cppc_perf.lowest_nonlinear_perf;
|
|
|
|
lowest_nonlinear_ratio = div_u64(lowest_nonlinear_perf << SCHED_CAPACITY_SHIFT,
|
|
nominal_perf);
|
|
|
|
lowest_nonlinear_freq = nominal_freq * lowest_nonlinear_ratio >> SCHED_CAPACITY_SHIFT;
|
|
|
|
/* Switch to khz */
|
|
return lowest_nonlinear_freq * 1000;
|
|
}
|
|
|
|
static int amd_pstate_set_boost(struct cpufreq_policy *policy, int state)
|
|
{
|
|
struct amd_cpudata *cpudata = policy->driver_data;
|
|
int ret;
|
|
|
|
if (!cpudata->boost_supported) {
|
|
pr_err("Boost mode is not supported by this processor or SBIOS\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (state)
|
|
policy->cpuinfo.max_freq = cpudata->max_freq;
|
|
else
|
|
policy->cpuinfo.max_freq = cpudata->nominal_freq;
|
|
|
|
policy->max = policy->cpuinfo.max_freq;
|
|
|
|
ret = freq_qos_update_request(&cpudata->req[1],
|
|
policy->cpuinfo.max_freq);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void amd_pstate_boost_init(struct amd_cpudata *cpudata)
|
|
{
|
|
u32 highest_perf, nominal_perf;
|
|
|
|
highest_perf = READ_ONCE(cpudata->highest_perf);
|
|
nominal_perf = READ_ONCE(cpudata->nominal_perf);
|
|
|
|
if (highest_perf <= nominal_perf)
|
|
return;
|
|
|
|
cpudata->boost_supported = true;
|
|
amd_pstate_driver.boost_enabled = true;
|
|
}
|
|
|
|
static int amd_pstate_cpu_init(struct cpufreq_policy *policy)
|
|
{
|
|
int min_freq, max_freq, nominal_freq, lowest_nonlinear_freq, ret;
|
|
struct device *dev;
|
|
struct amd_cpudata *cpudata;
|
|
|
|
dev = get_cpu_device(policy->cpu);
|
|
if (!dev)
|
|
return -ENODEV;
|
|
|
|
cpudata = kzalloc(sizeof(*cpudata), GFP_KERNEL);
|
|
if (!cpudata)
|
|
return -ENOMEM;
|
|
|
|
cpudata->cpu = policy->cpu;
|
|
|
|
ret = amd_pstate_init_perf(cpudata);
|
|
if (ret)
|
|
goto free_cpudata1;
|
|
|
|
min_freq = amd_get_min_freq(cpudata);
|
|
max_freq = amd_get_max_freq(cpudata);
|
|
nominal_freq = amd_get_nominal_freq(cpudata);
|
|
lowest_nonlinear_freq = amd_get_lowest_nonlinear_freq(cpudata);
|
|
|
|
if (min_freq < 0 || max_freq < 0 || min_freq > max_freq) {
|
|
dev_err(dev, "min_freq(%d) or max_freq(%d) value is incorrect\n",
|
|
min_freq, max_freq);
|
|
ret = -EINVAL;
|
|
goto free_cpudata1;
|
|
}
|
|
|
|
policy->cpuinfo.transition_latency = AMD_PSTATE_TRANSITION_LATENCY;
|
|
policy->transition_delay_us = AMD_PSTATE_TRANSITION_DELAY;
|
|
|
|
policy->min = min_freq;
|
|
policy->max = max_freq;
|
|
|
|
policy->cpuinfo.min_freq = min_freq;
|
|
policy->cpuinfo.max_freq = max_freq;
|
|
|
|
/* It will be updated by governor */
|
|
policy->cur = policy->cpuinfo.min_freq;
|
|
|
|
if (boot_cpu_has(X86_FEATURE_CPPC))
|
|
policy->fast_switch_possible = true;
|
|
|
|
ret = freq_qos_add_request(&policy->constraints, &cpudata->req[0],
|
|
FREQ_QOS_MIN, policy->cpuinfo.min_freq);
|
|
if (ret < 0) {
|
|
dev_err(dev, "Failed to add min-freq constraint (%d)\n", ret);
|
|
goto free_cpudata1;
|
|
}
|
|
|
|
ret = freq_qos_add_request(&policy->constraints, &cpudata->req[1],
|
|
FREQ_QOS_MAX, policy->cpuinfo.max_freq);
|
|
if (ret < 0) {
|
|
dev_err(dev, "Failed to add max-freq constraint (%d)\n", ret);
|
|
goto free_cpudata2;
|
|
}
|
|
|
|
/* Initial processor data capability frequencies */
|
|
cpudata->max_freq = max_freq;
|
|
cpudata->min_freq = min_freq;
|
|
cpudata->nominal_freq = nominal_freq;
|
|
cpudata->lowest_nonlinear_freq = lowest_nonlinear_freq;
|
|
|
|
policy->driver_data = cpudata;
|
|
|
|
amd_pstate_boost_init(cpudata);
|
|
|
|
return 0;
|
|
|
|
free_cpudata2:
|
|
freq_qos_remove_request(&cpudata->req[0]);
|
|
free_cpudata1:
|
|
kfree(cpudata);
|
|
return ret;
|
|
}
|
|
|
|
static int amd_pstate_cpu_exit(struct cpufreq_policy *policy)
|
|
{
|
|
struct amd_cpudata *cpudata;
|
|
|
|
cpudata = policy->driver_data;
|
|
|
|
freq_qos_remove_request(&cpudata->req[1]);
|
|
freq_qos_remove_request(&cpudata->req[0]);
|
|
kfree(cpudata);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Sysfs attributes */
|
|
|
|
/*
|
|
* This frequency is to indicate the maximum hardware frequency.
|
|
* If boost is not active but supported, the frequency will be larger than the
|
|
* one in cpuinfo.
|
|
*/
|
|
static ssize_t show_amd_pstate_max_freq(struct cpufreq_policy *policy,
|
|
char *buf)
|
|
{
|
|
int max_freq;
|
|
struct amd_cpudata *cpudata;
|
|
|
|
cpudata = policy->driver_data;
|
|
|
|
max_freq = amd_get_max_freq(cpudata);
|
|
if (max_freq < 0)
|
|
return max_freq;
|
|
|
|
return sprintf(&buf[0], "%u\n", max_freq);
|
|
}
|
|
|
|
static ssize_t show_amd_pstate_lowest_nonlinear_freq(struct cpufreq_policy *policy,
|
|
char *buf)
|
|
{
|
|
int freq;
|
|
struct amd_cpudata *cpudata;
|
|
|
|
cpudata = policy->driver_data;
|
|
|
|
freq = amd_get_lowest_nonlinear_freq(cpudata);
|
|
if (freq < 0)
|
|
return freq;
|
|
|
|
return sprintf(&buf[0], "%u\n", freq);
|
|
}
|
|
|
|
/*
|
|
* In some of ASICs, the highest_perf is not the one in the _CPC table, so we
|
|
* need to expose it to sysfs.
|
|
*/
|
|
static ssize_t show_amd_pstate_highest_perf(struct cpufreq_policy *policy,
|
|
char *buf)
|
|
{
|
|
u32 perf;
|
|
struct amd_cpudata *cpudata = policy->driver_data;
|
|
|
|
perf = READ_ONCE(cpudata->highest_perf);
|
|
|
|
return sprintf(&buf[0], "%u\n", perf);
|
|
}
|
|
|
|
cpufreq_freq_attr_ro(amd_pstate_max_freq);
|
|
cpufreq_freq_attr_ro(amd_pstate_lowest_nonlinear_freq);
|
|
|
|
cpufreq_freq_attr_ro(amd_pstate_highest_perf);
|
|
|
|
static struct freq_attr *amd_pstate_attr[] = {
|
|
&amd_pstate_max_freq,
|
|
&amd_pstate_lowest_nonlinear_freq,
|
|
&amd_pstate_highest_perf,
|
|
NULL,
|
|
};
|
|
|
|
static struct cpufreq_driver amd_pstate_driver = {
|
|
.flags = CPUFREQ_CONST_LOOPS | CPUFREQ_NEED_UPDATE_LIMITS,
|
|
.verify = amd_pstate_verify,
|
|
.target = amd_pstate_target,
|
|
.init = amd_pstate_cpu_init,
|
|
.exit = amd_pstate_cpu_exit,
|
|
.set_boost = amd_pstate_set_boost,
|
|
.name = "amd-pstate",
|
|
.attr = amd_pstate_attr,
|
|
};
|
|
|
|
static int __init amd_pstate_init(void)
|
|
{
|
|
int ret;
|
|
|
|
if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD)
|
|
return -ENODEV;
|
|
|
|
if (!acpi_cpc_valid()) {
|
|
pr_debug("the _CPC object is not present in SBIOS\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
/* don't keep reloading if cpufreq_driver exists */
|
|
if (cpufreq_get_current_driver())
|
|
return -EEXIST;
|
|
|
|
/* capability check */
|
|
if (boot_cpu_has(X86_FEATURE_CPPC)) {
|
|
pr_debug("AMD CPPC MSR based functionality is supported\n");
|
|
amd_pstate_driver.adjust_perf = amd_pstate_adjust_perf;
|
|
} else if (shared_mem) {
|
|
static_call_update(amd_pstate_enable, cppc_enable);
|
|
static_call_update(amd_pstate_init_perf, cppc_init_perf);
|
|
static_call_update(amd_pstate_update_perf, cppc_update_perf);
|
|
} else {
|
|
pr_info("This processor supports shared memory solution, you can enable it with amd_pstate.shared_mem=1\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
/* enable amd pstate feature */
|
|
ret = amd_pstate_enable(true);
|
|
if (ret) {
|
|
pr_err("failed to enable amd-pstate with return %d\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
ret = cpufreq_register_driver(&amd_pstate_driver);
|
|
if (ret)
|
|
pr_err("failed to register amd_pstate_driver with return %d\n",
|
|
ret);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void __exit amd_pstate_exit(void)
|
|
{
|
|
cpufreq_unregister_driver(&amd_pstate_driver);
|
|
|
|
amd_pstate_enable(false);
|
|
}
|
|
|
|
module_init(amd_pstate_init);
|
|
module_exit(amd_pstate_exit);
|
|
|
|
MODULE_AUTHOR("Huang Rui <ray.huang@amd.com>");
|
|
MODULE_DESCRIPTION("AMD Processor P-state Frequency Driver");
|
|
MODULE_LICENSE("GPL");
|