linux/fs/proc/base.c
xu xin 7609385337 ksm: count ksm merging pages for each process
Some applications or containers want to use KSM by calling madvise() to
advise areas of address space to be MERGEABLE.  But they may not know
which applications are more likely to cause real merges in the
deployment.  If this patch is applied, it helps them know their
corresponding number of merged pages, and then optimize their app code.

As current KSM only counts the number of KSM merging pages(e.g. 
ksm_pages_sharing and ksm_pages_shared) of the whole system, we cannot see
the more fine-grained KSM merging, for the upper application optimization,
the merging area cannot be set easily according to the KSM page merging
probability of each process.  Therefore, it is necessary to add extra
statistical means so that the upper level users can know the detailed KSM
merging information of each process.

We add a new proc file named as ksm_merging_pages under /proc/<pid>/ to
indicate the involved ksm merging pages of this process.

[akpm@linux-foundation.org: fix comment typo, remove BUG_ON()s]
Link: https://lkml.kernel.org/r/20220325082318.2352853-1-xu.xin16@zte.com.cn
Signed-off-by: xu xin <xu.xin16@zte.com.cn>
Reported-by: kernel test robot <lkp@intel.com>
Reviewed-by: Yang Yang <yang.yang29@zte.com.cn>
Reviewed-by: Ran Xiaokai <ran.xiaokai@zte.com.cn>
Reported-by: Zeal Robot <zealci@zte.com.cn>
Cc: Kees Cook <keescook@chromium.org>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Ohhoon Kwon <ohoono.kwon@samsung.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Stephen Brennan <stephen.s.brennan@oracle.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Feng Tang <feng.tang@intel.com>
Cc: Yang Yang <yang.yang29@zte.com.cn>
Cc: Ran Xiaokai <ran.xiaokai@zte.com.cn>
Cc: Zeal Robot <zealci@zte.com.cn>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-04-28 23:16:16 -07:00

3880 lines
92 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* linux/fs/proc/base.c
*
* Copyright (C) 1991, 1992 Linus Torvalds
*
* proc base directory handling functions
*
* 1999, Al Viro. Rewritten. Now it covers the whole per-process part.
* Instead of using magical inumbers to determine the kind of object
* we allocate and fill in-core inodes upon lookup. They don't even
* go into icache. We cache the reference to task_struct upon lookup too.
* Eventually it should become a filesystem in its own. We don't use the
* rest of procfs anymore.
*
*
* Changelog:
* 17-Jan-2005
* Allan Bezerra
* Bruna Moreira <bruna.moreira@indt.org.br>
* Edjard Mota <edjard.mota@indt.org.br>
* Ilias Biris <ilias.biris@indt.org.br>
* Mauricio Lin <mauricio.lin@indt.org.br>
*
* Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
*
* A new process specific entry (smaps) included in /proc. It shows the
* size of rss for each memory area. The maps entry lacks information
* about physical memory size (rss) for each mapped file, i.e.,
* rss information for executables and library files.
* This additional information is useful for any tools that need to know
* about physical memory consumption for a process specific library.
*
* Changelog:
* 21-Feb-2005
* Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
* Pud inclusion in the page table walking.
*
* ChangeLog:
* 10-Mar-2005
* 10LE Instituto Nokia de Tecnologia - INdT:
* A better way to walks through the page table as suggested by Hugh Dickins.
*
* Simo Piiroinen <simo.piiroinen@nokia.com>:
* Smaps information related to shared, private, clean and dirty pages.
*
* Paul Mundt <paul.mundt@nokia.com>:
* Overall revision about smaps.
*/
#include <linux/uaccess.h>
#include <linux/errno.h>
#include <linux/time.h>
#include <linux/proc_fs.h>
#include <linux/stat.h>
#include <linux/task_io_accounting_ops.h>
#include <linux/init.h>
#include <linux/capability.h>
#include <linux/file.h>
#include <linux/fdtable.h>
#include <linux/generic-radix-tree.h>
#include <linux/string.h>
#include <linux/seq_file.h>
#include <linux/namei.h>
#include <linux/mnt_namespace.h>
#include <linux/mm.h>
#include <linux/swap.h>
#include <linux/rcupdate.h>
#include <linux/kallsyms.h>
#include <linux/stacktrace.h>
#include <linux/resource.h>
#include <linux/module.h>
#include <linux/mount.h>
#include <linux/security.h>
#include <linux/ptrace.h>
#include <linux/printk.h>
#include <linux/cache.h>
#include <linux/cgroup.h>
#include <linux/cpuset.h>
#include <linux/audit.h>
#include <linux/poll.h>
#include <linux/nsproxy.h>
#include <linux/oom.h>
#include <linux/elf.h>
#include <linux/pid_namespace.h>
#include <linux/user_namespace.h>
#include <linux/fs_struct.h>
#include <linux/slab.h>
#include <linux/sched/autogroup.h>
#include <linux/sched/mm.h>
#include <linux/sched/coredump.h>
#include <linux/sched/debug.h>
#include <linux/sched/stat.h>
#include <linux/posix-timers.h>
#include <linux/time_namespace.h>
#include <linux/resctrl.h>
#include <linux/cn_proc.h>
#include <trace/events/oom.h>
#include "internal.h"
#include "fd.h"
#include "../../lib/kstrtox.h"
/* NOTE:
* Implementing inode permission operations in /proc is almost
* certainly an error. Permission checks need to happen during
* each system call not at open time. The reason is that most of
* what we wish to check for permissions in /proc varies at runtime.
*
* The classic example of a problem is opening file descriptors
* in /proc for a task before it execs a suid executable.
*/
static u8 nlink_tid __ro_after_init;
static u8 nlink_tgid __ro_after_init;
struct pid_entry {
const char *name;
unsigned int len;
umode_t mode;
const struct inode_operations *iop;
const struct file_operations *fop;
union proc_op op;
};
#define NOD(NAME, MODE, IOP, FOP, OP) { \
.name = (NAME), \
.len = sizeof(NAME) - 1, \
.mode = MODE, \
.iop = IOP, \
.fop = FOP, \
.op = OP, \
}
#define DIR(NAME, MODE, iops, fops) \
NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
#define LNK(NAME, get_link) \
NOD(NAME, (S_IFLNK|S_IRWXUGO), \
&proc_pid_link_inode_operations, NULL, \
{ .proc_get_link = get_link } )
#define REG(NAME, MODE, fops) \
NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
#define ONE(NAME, MODE, show) \
NOD(NAME, (S_IFREG|(MODE)), \
NULL, &proc_single_file_operations, \
{ .proc_show = show } )
#define ATTR(LSM, NAME, MODE) \
NOD(NAME, (S_IFREG|(MODE)), \
NULL, &proc_pid_attr_operations, \
{ .lsm = LSM })
/*
* Count the number of hardlinks for the pid_entry table, excluding the .
* and .. links.
*/
static unsigned int __init pid_entry_nlink(const struct pid_entry *entries,
unsigned int n)
{
unsigned int i;
unsigned int count;
count = 2;
for (i = 0; i < n; ++i) {
if (S_ISDIR(entries[i].mode))
++count;
}
return count;
}
static int get_task_root(struct task_struct *task, struct path *root)
{
int result = -ENOENT;
task_lock(task);
if (task->fs) {
get_fs_root(task->fs, root);
result = 0;
}
task_unlock(task);
return result;
}
static int proc_cwd_link(struct dentry *dentry, struct path *path)
{
struct task_struct *task = get_proc_task(d_inode(dentry));
int result = -ENOENT;
if (task) {
task_lock(task);
if (task->fs) {
get_fs_pwd(task->fs, path);
result = 0;
}
task_unlock(task);
put_task_struct(task);
}
return result;
}
static int proc_root_link(struct dentry *dentry, struct path *path)
{
struct task_struct *task = get_proc_task(d_inode(dentry));
int result = -ENOENT;
if (task) {
result = get_task_root(task, path);
put_task_struct(task);
}
return result;
}
/*
* If the user used setproctitle(), we just get the string from
* user space at arg_start, and limit it to a maximum of one page.
*/
static ssize_t get_mm_proctitle(struct mm_struct *mm, char __user *buf,
size_t count, unsigned long pos,
unsigned long arg_start)
{
char *page;
int ret, got;
if (pos >= PAGE_SIZE)
return 0;
page = (char *)__get_free_page(GFP_KERNEL);
if (!page)
return -ENOMEM;
ret = 0;
got = access_remote_vm(mm, arg_start, page, PAGE_SIZE, FOLL_ANON);
if (got > 0) {
int len = strnlen(page, got);
/* Include the NUL character if it was found */
if (len < got)
len++;
if (len > pos) {
len -= pos;
if (len > count)
len = count;
len -= copy_to_user(buf, page+pos, len);
if (!len)
len = -EFAULT;
ret = len;
}
}
free_page((unsigned long)page);
return ret;
}
static ssize_t get_mm_cmdline(struct mm_struct *mm, char __user *buf,
size_t count, loff_t *ppos)
{
unsigned long arg_start, arg_end, env_start, env_end;
unsigned long pos, len;
char *page, c;
/* Check if process spawned far enough to have cmdline. */
if (!mm->env_end)
return 0;
spin_lock(&mm->arg_lock);
arg_start = mm->arg_start;
arg_end = mm->arg_end;
env_start = mm->env_start;
env_end = mm->env_end;
spin_unlock(&mm->arg_lock);
if (arg_start >= arg_end)
return 0;
/*
* We allow setproctitle() to overwrite the argument
* strings, and overflow past the original end. But
* only when it overflows into the environment area.
*/
if (env_start != arg_end || env_end < env_start)
env_start = env_end = arg_end;
len = env_end - arg_start;
/* We're not going to care if "*ppos" has high bits set */
pos = *ppos;
if (pos >= len)
return 0;
if (count > len - pos)
count = len - pos;
if (!count)
return 0;
/*
* Magical special case: if the argv[] end byte is not
* zero, the user has overwritten it with setproctitle(3).
*
* Possible future enhancement: do this only once when
* pos is 0, and set a flag in the 'struct file'.
*/
if (access_remote_vm(mm, arg_end-1, &c, 1, FOLL_ANON) == 1 && c)
return get_mm_proctitle(mm, buf, count, pos, arg_start);
/*
* For the non-setproctitle() case we limit things strictly
* to the [arg_start, arg_end[ range.
*/
pos += arg_start;
if (pos < arg_start || pos >= arg_end)
return 0;
if (count > arg_end - pos)
count = arg_end - pos;
page = (char *)__get_free_page(GFP_KERNEL);
if (!page)
return -ENOMEM;
len = 0;
while (count) {
int got;
size_t size = min_t(size_t, PAGE_SIZE, count);
got = access_remote_vm(mm, pos, page, size, FOLL_ANON);
if (got <= 0)
break;
got -= copy_to_user(buf, page, got);
if (unlikely(!got)) {
if (!len)
len = -EFAULT;
break;
}
pos += got;
buf += got;
len += got;
count -= got;
}
free_page((unsigned long)page);
return len;
}
static ssize_t get_task_cmdline(struct task_struct *tsk, char __user *buf,
size_t count, loff_t *pos)
{
struct mm_struct *mm;
ssize_t ret;
mm = get_task_mm(tsk);
if (!mm)
return 0;
ret = get_mm_cmdline(mm, buf, count, pos);
mmput(mm);
return ret;
}
static ssize_t proc_pid_cmdline_read(struct file *file, char __user *buf,
size_t count, loff_t *pos)
{
struct task_struct *tsk;
ssize_t ret;
BUG_ON(*pos < 0);
tsk = get_proc_task(file_inode(file));
if (!tsk)
return -ESRCH;
ret = get_task_cmdline(tsk, buf, count, pos);
put_task_struct(tsk);
if (ret > 0)
*pos += ret;
return ret;
}
static const struct file_operations proc_pid_cmdline_ops = {
.read = proc_pid_cmdline_read,
.llseek = generic_file_llseek,
};
#ifdef CONFIG_KALLSYMS
/*
* Provides a wchan file via kallsyms in a proper one-value-per-file format.
* Returns the resolved symbol. If that fails, simply return the address.
*/
static int proc_pid_wchan(struct seq_file *m, struct pid_namespace *ns,
struct pid *pid, struct task_struct *task)
{
unsigned long wchan;
char symname[KSYM_NAME_LEN];
if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
goto print0;
wchan = get_wchan(task);
if (wchan && !lookup_symbol_name(wchan, symname)) {
seq_puts(m, symname);
return 0;
}
print0:
seq_putc(m, '0');
return 0;
}
#endif /* CONFIG_KALLSYMS */
static int lock_trace(struct task_struct *task)
{
int err = down_read_killable(&task->signal->exec_update_lock);
if (err)
return err;
if (!ptrace_may_access(task, PTRACE_MODE_ATTACH_FSCREDS)) {
up_read(&task->signal->exec_update_lock);
return -EPERM;
}
return 0;
}
static void unlock_trace(struct task_struct *task)
{
up_read(&task->signal->exec_update_lock);
}
#ifdef CONFIG_STACKTRACE
#define MAX_STACK_TRACE_DEPTH 64
static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
struct pid *pid, struct task_struct *task)
{
unsigned long *entries;
int err;
/*
* The ability to racily run the kernel stack unwinder on a running task
* and then observe the unwinder output is scary; while it is useful for
* debugging kernel issues, it can also allow an attacker to leak kernel
* stack contents.
* Doing this in a manner that is at least safe from races would require
* some work to ensure that the remote task can not be scheduled; and
* even then, this would still expose the unwinder as local attack
* surface.
* Therefore, this interface is restricted to root.
*/
if (!file_ns_capable(m->file, &init_user_ns, CAP_SYS_ADMIN))
return -EACCES;
entries = kmalloc_array(MAX_STACK_TRACE_DEPTH, sizeof(*entries),
GFP_KERNEL);
if (!entries)
return -ENOMEM;
err = lock_trace(task);
if (!err) {
unsigned int i, nr_entries;
nr_entries = stack_trace_save_tsk(task, entries,
MAX_STACK_TRACE_DEPTH, 0);
for (i = 0; i < nr_entries; i++) {
seq_printf(m, "[<0>] %pB\n", (void *)entries[i]);
}
unlock_trace(task);
}
kfree(entries);
return err;
}
#endif
#ifdef CONFIG_SCHED_INFO
/*
* Provides /proc/PID/schedstat
*/
static int proc_pid_schedstat(struct seq_file *m, struct pid_namespace *ns,
struct pid *pid, struct task_struct *task)
{
if (unlikely(!sched_info_on()))
seq_puts(m, "0 0 0\n");
else
seq_printf(m, "%llu %llu %lu\n",
(unsigned long long)task->se.sum_exec_runtime,
(unsigned long long)task->sched_info.run_delay,
task->sched_info.pcount);
return 0;
}
#endif
#ifdef CONFIG_LATENCYTOP
static int lstats_show_proc(struct seq_file *m, void *v)
{
int i;
struct inode *inode = m->private;
struct task_struct *task = get_proc_task(inode);
if (!task)
return -ESRCH;
seq_puts(m, "Latency Top version : v0.1\n");
for (i = 0; i < LT_SAVECOUNT; i++) {
struct latency_record *lr = &task->latency_record[i];
if (lr->backtrace[0]) {
int q;
seq_printf(m, "%i %li %li",
lr->count, lr->time, lr->max);
for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
unsigned long bt = lr->backtrace[q];
if (!bt)
break;
seq_printf(m, " %ps", (void *)bt);
}
seq_putc(m, '\n');
}
}
put_task_struct(task);
return 0;
}
static int lstats_open(struct inode *inode, struct file *file)
{
return single_open(file, lstats_show_proc, inode);
}
static ssize_t lstats_write(struct file *file, const char __user *buf,
size_t count, loff_t *offs)
{
struct task_struct *task = get_proc_task(file_inode(file));
if (!task)
return -ESRCH;
clear_tsk_latency_tracing(task);
put_task_struct(task);
return count;
}
static const struct file_operations proc_lstats_operations = {
.open = lstats_open,
.read = seq_read,
.write = lstats_write,
.llseek = seq_lseek,
.release = single_release,
};
#endif
static int proc_oom_score(struct seq_file *m, struct pid_namespace *ns,
struct pid *pid, struct task_struct *task)
{
unsigned long totalpages = totalram_pages() + total_swap_pages;
unsigned long points = 0;
long badness;
badness = oom_badness(task, totalpages);
/*
* Special case OOM_SCORE_ADJ_MIN for all others scale the
* badness value into [0, 2000] range which we have been
* exporting for a long time so userspace might depend on it.
*/
if (badness != LONG_MIN)
points = (1000 + badness * 1000 / (long)totalpages) * 2 / 3;
seq_printf(m, "%lu\n", points);
return 0;
}
struct limit_names {
const char *name;
const char *unit;
};
static const struct limit_names lnames[RLIM_NLIMITS] = {
[RLIMIT_CPU] = {"Max cpu time", "seconds"},
[RLIMIT_FSIZE] = {"Max file size", "bytes"},
[RLIMIT_DATA] = {"Max data size", "bytes"},
[RLIMIT_STACK] = {"Max stack size", "bytes"},
[RLIMIT_CORE] = {"Max core file size", "bytes"},
[RLIMIT_RSS] = {"Max resident set", "bytes"},
[RLIMIT_NPROC] = {"Max processes", "processes"},
[RLIMIT_NOFILE] = {"Max open files", "files"},
[RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
[RLIMIT_AS] = {"Max address space", "bytes"},
[RLIMIT_LOCKS] = {"Max file locks", "locks"},
[RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
[RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
[RLIMIT_NICE] = {"Max nice priority", NULL},
[RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
[RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
};
/* Display limits for a process */
static int proc_pid_limits(struct seq_file *m, struct pid_namespace *ns,
struct pid *pid, struct task_struct *task)
{
unsigned int i;
unsigned long flags;
struct rlimit rlim[RLIM_NLIMITS];
if (!lock_task_sighand(task, &flags))
return 0;
memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
unlock_task_sighand(task, &flags);
/*
* print the file header
*/
seq_puts(m, "Limit "
"Soft Limit "
"Hard Limit "
"Units \n");
for (i = 0; i < RLIM_NLIMITS; i++) {
if (rlim[i].rlim_cur == RLIM_INFINITY)
seq_printf(m, "%-25s %-20s ",
lnames[i].name, "unlimited");
else
seq_printf(m, "%-25s %-20lu ",
lnames[i].name, rlim[i].rlim_cur);
if (rlim[i].rlim_max == RLIM_INFINITY)
seq_printf(m, "%-20s ", "unlimited");
else
seq_printf(m, "%-20lu ", rlim[i].rlim_max);
if (lnames[i].unit)
seq_printf(m, "%-10s\n", lnames[i].unit);
else
seq_putc(m, '\n');
}
return 0;
}
#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
static int proc_pid_syscall(struct seq_file *m, struct pid_namespace *ns,
struct pid *pid, struct task_struct *task)
{
struct syscall_info info;
u64 *args = &info.data.args[0];
int res;
res = lock_trace(task);
if (res)
return res;
if (task_current_syscall(task, &info))
seq_puts(m, "running\n");
else if (info.data.nr < 0)
seq_printf(m, "%d 0x%llx 0x%llx\n",
info.data.nr, info.sp, info.data.instruction_pointer);
else
seq_printf(m,
"%d 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx\n",
info.data.nr,
args[0], args[1], args[2], args[3], args[4], args[5],
info.sp, info.data.instruction_pointer);
unlock_trace(task);
return 0;
}
#endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
/************************************************************************/
/* Here the fs part begins */
/************************************************************************/
/* permission checks */
static bool proc_fd_access_allowed(struct inode *inode)
{
struct task_struct *task;
bool allowed = false;
/* Allow access to a task's file descriptors if it is us or we
* may use ptrace attach to the process and find out that
* information.
*/
task = get_proc_task(inode);
if (task) {
allowed = ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
put_task_struct(task);
}
return allowed;
}
int proc_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
struct iattr *attr)
{
int error;
struct inode *inode = d_inode(dentry);
if (attr->ia_valid & ATTR_MODE)
return -EPERM;
error = setattr_prepare(&init_user_ns, dentry, attr);
if (error)
return error;
setattr_copy(&init_user_ns, inode, attr);
mark_inode_dirty(inode);
return 0;
}
/*
* May current process learn task's sched/cmdline info (for hide_pid_min=1)
* or euid/egid (for hide_pid_min=2)?
*/
static bool has_pid_permissions(struct proc_fs_info *fs_info,
struct task_struct *task,
enum proc_hidepid hide_pid_min)
{
/*
* If 'hidpid' mount option is set force a ptrace check,
* we indicate that we are using a filesystem syscall
* by passing PTRACE_MODE_READ_FSCREDS
*/
if (fs_info->hide_pid == HIDEPID_NOT_PTRACEABLE)
return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
if (fs_info->hide_pid < hide_pid_min)
return true;
if (in_group_p(fs_info->pid_gid))
return true;
return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
}
static int proc_pid_permission(struct user_namespace *mnt_userns,
struct inode *inode, int mask)
{
struct proc_fs_info *fs_info = proc_sb_info(inode->i_sb);
struct task_struct *task;
bool has_perms;
task = get_proc_task(inode);
if (!task)
return -ESRCH;
has_perms = has_pid_permissions(fs_info, task, HIDEPID_NO_ACCESS);
put_task_struct(task);
if (!has_perms) {
if (fs_info->hide_pid == HIDEPID_INVISIBLE) {
/*
* Let's make getdents(), stat(), and open()
* consistent with each other. If a process
* may not stat() a file, it shouldn't be seen
* in procfs at all.
*/
return -ENOENT;
}
return -EPERM;
}
return generic_permission(&init_user_ns, inode, mask);
}
static const struct inode_operations proc_def_inode_operations = {
.setattr = proc_setattr,
};
static int proc_single_show(struct seq_file *m, void *v)
{
struct inode *inode = m->private;
struct pid_namespace *ns = proc_pid_ns(inode->i_sb);
struct pid *pid = proc_pid(inode);
struct task_struct *task;
int ret;
task = get_pid_task(pid, PIDTYPE_PID);
if (!task)
return -ESRCH;
ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
put_task_struct(task);
return ret;
}
static int proc_single_open(struct inode *inode, struct file *filp)
{
return single_open(filp, proc_single_show, inode);
}
static const struct file_operations proc_single_file_operations = {
.open = proc_single_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
struct mm_struct *proc_mem_open(struct inode *inode, unsigned int mode)
{
struct task_struct *task = get_proc_task(inode);
struct mm_struct *mm = ERR_PTR(-ESRCH);
if (task) {
mm = mm_access(task, mode | PTRACE_MODE_FSCREDS);
put_task_struct(task);
if (!IS_ERR_OR_NULL(mm)) {
/* ensure this mm_struct can't be freed */
mmgrab(mm);
/* but do not pin its memory */
mmput(mm);
}
}
return mm;
}
static int __mem_open(struct inode *inode, struct file *file, unsigned int mode)
{
struct mm_struct *mm = proc_mem_open(inode, mode);
if (IS_ERR(mm))
return PTR_ERR(mm);
file->private_data = mm;
return 0;
}
static int mem_open(struct inode *inode, struct file *file)
{
int ret = __mem_open(inode, file, PTRACE_MODE_ATTACH);
/* OK to pass negative loff_t, we can catch out-of-range */
file->f_mode |= FMODE_UNSIGNED_OFFSET;
return ret;
}
static ssize_t mem_rw(struct file *file, char __user *buf,
size_t count, loff_t *ppos, int write)
{
struct mm_struct *mm = file->private_data;
unsigned long addr = *ppos;
ssize_t copied;
char *page;
unsigned int flags;
if (!mm)
return 0;
page = (char *)__get_free_page(GFP_KERNEL);
if (!page)
return -ENOMEM;
copied = 0;
if (!mmget_not_zero(mm))
goto free;
flags = FOLL_FORCE | (write ? FOLL_WRITE : 0);
while (count > 0) {
size_t this_len = min_t(size_t, count, PAGE_SIZE);
if (write && copy_from_user(page, buf, this_len)) {
copied = -EFAULT;
break;
}
this_len = access_remote_vm(mm, addr, page, this_len, flags);
if (!this_len) {
if (!copied)
copied = -EIO;
break;
}
if (!write && copy_to_user(buf, page, this_len)) {
copied = -EFAULT;
break;
}
buf += this_len;
addr += this_len;
copied += this_len;
count -= this_len;
}
*ppos = addr;
mmput(mm);
free:
free_page((unsigned long) page);
return copied;
}
static ssize_t mem_read(struct file *file, char __user *buf,
size_t count, loff_t *ppos)
{
return mem_rw(file, buf, count, ppos, 0);
}
static ssize_t mem_write(struct file *file, const char __user *buf,
size_t count, loff_t *ppos)
{
return mem_rw(file, (char __user*)buf, count, ppos, 1);
}
loff_t mem_lseek(struct file *file, loff_t offset, int orig)
{
switch (orig) {
case 0:
file->f_pos = offset;
break;
case 1:
file->f_pos += offset;
break;
default:
return -EINVAL;
}
force_successful_syscall_return();
return file->f_pos;
}
static int mem_release(struct inode *inode, struct file *file)
{
struct mm_struct *mm = file->private_data;
if (mm)
mmdrop(mm);
return 0;
}
static const struct file_operations proc_mem_operations = {
.llseek = mem_lseek,
.read = mem_read,
.write = mem_write,
.open = mem_open,
.release = mem_release,
};
static int environ_open(struct inode *inode, struct file *file)
{
return __mem_open(inode, file, PTRACE_MODE_READ);
}
static ssize_t environ_read(struct file *file, char __user *buf,
size_t count, loff_t *ppos)
{
char *page;
unsigned long src = *ppos;
int ret = 0;
struct mm_struct *mm = file->private_data;
unsigned long env_start, env_end;
/* Ensure the process spawned far enough to have an environment. */
if (!mm || !mm->env_end)
return 0;
page = (char *)__get_free_page(GFP_KERNEL);
if (!page)
return -ENOMEM;
ret = 0;
if (!mmget_not_zero(mm))
goto free;
spin_lock(&mm->arg_lock);
env_start = mm->env_start;
env_end = mm->env_end;
spin_unlock(&mm->arg_lock);
while (count > 0) {
size_t this_len, max_len;
int retval;
if (src >= (env_end - env_start))
break;
this_len = env_end - (env_start + src);
max_len = min_t(size_t, PAGE_SIZE, count);
this_len = min(max_len, this_len);
retval = access_remote_vm(mm, (env_start + src), page, this_len, FOLL_ANON);
if (retval <= 0) {
ret = retval;
break;
}
if (copy_to_user(buf, page, retval)) {
ret = -EFAULT;
break;
}
ret += retval;
src += retval;
buf += retval;
count -= retval;
}
*ppos = src;
mmput(mm);
free:
free_page((unsigned long) page);
return ret;
}
static const struct file_operations proc_environ_operations = {
.open = environ_open,
.read = environ_read,
.llseek = generic_file_llseek,
.release = mem_release,
};
static int auxv_open(struct inode *inode, struct file *file)
{
return __mem_open(inode, file, PTRACE_MODE_READ_FSCREDS);
}
static ssize_t auxv_read(struct file *file, char __user *buf,
size_t count, loff_t *ppos)
{
struct mm_struct *mm = file->private_data;
unsigned int nwords = 0;
if (!mm)
return 0;
do {
nwords += 2;
} while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
return simple_read_from_buffer(buf, count, ppos, mm->saved_auxv,
nwords * sizeof(mm->saved_auxv[0]));
}
static const struct file_operations proc_auxv_operations = {
.open = auxv_open,
.read = auxv_read,
.llseek = generic_file_llseek,
.release = mem_release,
};
static ssize_t oom_adj_read(struct file *file, char __user *buf, size_t count,
loff_t *ppos)
{
struct task_struct *task = get_proc_task(file_inode(file));
char buffer[PROC_NUMBUF];
int oom_adj = OOM_ADJUST_MIN;
size_t len;
if (!task)
return -ESRCH;
if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MAX)
oom_adj = OOM_ADJUST_MAX;
else
oom_adj = (task->signal->oom_score_adj * -OOM_DISABLE) /
OOM_SCORE_ADJ_MAX;
put_task_struct(task);
if (oom_adj > OOM_ADJUST_MAX)
oom_adj = OOM_ADJUST_MAX;
len = snprintf(buffer, sizeof(buffer), "%d\n", oom_adj);
return simple_read_from_buffer(buf, count, ppos, buffer, len);
}
static int __set_oom_adj(struct file *file, int oom_adj, bool legacy)
{
struct mm_struct *mm = NULL;
struct task_struct *task;
int err = 0;
task = get_proc_task(file_inode(file));
if (!task)
return -ESRCH;
mutex_lock(&oom_adj_mutex);
if (legacy) {
if (oom_adj < task->signal->oom_score_adj &&
!capable(CAP_SYS_RESOURCE)) {
err = -EACCES;
goto err_unlock;
}
/*
* /proc/pid/oom_adj is provided for legacy purposes, ask users to use
* /proc/pid/oom_score_adj instead.
*/
pr_warn_once("%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n",
current->comm, task_pid_nr(current), task_pid_nr(task),
task_pid_nr(task));
} else {
if ((short)oom_adj < task->signal->oom_score_adj_min &&
!capable(CAP_SYS_RESOURCE)) {
err = -EACCES;
goto err_unlock;
}
}
/*
* Make sure we will check other processes sharing the mm if this is
* not vfrok which wants its own oom_score_adj.
* pin the mm so it doesn't go away and get reused after task_unlock
*/
if (!task->vfork_done) {
struct task_struct *p = find_lock_task_mm(task);
if (p) {
if (test_bit(MMF_MULTIPROCESS, &p->mm->flags)) {
mm = p->mm;
mmgrab(mm);
}
task_unlock(p);
}
}
task->signal->oom_score_adj = oom_adj;
if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
task->signal->oom_score_adj_min = (short)oom_adj;
trace_oom_score_adj_update(task);
if (mm) {
struct task_struct *p;
rcu_read_lock();
for_each_process(p) {
if (same_thread_group(task, p))
continue;
/* do not touch kernel threads or the global init */
if (p->flags & PF_KTHREAD || is_global_init(p))
continue;
task_lock(p);
if (!p->vfork_done && process_shares_mm(p, mm)) {
p->signal->oom_score_adj = oom_adj;
if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
p->signal->oom_score_adj_min = (short)oom_adj;
}
task_unlock(p);
}
rcu_read_unlock();
mmdrop(mm);
}
err_unlock:
mutex_unlock(&oom_adj_mutex);
put_task_struct(task);
return err;
}
/*
* /proc/pid/oom_adj exists solely for backwards compatibility with previous
* kernels. The effective policy is defined by oom_score_adj, which has a
* different scale: oom_adj grew exponentially and oom_score_adj grows linearly.
* Values written to oom_adj are simply mapped linearly to oom_score_adj.
* Processes that become oom disabled via oom_adj will still be oom disabled
* with this implementation.
*
* oom_adj cannot be removed since existing userspace binaries use it.
*/
static ssize_t oom_adj_write(struct file *file, const char __user *buf,
size_t count, loff_t *ppos)
{
char buffer[PROC_NUMBUF];
int oom_adj;
int err;
memset(buffer, 0, sizeof(buffer));
if (count > sizeof(buffer) - 1)
count = sizeof(buffer) - 1;
if (copy_from_user(buffer, buf, count)) {
err = -EFAULT;
goto out;
}
err = kstrtoint(strstrip(buffer), 0, &oom_adj);
if (err)
goto out;
if ((oom_adj < OOM_ADJUST_MIN || oom_adj > OOM_ADJUST_MAX) &&
oom_adj != OOM_DISABLE) {
err = -EINVAL;
goto out;
}
/*
* Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum
* value is always attainable.
*/
if (oom_adj == OOM_ADJUST_MAX)
oom_adj = OOM_SCORE_ADJ_MAX;
else
oom_adj = (oom_adj * OOM_SCORE_ADJ_MAX) / -OOM_DISABLE;
err = __set_oom_adj(file, oom_adj, true);
out:
return err < 0 ? err : count;
}
static const struct file_operations proc_oom_adj_operations = {
.read = oom_adj_read,
.write = oom_adj_write,
.llseek = generic_file_llseek,
};
static ssize_t oom_score_adj_read(struct file *file, char __user *buf,
size_t count, loff_t *ppos)
{
struct task_struct *task = get_proc_task(file_inode(file));
char buffer[PROC_NUMBUF];
short oom_score_adj = OOM_SCORE_ADJ_MIN;
size_t len;
if (!task)
return -ESRCH;
oom_score_adj = task->signal->oom_score_adj;
put_task_struct(task);
len = snprintf(buffer, sizeof(buffer), "%hd\n", oom_score_adj);
return simple_read_from_buffer(buf, count, ppos, buffer, len);
}
static ssize_t oom_score_adj_write(struct file *file, const char __user *buf,
size_t count, loff_t *ppos)
{
char buffer[PROC_NUMBUF];
int oom_score_adj;
int err;
memset(buffer, 0, sizeof(buffer));
if (count > sizeof(buffer) - 1)
count = sizeof(buffer) - 1;
if (copy_from_user(buffer, buf, count)) {
err = -EFAULT;
goto out;
}
err = kstrtoint(strstrip(buffer), 0, &oom_score_adj);
if (err)
goto out;
if (oom_score_adj < OOM_SCORE_ADJ_MIN ||
oom_score_adj > OOM_SCORE_ADJ_MAX) {
err = -EINVAL;
goto out;
}
err = __set_oom_adj(file, oom_score_adj, false);
out:
return err < 0 ? err : count;
}
static const struct file_operations proc_oom_score_adj_operations = {
.read = oom_score_adj_read,
.write = oom_score_adj_write,
.llseek = default_llseek,
};
#ifdef CONFIG_AUDIT
#define TMPBUFLEN 11
static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
size_t count, loff_t *ppos)
{
struct inode * inode = file_inode(file);
struct task_struct *task = get_proc_task(inode);
ssize_t length;
char tmpbuf[TMPBUFLEN];
if (!task)
return -ESRCH;
length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
from_kuid(file->f_cred->user_ns,
audit_get_loginuid(task)));
put_task_struct(task);
return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
}
static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
size_t count, loff_t *ppos)
{
struct inode * inode = file_inode(file);
uid_t loginuid;
kuid_t kloginuid;
int rv;
/* Don't let kthreads write their own loginuid */
if (current->flags & PF_KTHREAD)
return -EPERM;
rcu_read_lock();
if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
rcu_read_unlock();
return -EPERM;
}
rcu_read_unlock();
if (*ppos != 0) {
/* No partial writes. */
return -EINVAL;
}
rv = kstrtou32_from_user(buf, count, 10, &loginuid);
if (rv < 0)
return rv;
/* is userspace tring to explicitly UNSET the loginuid? */
if (loginuid == AUDIT_UID_UNSET) {
kloginuid = INVALID_UID;
} else {
kloginuid = make_kuid(file->f_cred->user_ns, loginuid);
if (!uid_valid(kloginuid))
return -EINVAL;
}
rv = audit_set_loginuid(kloginuid);
if (rv < 0)
return rv;
return count;
}
static const struct file_operations proc_loginuid_operations = {
.read = proc_loginuid_read,
.write = proc_loginuid_write,
.llseek = generic_file_llseek,
};
static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
size_t count, loff_t *ppos)
{
struct inode * inode = file_inode(file);
struct task_struct *task = get_proc_task(inode);
ssize_t length;
char tmpbuf[TMPBUFLEN];
if (!task)
return -ESRCH;
length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
audit_get_sessionid(task));
put_task_struct(task);
return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
}
static const struct file_operations proc_sessionid_operations = {
.read = proc_sessionid_read,
.llseek = generic_file_llseek,
};
#endif
#ifdef CONFIG_FAULT_INJECTION
static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
size_t count, loff_t *ppos)
{
struct task_struct *task = get_proc_task(file_inode(file));
char buffer[PROC_NUMBUF];
size_t len;
int make_it_fail;
if (!task)
return -ESRCH;
make_it_fail = task->make_it_fail;
put_task_struct(task);
len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
return simple_read_from_buffer(buf, count, ppos, buffer, len);
}
static ssize_t proc_fault_inject_write(struct file * file,
const char __user * buf, size_t count, loff_t *ppos)
{
struct task_struct *task;
char buffer[PROC_NUMBUF];
int make_it_fail;
int rv;
if (!capable(CAP_SYS_RESOURCE))
return -EPERM;
memset(buffer, 0, sizeof(buffer));
if (count > sizeof(buffer) - 1)
count = sizeof(buffer) - 1;
if (copy_from_user(buffer, buf, count))
return -EFAULT;
rv = kstrtoint(strstrip(buffer), 0, &make_it_fail);
if (rv < 0)
return rv;
if (make_it_fail < 0 || make_it_fail > 1)
return -EINVAL;
task = get_proc_task(file_inode(file));
if (!task)
return -ESRCH;
task->make_it_fail = make_it_fail;
put_task_struct(task);
return count;
}
static const struct file_operations proc_fault_inject_operations = {
.read = proc_fault_inject_read,
.write = proc_fault_inject_write,
.llseek = generic_file_llseek,
};
static ssize_t proc_fail_nth_write(struct file *file, const char __user *buf,
size_t count, loff_t *ppos)
{
struct task_struct *task;
int err;
unsigned int n;
err = kstrtouint_from_user(buf, count, 0, &n);
if (err)
return err;
task = get_proc_task(file_inode(file));
if (!task)
return -ESRCH;
task->fail_nth = n;
put_task_struct(task);
return count;
}
static ssize_t proc_fail_nth_read(struct file *file, char __user *buf,
size_t count, loff_t *ppos)
{
struct task_struct *task;
char numbuf[PROC_NUMBUF];
ssize_t len;
task = get_proc_task(file_inode(file));
if (!task)
return -ESRCH;
len = snprintf(numbuf, sizeof(numbuf), "%u\n", task->fail_nth);
put_task_struct(task);
return simple_read_from_buffer(buf, count, ppos, numbuf, len);
}
static const struct file_operations proc_fail_nth_operations = {
.read = proc_fail_nth_read,
.write = proc_fail_nth_write,
};
#endif
#ifdef CONFIG_SCHED_DEBUG
/*
* Print out various scheduling related per-task fields:
*/
static int sched_show(struct seq_file *m, void *v)
{
struct inode *inode = m->private;
struct pid_namespace *ns = proc_pid_ns(inode->i_sb);
struct task_struct *p;
p = get_proc_task(inode);
if (!p)
return -ESRCH;
proc_sched_show_task(p, ns, m);
put_task_struct(p);
return 0;
}
static ssize_t
sched_write(struct file *file, const char __user *buf,
size_t count, loff_t *offset)
{
struct inode *inode = file_inode(file);
struct task_struct *p;
p = get_proc_task(inode);
if (!p)
return -ESRCH;
proc_sched_set_task(p);
put_task_struct(p);
return count;
}
static int sched_open(struct inode *inode, struct file *filp)
{
return single_open(filp, sched_show, inode);
}
static const struct file_operations proc_pid_sched_operations = {
.open = sched_open,
.read = seq_read,
.write = sched_write,
.llseek = seq_lseek,
.release = single_release,
};
#endif
#ifdef CONFIG_SCHED_AUTOGROUP
/*
* Print out autogroup related information:
*/
static int sched_autogroup_show(struct seq_file *m, void *v)
{
struct inode *inode = m->private;
struct task_struct *p;
p = get_proc_task(inode);
if (!p)
return -ESRCH;
proc_sched_autogroup_show_task(p, m);
put_task_struct(p);
return 0;
}
static ssize_t
sched_autogroup_write(struct file *file, const char __user *buf,
size_t count, loff_t *offset)
{
struct inode *inode = file_inode(file);
struct task_struct *p;
char buffer[PROC_NUMBUF];
int nice;
int err;
memset(buffer, 0, sizeof(buffer));
if (count > sizeof(buffer) - 1)
count = sizeof(buffer) - 1;
if (copy_from_user(buffer, buf, count))
return -EFAULT;
err = kstrtoint(strstrip(buffer), 0, &nice);
if (err < 0)
return err;
p = get_proc_task(inode);
if (!p)
return -ESRCH;
err = proc_sched_autogroup_set_nice(p, nice);
if (err)
count = err;
put_task_struct(p);
return count;
}
static int sched_autogroup_open(struct inode *inode, struct file *filp)
{
int ret;
ret = single_open(filp, sched_autogroup_show, NULL);
if (!ret) {
struct seq_file *m = filp->private_data;
m->private = inode;
}
return ret;
}
static const struct file_operations proc_pid_sched_autogroup_operations = {
.open = sched_autogroup_open,
.read = seq_read,
.write = sched_autogroup_write,
.llseek = seq_lseek,
.release = single_release,
};
#endif /* CONFIG_SCHED_AUTOGROUP */
#ifdef CONFIG_TIME_NS
static int timens_offsets_show(struct seq_file *m, void *v)
{
struct task_struct *p;
p = get_proc_task(file_inode(m->file));
if (!p)
return -ESRCH;
proc_timens_show_offsets(p, m);
put_task_struct(p);
return 0;
}
static ssize_t timens_offsets_write(struct file *file, const char __user *buf,
size_t count, loff_t *ppos)
{
struct inode *inode = file_inode(file);
struct proc_timens_offset offsets[2];
char *kbuf = NULL, *pos, *next_line;
struct task_struct *p;
int ret, noffsets;
/* Only allow < page size writes at the beginning of the file */
if ((*ppos != 0) || (count >= PAGE_SIZE))
return -EINVAL;
/* Slurp in the user data */
kbuf = memdup_user_nul(buf, count);
if (IS_ERR(kbuf))
return PTR_ERR(kbuf);
/* Parse the user data */
ret = -EINVAL;
noffsets = 0;
for (pos = kbuf; pos; pos = next_line) {
struct proc_timens_offset *off = &offsets[noffsets];
char clock[10];
int err;
/* Find the end of line and ensure we don't look past it */
next_line = strchr(pos, '\n');
if (next_line) {
*next_line = '\0';
next_line++;
if (*next_line == '\0')
next_line = NULL;
}
err = sscanf(pos, "%9s %lld %lu", clock,
&off->val.tv_sec, &off->val.tv_nsec);
if (err != 3 || off->val.tv_nsec >= NSEC_PER_SEC)
goto out;
clock[sizeof(clock) - 1] = 0;
if (strcmp(clock, "monotonic") == 0 ||
strcmp(clock, __stringify(CLOCK_MONOTONIC)) == 0)
off->clockid = CLOCK_MONOTONIC;
else if (strcmp(clock, "boottime") == 0 ||
strcmp(clock, __stringify(CLOCK_BOOTTIME)) == 0)
off->clockid = CLOCK_BOOTTIME;
else
goto out;
noffsets++;
if (noffsets == ARRAY_SIZE(offsets)) {
if (next_line)
count = next_line - kbuf;
break;
}
}
ret = -ESRCH;
p = get_proc_task(inode);
if (!p)
goto out;
ret = proc_timens_set_offset(file, p, offsets, noffsets);
put_task_struct(p);
if (ret)
goto out;
ret = count;
out:
kfree(kbuf);
return ret;
}
static int timens_offsets_open(struct inode *inode, struct file *filp)
{
return single_open(filp, timens_offsets_show, inode);
}
static const struct file_operations proc_timens_offsets_operations = {
.open = timens_offsets_open,
.read = seq_read,
.write = timens_offsets_write,
.llseek = seq_lseek,
.release = single_release,
};
#endif /* CONFIG_TIME_NS */
static ssize_t comm_write(struct file *file, const char __user *buf,
size_t count, loff_t *offset)
{
struct inode *inode = file_inode(file);
struct task_struct *p;
char buffer[TASK_COMM_LEN];
const size_t maxlen = sizeof(buffer) - 1;
memset(buffer, 0, sizeof(buffer));
if (copy_from_user(buffer, buf, count > maxlen ? maxlen : count))
return -EFAULT;
p = get_proc_task(inode);
if (!p)
return -ESRCH;
if (same_thread_group(current, p)) {
set_task_comm(p, buffer);
proc_comm_connector(p);
}
else
count = -EINVAL;
put_task_struct(p);
return count;
}
static int comm_show(struct seq_file *m, void *v)
{
struct inode *inode = m->private;
struct task_struct *p;
p = get_proc_task(inode);
if (!p)
return -ESRCH;
proc_task_name(m, p, false);
seq_putc(m, '\n');
put_task_struct(p);
return 0;
}
static int comm_open(struct inode *inode, struct file *filp)
{
return single_open(filp, comm_show, inode);
}
static const struct file_operations proc_pid_set_comm_operations = {
.open = comm_open,
.read = seq_read,
.write = comm_write,
.llseek = seq_lseek,
.release = single_release,
};
static int proc_exe_link(struct dentry *dentry, struct path *exe_path)
{
struct task_struct *task;
struct file *exe_file;
task = get_proc_task(d_inode(dentry));
if (!task)
return -ENOENT;
exe_file = get_task_exe_file(task);
put_task_struct(task);
if (exe_file) {
*exe_path = exe_file->f_path;
path_get(&exe_file->f_path);
fput(exe_file);
return 0;
} else
return -ENOENT;
}
static const char *proc_pid_get_link(struct dentry *dentry,
struct inode *inode,
struct delayed_call *done)
{
struct path path;
int error = -EACCES;
if (!dentry)
return ERR_PTR(-ECHILD);
/* Are we allowed to snoop on the tasks file descriptors? */
if (!proc_fd_access_allowed(inode))
goto out;
error = PROC_I(inode)->op.proc_get_link(dentry, &path);
if (error)
goto out;
error = nd_jump_link(&path);
out:
return ERR_PTR(error);
}
static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
{
char *tmp = kmalloc(PATH_MAX, GFP_KERNEL);
char *pathname;
int len;
if (!tmp)
return -ENOMEM;
pathname = d_path(path, tmp, PATH_MAX);
len = PTR_ERR(pathname);
if (IS_ERR(pathname))
goto out;
len = tmp + PATH_MAX - 1 - pathname;
if (len > buflen)
len = buflen;
if (copy_to_user(buffer, pathname, len))
len = -EFAULT;
out:
kfree(tmp);
return len;
}
static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
{
int error = -EACCES;
struct inode *inode = d_inode(dentry);
struct path path;
/* Are we allowed to snoop on the tasks file descriptors? */
if (!proc_fd_access_allowed(inode))
goto out;
error = PROC_I(inode)->op.proc_get_link(dentry, &path);
if (error)
goto out;
error = do_proc_readlink(&path, buffer, buflen);
path_put(&path);
out:
return error;
}
const struct inode_operations proc_pid_link_inode_operations = {
.readlink = proc_pid_readlink,
.get_link = proc_pid_get_link,
.setattr = proc_setattr,
};
/* building an inode */
void task_dump_owner(struct task_struct *task, umode_t mode,
kuid_t *ruid, kgid_t *rgid)
{
/* Depending on the state of dumpable compute who should own a
* proc file for a task.
*/
const struct cred *cred;
kuid_t uid;
kgid_t gid;
if (unlikely(task->flags & PF_KTHREAD)) {
*ruid = GLOBAL_ROOT_UID;
*rgid = GLOBAL_ROOT_GID;
return;
}
/* Default to the tasks effective ownership */
rcu_read_lock();
cred = __task_cred(task);
uid = cred->euid;
gid = cred->egid;
rcu_read_unlock();
/*
* Before the /proc/pid/status file was created the only way to read
* the effective uid of a /process was to stat /proc/pid. Reading
* /proc/pid/status is slow enough that procps and other packages
* kept stating /proc/pid. To keep the rules in /proc simple I have
* made this apply to all per process world readable and executable
* directories.
*/
if (mode != (S_IFDIR|S_IRUGO|S_IXUGO)) {
struct mm_struct *mm;
task_lock(task);
mm = task->mm;
/* Make non-dumpable tasks owned by some root */
if (mm) {
if (get_dumpable(mm) != SUID_DUMP_USER) {
struct user_namespace *user_ns = mm->user_ns;
uid = make_kuid(user_ns, 0);
if (!uid_valid(uid))
uid = GLOBAL_ROOT_UID;
gid = make_kgid(user_ns, 0);
if (!gid_valid(gid))
gid = GLOBAL_ROOT_GID;
}
} else {
uid = GLOBAL_ROOT_UID;
gid = GLOBAL_ROOT_GID;
}
task_unlock(task);
}
*ruid = uid;
*rgid = gid;
}
void proc_pid_evict_inode(struct proc_inode *ei)
{
struct pid *pid = ei->pid;
if (S_ISDIR(ei->vfs_inode.i_mode)) {
spin_lock(&pid->lock);
hlist_del_init_rcu(&ei->sibling_inodes);
spin_unlock(&pid->lock);
}
put_pid(pid);
}
struct inode *proc_pid_make_inode(struct super_block * sb,
struct task_struct *task, umode_t mode)
{
struct inode * inode;
struct proc_inode *ei;
struct pid *pid;
/* We need a new inode */
inode = new_inode(sb);
if (!inode)
goto out;
/* Common stuff */
ei = PROC_I(inode);
inode->i_mode = mode;
inode->i_ino = get_next_ino();
inode->i_mtime = inode->i_atime = inode->i_ctime = current_time(inode);
inode->i_op = &proc_def_inode_operations;
/*
* grab the reference to task.
*/
pid = get_task_pid(task, PIDTYPE_PID);
if (!pid)
goto out_unlock;
/* Let the pid remember us for quick removal */
ei->pid = pid;
if (S_ISDIR(mode)) {
spin_lock(&pid->lock);
hlist_add_head_rcu(&ei->sibling_inodes, &pid->inodes);
spin_unlock(&pid->lock);
}
task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid);
security_task_to_inode(task, inode);
out:
return inode;
out_unlock:
iput(inode);
return NULL;
}
int pid_getattr(struct user_namespace *mnt_userns, const struct path *path,
struct kstat *stat, u32 request_mask, unsigned int query_flags)
{
struct inode *inode = d_inode(path->dentry);
struct proc_fs_info *fs_info = proc_sb_info(inode->i_sb);
struct task_struct *task;
generic_fillattr(&init_user_ns, inode, stat);
stat->uid = GLOBAL_ROOT_UID;
stat->gid = GLOBAL_ROOT_GID;
rcu_read_lock();
task = pid_task(proc_pid(inode), PIDTYPE_PID);
if (task) {
if (!has_pid_permissions(fs_info, task, HIDEPID_INVISIBLE)) {
rcu_read_unlock();
/*
* This doesn't prevent learning whether PID exists,
* it only makes getattr() consistent with readdir().
*/
return -ENOENT;
}
task_dump_owner(task, inode->i_mode, &stat->uid, &stat->gid);
}
rcu_read_unlock();
return 0;
}
/* dentry stuff */
/*
* Set <pid>/... inode ownership (can change due to setuid(), etc.)
*/
void pid_update_inode(struct task_struct *task, struct inode *inode)
{
task_dump_owner(task, inode->i_mode, &inode->i_uid, &inode->i_gid);
inode->i_mode &= ~(S_ISUID | S_ISGID);
security_task_to_inode(task, inode);
}
/*
* Rewrite the inode's ownerships here because the owning task may have
* performed a setuid(), etc.
*
*/
static int pid_revalidate(struct dentry *dentry, unsigned int flags)
{
struct inode *inode;
struct task_struct *task;
int ret = 0;
rcu_read_lock();
inode = d_inode_rcu(dentry);
if (!inode)
goto out;
task = pid_task(proc_pid(inode), PIDTYPE_PID);
if (task) {
pid_update_inode(task, inode);
ret = 1;
}
out:
rcu_read_unlock();
return ret;
}
static inline bool proc_inode_is_dead(struct inode *inode)
{
return !proc_pid(inode)->tasks[PIDTYPE_PID].first;
}
int pid_delete_dentry(const struct dentry *dentry)
{
/* Is the task we represent dead?
* If so, then don't put the dentry on the lru list,
* kill it immediately.
*/
return proc_inode_is_dead(d_inode(dentry));
}
const struct dentry_operations pid_dentry_operations =
{
.d_revalidate = pid_revalidate,
.d_delete = pid_delete_dentry,
};
/* Lookups */
/*
* Fill a directory entry.
*
* If possible create the dcache entry and derive our inode number and
* file type from dcache entry.
*
* Since all of the proc inode numbers are dynamically generated, the inode
* numbers do not exist until the inode is cache. This means creating
* the dcache entry in readdir is necessary to keep the inode numbers
* reported by readdir in sync with the inode numbers reported
* by stat.
*/
bool proc_fill_cache(struct file *file, struct dir_context *ctx,
const char *name, unsigned int len,
instantiate_t instantiate, struct task_struct *task, const void *ptr)
{
struct dentry *child, *dir = file->f_path.dentry;
struct qstr qname = QSTR_INIT(name, len);
struct inode *inode;
unsigned type = DT_UNKNOWN;
ino_t ino = 1;
child = d_hash_and_lookup(dir, &qname);
if (!child) {
DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
child = d_alloc_parallel(dir, &qname, &wq);
if (IS_ERR(child))
goto end_instantiate;
if (d_in_lookup(child)) {
struct dentry *res;
res = instantiate(child, task, ptr);
d_lookup_done(child);
if (unlikely(res)) {
dput(child);
child = res;
if (IS_ERR(child))
goto end_instantiate;
}
}
}
inode = d_inode(child);
ino = inode->i_ino;
type = inode->i_mode >> 12;
dput(child);
end_instantiate:
return dir_emit(ctx, name, len, ino, type);
}
/*
* dname_to_vma_addr - maps a dentry name into two unsigned longs
* which represent vma start and end addresses.
*/
static int dname_to_vma_addr(struct dentry *dentry,
unsigned long *start, unsigned long *end)
{
const char *str = dentry->d_name.name;
unsigned long long sval, eval;
unsigned int len;
if (str[0] == '0' && str[1] != '-')
return -EINVAL;
len = _parse_integer(str, 16, &sval);
if (len & KSTRTOX_OVERFLOW)
return -EINVAL;
if (sval != (unsigned long)sval)
return -EINVAL;
str += len;
if (*str != '-')
return -EINVAL;
str++;
if (str[0] == '0' && str[1])
return -EINVAL;
len = _parse_integer(str, 16, &eval);
if (len & KSTRTOX_OVERFLOW)
return -EINVAL;
if (eval != (unsigned long)eval)
return -EINVAL;
str += len;
if (*str != '\0')
return -EINVAL;
*start = sval;
*end = eval;
return 0;
}
static int map_files_d_revalidate(struct dentry *dentry, unsigned int flags)
{
unsigned long vm_start, vm_end;
bool exact_vma_exists = false;
struct mm_struct *mm = NULL;
struct task_struct *task;
struct inode *inode;
int status = 0;
if (flags & LOOKUP_RCU)
return -ECHILD;
inode = d_inode(dentry);
task = get_proc_task(inode);
if (!task)
goto out_notask;
mm = mm_access(task, PTRACE_MODE_READ_FSCREDS);
if (IS_ERR_OR_NULL(mm))
goto out;
if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) {
status = mmap_read_lock_killable(mm);
if (!status) {
exact_vma_exists = !!find_exact_vma(mm, vm_start,
vm_end);
mmap_read_unlock(mm);
}
}
mmput(mm);
if (exact_vma_exists) {
task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid);
security_task_to_inode(task, inode);
status = 1;
}
out:
put_task_struct(task);
out_notask:
return status;
}
static const struct dentry_operations tid_map_files_dentry_operations = {
.d_revalidate = map_files_d_revalidate,
.d_delete = pid_delete_dentry,
};
static int map_files_get_link(struct dentry *dentry, struct path *path)
{
unsigned long vm_start, vm_end;
struct vm_area_struct *vma;
struct task_struct *task;
struct mm_struct *mm;
int rc;
rc = -ENOENT;
task = get_proc_task(d_inode(dentry));
if (!task)
goto out;
mm = get_task_mm(task);
put_task_struct(task);
if (!mm)
goto out;
rc = dname_to_vma_addr(dentry, &vm_start, &vm_end);
if (rc)
goto out_mmput;
rc = mmap_read_lock_killable(mm);
if (rc)
goto out_mmput;
rc = -ENOENT;
vma = find_exact_vma(mm, vm_start, vm_end);
if (vma && vma->vm_file) {
*path = vma->vm_file->f_path;
path_get(path);
rc = 0;
}
mmap_read_unlock(mm);
out_mmput:
mmput(mm);
out:
return rc;
}
struct map_files_info {
unsigned long start;
unsigned long end;
fmode_t mode;
};
/*
* Only allow CAP_SYS_ADMIN and CAP_CHECKPOINT_RESTORE to follow the links, due
* to concerns about how the symlinks may be used to bypass permissions on
* ancestor directories in the path to the file in question.
*/
static const char *
proc_map_files_get_link(struct dentry *dentry,
struct inode *inode,
struct delayed_call *done)
{
if (!checkpoint_restore_ns_capable(&init_user_ns))
return ERR_PTR(-EPERM);
return proc_pid_get_link(dentry, inode, done);
}
/*
* Identical to proc_pid_link_inode_operations except for get_link()
*/
static const struct inode_operations proc_map_files_link_inode_operations = {
.readlink = proc_pid_readlink,
.get_link = proc_map_files_get_link,
.setattr = proc_setattr,
};
static struct dentry *
proc_map_files_instantiate(struct dentry *dentry,
struct task_struct *task, const void *ptr)
{
fmode_t mode = (fmode_t)(unsigned long)ptr;
struct proc_inode *ei;
struct inode *inode;
inode = proc_pid_make_inode(dentry->d_sb, task, S_IFLNK |
((mode & FMODE_READ ) ? S_IRUSR : 0) |
((mode & FMODE_WRITE) ? S_IWUSR : 0));
if (!inode)
return ERR_PTR(-ENOENT);
ei = PROC_I(inode);
ei->op.proc_get_link = map_files_get_link;
inode->i_op = &proc_map_files_link_inode_operations;
inode->i_size = 64;
d_set_d_op(dentry, &tid_map_files_dentry_operations);
return d_splice_alias(inode, dentry);
}
static struct dentry *proc_map_files_lookup(struct inode *dir,
struct dentry *dentry, unsigned int flags)
{
unsigned long vm_start, vm_end;
struct vm_area_struct *vma;
struct task_struct *task;
struct dentry *result;
struct mm_struct *mm;
result = ERR_PTR(-ENOENT);
task = get_proc_task(dir);
if (!task)
goto out;
result = ERR_PTR(-EACCES);
if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
goto out_put_task;
result = ERR_PTR(-ENOENT);
if (dname_to_vma_addr(dentry, &vm_start, &vm_end))
goto out_put_task;
mm = get_task_mm(task);
if (!mm)
goto out_put_task;
result = ERR_PTR(-EINTR);
if (mmap_read_lock_killable(mm))
goto out_put_mm;
result = ERR_PTR(-ENOENT);
vma = find_exact_vma(mm, vm_start, vm_end);
if (!vma)
goto out_no_vma;
if (vma->vm_file)
result = proc_map_files_instantiate(dentry, task,
(void *)(unsigned long)vma->vm_file->f_mode);
out_no_vma:
mmap_read_unlock(mm);
out_put_mm:
mmput(mm);
out_put_task:
put_task_struct(task);
out:
return result;
}
static const struct inode_operations proc_map_files_inode_operations = {
.lookup = proc_map_files_lookup,
.permission = proc_fd_permission,
.setattr = proc_setattr,
};
static int
proc_map_files_readdir(struct file *file, struct dir_context *ctx)
{
struct vm_area_struct *vma;
struct task_struct *task;
struct mm_struct *mm;
unsigned long nr_files, pos, i;
GENRADIX(struct map_files_info) fa;
struct map_files_info *p;
int ret;
genradix_init(&fa);
ret = -ENOENT;
task = get_proc_task(file_inode(file));
if (!task)
goto out;
ret = -EACCES;
if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
goto out_put_task;
ret = 0;
if (!dir_emit_dots(file, ctx))
goto out_put_task;
mm = get_task_mm(task);
if (!mm)
goto out_put_task;
ret = mmap_read_lock_killable(mm);
if (ret) {
mmput(mm);
goto out_put_task;
}
nr_files = 0;
/*
* We need two passes here:
*
* 1) Collect vmas of mapped files with mmap_lock taken
* 2) Release mmap_lock and instantiate entries
*
* otherwise we get lockdep complained, since filldir()
* routine might require mmap_lock taken in might_fault().
*/
for (vma = mm->mmap, pos = 2; vma; vma = vma->vm_next) {
if (!vma->vm_file)
continue;
if (++pos <= ctx->pos)
continue;
p = genradix_ptr_alloc(&fa, nr_files++, GFP_KERNEL);
if (!p) {
ret = -ENOMEM;
mmap_read_unlock(mm);
mmput(mm);
goto out_put_task;
}
p->start = vma->vm_start;
p->end = vma->vm_end;
p->mode = vma->vm_file->f_mode;
}
mmap_read_unlock(mm);
mmput(mm);
for (i = 0; i < nr_files; i++) {
char buf[4 * sizeof(long) + 2]; /* max: %lx-%lx\0 */
unsigned int len;
p = genradix_ptr(&fa, i);
len = snprintf(buf, sizeof(buf), "%lx-%lx", p->start, p->end);
if (!proc_fill_cache(file, ctx,
buf, len,
proc_map_files_instantiate,
task,
(void *)(unsigned long)p->mode))
break;
ctx->pos++;
}
out_put_task:
put_task_struct(task);
out:
genradix_free(&fa);
return ret;
}
static const struct file_operations proc_map_files_operations = {
.read = generic_read_dir,
.iterate_shared = proc_map_files_readdir,
.llseek = generic_file_llseek,
};
#if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS)
struct timers_private {
struct pid *pid;
struct task_struct *task;
struct sighand_struct *sighand;
struct pid_namespace *ns;
unsigned long flags;
};
static void *timers_start(struct seq_file *m, loff_t *pos)
{
struct timers_private *tp = m->private;
tp->task = get_pid_task(tp->pid, PIDTYPE_PID);
if (!tp->task)
return ERR_PTR(-ESRCH);
tp->sighand = lock_task_sighand(tp->task, &tp->flags);
if (!tp->sighand)
return ERR_PTR(-ESRCH);
return seq_list_start(&tp->task->signal->posix_timers, *pos);
}
static void *timers_next(struct seq_file *m, void *v, loff_t *pos)
{
struct timers_private *tp = m->private;
return seq_list_next(v, &tp->task->signal->posix_timers, pos);
}
static void timers_stop(struct seq_file *m, void *v)
{
struct timers_private *tp = m->private;
if (tp->sighand) {
unlock_task_sighand(tp->task, &tp->flags);
tp->sighand = NULL;
}
if (tp->task) {
put_task_struct(tp->task);
tp->task = NULL;
}
}
static int show_timer(struct seq_file *m, void *v)
{
struct k_itimer *timer;
struct timers_private *tp = m->private;
int notify;
static const char * const nstr[] = {
[SIGEV_SIGNAL] = "signal",
[SIGEV_NONE] = "none",
[SIGEV_THREAD] = "thread",
};
timer = list_entry((struct list_head *)v, struct k_itimer, list);
notify = timer->it_sigev_notify;
seq_printf(m, "ID: %d\n", timer->it_id);
seq_printf(m, "signal: %d/%px\n",
timer->sigq->info.si_signo,
timer->sigq->info.si_value.sival_ptr);
seq_printf(m, "notify: %s/%s.%d\n",
nstr[notify & ~SIGEV_THREAD_ID],
(notify & SIGEV_THREAD_ID) ? "tid" : "pid",
pid_nr_ns(timer->it_pid, tp->ns));
seq_printf(m, "ClockID: %d\n", timer->it_clock);
return 0;
}
static const struct seq_operations proc_timers_seq_ops = {
.start = timers_start,
.next = timers_next,
.stop = timers_stop,
.show = show_timer,
};
static int proc_timers_open(struct inode *inode, struct file *file)
{
struct timers_private *tp;
tp = __seq_open_private(file, &proc_timers_seq_ops,
sizeof(struct timers_private));
if (!tp)
return -ENOMEM;
tp->pid = proc_pid(inode);
tp->ns = proc_pid_ns(inode->i_sb);
return 0;
}
static const struct file_operations proc_timers_operations = {
.open = proc_timers_open,
.read = seq_read,
.llseek = seq_lseek,
.release = seq_release_private,
};
#endif
static ssize_t timerslack_ns_write(struct file *file, const char __user *buf,
size_t count, loff_t *offset)
{
struct inode *inode = file_inode(file);
struct task_struct *p;
u64 slack_ns;
int err;
err = kstrtoull_from_user(buf, count, 10, &slack_ns);
if (err < 0)
return err;
p = get_proc_task(inode);
if (!p)
return -ESRCH;
if (p != current) {
rcu_read_lock();
if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
rcu_read_unlock();
count = -EPERM;
goto out;
}
rcu_read_unlock();
err = security_task_setscheduler(p);
if (err) {
count = err;
goto out;
}
}
task_lock(p);
if (slack_ns == 0)
p->timer_slack_ns = p->default_timer_slack_ns;
else
p->timer_slack_ns = slack_ns;
task_unlock(p);
out:
put_task_struct(p);
return count;
}
static int timerslack_ns_show(struct seq_file *m, void *v)
{
struct inode *inode = m->private;
struct task_struct *p;
int err = 0;
p = get_proc_task(inode);
if (!p)
return -ESRCH;
if (p != current) {
rcu_read_lock();
if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
rcu_read_unlock();
err = -EPERM;
goto out;
}
rcu_read_unlock();
err = security_task_getscheduler(p);
if (err)
goto out;
}
task_lock(p);
seq_printf(m, "%llu\n", p->timer_slack_ns);
task_unlock(p);
out:
put_task_struct(p);
return err;
}
static int timerslack_ns_open(struct inode *inode, struct file *filp)
{
return single_open(filp, timerslack_ns_show, inode);
}
static const struct file_operations proc_pid_set_timerslack_ns_operations = {
.open = timerslack_ns_open,
.read = seq_read,
.write = timerslack_ns_write,
.llseek = seq_lseek,
.release = single_release,
};
static struct dentry *proc_pident_instantiate(struct dentry *dentry,
struct task_struct *task, const void *ptr)
{
const struct pid_entry *p = ptr;
struct inode *inode;
struct proc_inode *ei;
inode = proc_pid_make_inode(dentry->d_sb, task, p->mode);
if (!inode)
return ERR_PTR(-ENOENT);
ei = PROC_I(inode);
if (S_ISDIR(inode->i_mode))
set_nlink(inode, 2); /* Use getattr to fix if necessary */
if (p->iop)
inode->i_op = p->iop;
if (p->fop)
inode->i_fop = p->fop;
ei->op = p->op;
pid_update_inode(task, inode);
d_set_d_op(dentry, &pid_dentry_operations);
return d_splice_alias(inode, dentry);
}
static struct dentry *proc_pident_lookup(struct inode *dir,
struct dentry *dentry,
const struct pid_entry *p,
const struct pid_entry *end)
{
struct task_struct *task = get_proc_task(dir);
struct dentry *res = ERR_PTR(-ENOENT);
if (!task)
goto out_no_task;
/*
* Yes, it does not scale. And it should not. Don't add
* new entries into /proc/<tgid>/ without very good reasons.
*/
for (; p < end; p++) {
if (p->len != dentry->d_name.len)
continue;
if (!memcmp(dentry->d_name.name, p->name, p->len)) {
res = proc_pident_instantiate(dentry, task, p);
break;
}
}
put_task_struct(task);
out_no_task:
return res;
}
static int proc_pident_readdir(struct file *file, struct dir_context *ctx,
const struct pid_entry *ents, unsigned int nents)
{
struct task_struct *task = get_proc_task(file_inode(file));
const struct pid_entry *p;
if (!task)
return -ENOENT;
if (!dir_emit_dots(file, ctx))
goto out;
if (ctx->pos >= nents + 2)
goto out;
for (p = ents + (ctx->pos - 2); p < ents + nents; p++) {
if (!proc_fill_cache(file, ctx, p->name, p->len,
proc_pident_instantiate, task, p))
break;
ctx->pos++;
}
out:
put_task_struct(task);
return 0;
}
#ifdef CONFIG_SECURITY
static int proc_pid_attr_open(struct inode *inode, struct file *file)
{
file->private_data = NULL;
__mem_open(inode, file, PTRACE_MODE_READ_FSCREDS);
return 0;
}
static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
size_t count, loff_t *ppos)
{
struct inode * inode = file_inode(file);
char *p = NULL;
ssize_t length;
struct task_struct *task = get_proc_task(inode);
if (!task)
return -ESRCH;
length = security_getprocattr(task, PROC_I(inode)->op.lsm,
(char*)file->f_path.dentry->d_name.name,
&p);
put_task_struct(task);
if (length > 0)
length = simple_read_from_buffer(buf, count, ppos, p, length);
kfree(p);
return length;
}
static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
size_t count, loff_t *ppos)
{
struct inode * inode = file_inode(file);
struct task_struct *task;
void *page;
int rv;
/* A task may only write when it was the opener. */
if (file->private_data != current->mm)
return -EPERM;
rcu_read_lock();
task = pid_task(proc_pid(inode), PIDTYPE_PID);
if (!task) {
rcu_read_unlock();
return -ESRCH;
}
/* A task may only write its own attributes. */
if (current != task) {
rcu_read_unlock();
return -EACCES;
}
/* Prevent changes to overridden credentials. */
if (current_cred() != current_real_cred()) {
rcu_read_unlock();
return -EBUSY;
}
rcu_read_unlock();
if (count > PAGE_SIZE)
count = PAGE_SIZE;
/* No partial writes. */
if (*ppos != 0)
return -EINVAL;
page = memdup_user(buf, count);
if (IS_ERR(page)) {
rv = PTR_ERR(page);
goto out;
}
/* Guard against adverse ptrace interaction */
rv = mutex_lock_interruptible(&current->signal->cred_guard_mutex);
if (rv < 0)
goto out_free;
rv = security_setprocattr(PROC_I(inode)->op.lsm,
file->f_path.dentry->d_name.name, page,
count);
mutex_unlock(&current->signal->cred_guard_mutex);
out_free:
kfree(page);
out:
return rv;
}
static const struct file_operations proc_pid_attr_operations = {
.open = proc_pid_attr_open,
.read = proc_pid_attr_read,
.write = proc_pid_attr_write,
.llseek = generic_file_llseek,
.release = mem_release,
};
#define LSM_DIR_OPS(LSM) \
static int proc_##LSM##_attr_dir_iterate(struct file *filp, \
struct dir_context *ctx) \
{ \
return proc_pident_readdir(filp, ctx, \
LSM##_attr_dir_stuff, \
ARRAY_SIZE(LSM##_attr_dir_stuff)); \
} \
\
static const struct file_operations proc_##LSM##_attr_dir_ops = { \
.read = generic_read_dir, \
.iterate = proc_##LSM##_attr_dir_iterate, \
.llseek = default_llseek, \
}; \
\
static struct dentry *proc_##LSM##_attr_dir_lookup(struct inode *dir, \
struct dentry *dentry, unsigned int flags) \
{ \
return proc_pident_lookup(dir, dentry, \
LSM##_attr_dir_stuff, \
LSM##_attr_dir_stuff + ARRAY_SIZE(LSM##_attr_dir_stuff)); \
} \
\
static const struct inode_operations proc_##LSM##_attr_dir_inode_ops = { \
.lookup = proc_##LSM##_attr_dir_lookup, \
.getattr = pid_getattr, \
.setattr = proc_setattr, \
}
#ifdef CONFIG_SECURITY_SMACK
static const struct pid_entry smack_attr_dir_stuff[] = {
ATTR("smack", "current", 0666),
};
LSM_DIR_OPS(smack);
#endif
#ifdef CONFIG_SECURITY_APPARMOR
static const struct pid_entry apparmor_attr_dir_stuff[] = {
ATTR("apparmor", "current", 0666),
ATTR("apparmor", "prev", 0444),
ATTR("apparmor", "exec", 0666),
};
LSM_DIR_OPS(apparmor);
#endif
static const struct pid_entry attr_dir_stuff[] = {
ATTR(NULL, "current", 0666),
ATTR(NULL, "prev", 0444),
ATTR(NULL, "exec", 0666),
ATTR(NULL, "fscreate", 0666),
ATTR(NULL, "keycreate", 0666),
ATTR(NULL, "sockcreate", 0666),
#ifdef CONFIG_SECURITY_SMACK
DIR("smack", 0555,
proc_smack_attr_dir_inode_ops, proc_smack_attr_dir_ops),
#endif
#ifdef CONFIG_SECURITY_APPARMOR
DIR("apparmor", 0555,
proc_apparmor_attr_dir_inode_ops, proc_apparmor_attr_dir_ops),
#endif
};
static int proc_attr_dir_readdir(struct file *file, struct dir_context *ctx)
{
return proc_pident_readdir(file, ctx,
attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
}
static const struct file_operations proc_attr_dir_operations = {
.read = generic_read_dir,
.iterate_shared = proc_attr_dir_readdir,
.llseek = generic_file_llseek,
};
static struct dentry *proc_attr_dir_lookup(struct inode *dir,
struct dentry *dentry, unsigned int flags)
{
return proc_pident_lookup(dir, dentry,
attr_dir_stuff,
attr_dir_stuff + ARRAY_SIZE(attr_dir_stuff));
}
static const struct inode_operations proc_attr_dir_inode_operations = {
.lookup = proc_attr_dir_lookup,
.getattr = pid_getattr,
.setattr = proc_setattr,
};
#endif
#ifdef CONFIG_ELF_CORE
static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
size_t count, loff_t *ppos)
{
struct task_struct *task = get_proc_task(file_inode(file));
struct mm_struct *mm;
char buffer[PROC_NUMBUF];
size_t len;
int ret;
if (!task)
return -ESRCH;
ret = 0;
mm = get_task_mm(task);
if (mm) {
len = snprintf(buffer, sizeof(buffer), "%08lx\n",
((mm->flags & MMF_DUMP_FILTER_MASK) >>
MMF_DUMP_FILTER_SHIFT));
mmput(mm);
ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
}
put_task_struct(task);
return ret;
}
static ssize_t proc_coredump_filter_write(struct file *file,
const char __user *buf,
size_t count,
loff_t *ppos)
{
struct task_struct *task;
struct mm_struct *mm;
unsigned int val;
int ret;
int i;
unsigned long mask;
ret = kstrtouint_from_user(buf, count, 0, &val);
if (ret < 0)
return ret;
ret = -ESRCH;
task = get_proc_task(file_inode(file));
if (!task)
goto out_no_task;
mm = get_task_mm(task);
if (!mm)
goto out_no_mm;
ret = 0;
for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
if (val & mask)
set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
else
clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
}
mmput(mm);
out_no_mm:
put_task_struct(task);
out_no_task:
if (ret < 0)
return ret;
return count;
}
static const struct file_operations proc_coredump_filter_operations = {
.read = proc_coredump_filter_read,
.write = proc_coredump_filter_write,
.llseek = generic_file_llseek,
};
#endif
#ifdef CONFIG_TASK_IO_ACCOUNTING
static int do_io_accounting(struct task_struct *task, struct seq_file *m, int whole)
{
struct task_io_accounting acct = task->ioac;
unsigned long flags;
int result;
result = down_read_killable(&task->signal->exec_update_lock);
if (result)
return result;
if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) {
result = -EACCES;
goto out_unlock;
}
if (whole && lock_task_sighand(task, &flags)) {
struct task_struct *t = task;
task_io_accounting_add(&acct, &task->signal->ioac);
while_each_thread(task, t)
task_io_accounting_add(&acct, &t->ioac);
unlock_task_sighand(task, &flags);
}
seq_printf(m,
"rchar: %llu\n"
"wchar: %llu\n"
"syscr: %llu\n"
"syscw: %llu\n"
"read_bytes: %llu\n"
"write_bytes: %llu\n"
"cancelled_write_bytes: %llu\n",
(unsigned long long)acct.rchar,
(unsigned long long)acct.wchar,
(unsigned long long)acct.syscr,
(unsigned long long)acct.syscw,
(unsigned long long)acct.read_bytes,
(unsigned long long)acct.write_bytes,
(unsigned long long)acct.cancelled_write_bytes);
result = 0;
out_unlock:
up_read(&task->signal->exec_update_lock);
return result;
}
static int proc_tid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
struct pid *pid, struct task_struct *task)
{
return do_io_accounting(task, m, 0);
}
static int proc_tgid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
struct pid *pid, struct task_struct *task)
{
return do_io_accounting(task, m, 1);
}
#endif /* CONFIG_TASK_IO_ACCOUNTING */
#ifdef CONFIG_USER_NS
static int proc_id_map_open(struct inode *inode, struct file *file,
const struct seq_operations *seq_ops)
{
struct user_namespace *ns = NULL;
struct task_struct *task;
struct seq_file *seq;
int ret = -EINVAL;
task = get_proc_task(inode);
if (task) {
rcu_read_lock();
ns = get_user_ns(task_cred_xxx(task, user_ns));
rcu_read_unlock();
put_task_struct(task);
}
if (!ns)
goto err;
ret = seq_open(file, seq_ops);
if (ret)
goto err_put_ns;
seq = file->private_data;
seq->private = ns;
return 0;
err_put_ns:
put_user_ns(ns);
err:
return ret;
}
static int proc_id_map_release(struct inode *inode, struct file *file)
{
struct seq_file *seq = file->private_data;
struct user_namespace *ns = seq->private;
put_user_ns(ns);
return seq_release(inode, file);
}
static int proc_uid_map_open(struct inode *inode, struct file *file)
{
return proc_id_map_open(inode, file, &proc_uid_seq_operations);
}
static int proc_gid_map_open(struct inode *inode, struct file *file)
{
return proc_id_map_open(inode, file, &proc_gid_seq_operations);
}
static int proc_projid_map_open(struct inode *inode, struct file *file)
{
return proc_id_map_open(inode, file, &proc_projid_seq_operations);
}
static const struct file_operations proc_uid_map_operations = {
.open = proc_uid_map_open,
.write = proc_uid_map_write,
.read = seq_read,
.llseek = seq_lseek,
.release = proc_id_map_release,
};
static const struct file_operations proc_gid_map_operations = {
.open = proc_gid_map_open,
.write = proc_gid_map_write,
.read = seq_read,
.llseek = seq_lseek,
.release = proc_id_map_release,
};
static const struct file_operations proc_projid_map_operations = {
.open = proc_projid_map_open,
.write = proc_projid_map_write,
.read = seq_read,
.llseek = seq_lseek,
.release = proc_id_map_release,
};
static int proc_setgroups_open(struct inode *inode, struct file *file)
{
struct user_namespace *ns = NULL;
struct task_struct *task;
int ret;
ret = -ESRCH;
task = get_proc_task(inode);
if (task) {
rcu_read_lock();
ns = get_user_ns(task_cred_xxx(task, user_ns));
rcu_read_unlock();
put_task_struct(task);
}
if (!ns)
goto err;
if (file->f_mode & FMODE_WRITE) {
ret = -EACCES;
if (!ns_capable(ns, CAP_SYS_ADMIN))
goto err_put_ns;
}
ret = single_open(file, &proc_setgroups_show, ns);
if (ret)
goto err_put_ns;
return 0;
err_put_ns:
put_user_ns(ns);
err:
return ret;
}
static int proc_setgroups_release(struct inode *inode, struct file *file)
{
struct seq_file *seq = file->private_data;
struct user_namespace *ns = seq->private;
int ret = single_release(inode, file);
put_user_ns(ns);
return ret;
}
static const struct file_operations proc_setgroups_operations = {
.open = proc_setgroups_open,
.write = proc_setgroups_write,
.read = seq_read,
.llseek = seq_lseek,
.release = proc_setgroups_release,
};
#endif /* CONFIG_USER_NS */
static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
struct pid *pid, struct task_struct *task)
{
int err = lock_trace(task);
if (!err) {
seq_printf(m, "%08x\n", task->personality);
unlock_trace(task);
}
return err;
}
#ifdef CONFIG_LIVEPATCH
static int proc_pid_patch_state(struct seq_file *m, struct pid_namespace *ns,
struct pid *pid, struct task_struct *task)
{
seq_printf(m, "%d\n", task->patch_state);
return 0;
}
#endif /* CONFIG_LIVEPATCH */
#ifdef CONFIG_KSM
static int proc_pid_ksm_merging_pages(struct seq_file *m, struct pid_namespace *ns,
struct pid *pid, struct task_struct *task)
{
struct mm_struct *mm;
mm = get_task_mm(task);
if (mm) {
seq_printf(m, "%lu\n", mm->ksm_merging_pages);
mmput(mm);
}
return 0;
}
#endif /* CONFIG_KSM */
#ifdef CONFIG_STACKLEAK_METRICS
static int proc_stack_depth(struct seq_file *m, struct pid_namespace *ns,
struct pid *pid, struct task_struct *task)
{
unsigned long prev_depth = THREAD_SIZE -
(task->prev_lowest_stack & (THREAD_SIZE - 1));
unsigned long depth = THREAD_SIZE -
(task->lowest_stack & (THREAD_SIZE - 1));
seq_printf(m, "previous stack depth: %lu\nstack depth: %lu\n",
prev_depth, depth);
return 0;
}
#endif /* CONFIG_STACKLEAK_METRICS */
/*
* Thread groups
*/
static const struct file_operations proc_task_operations;
static const struct inode_operations proc_task_inode_operations;
static const struct pid_entry tgid_base_stuff[] = {
DIR("task", S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
DIR("map_files", S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations),
DIR("fdinfo", S_IRUGO|S_IXUGO, proc_fdinfo_inode_operations, proc_fdinfo_operations),
DIR("ns", S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
#ifdef CONFIG_NET
DIR("net", S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
#endif
REG("environ", S_IRUSR, proc_environ_operations),
REG("auxv", S_IRUSR, proc_auxv_operations),
ONE("status", S_IRUGO, proc_pid_status),
ONE("personality", S_IRUSR, proc_pid_personality),
ONE("limits", S_IRUGO, proc_pid_limits),
#ifdef CONFIG_SCHED_DEBUG
REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations),
#endif
#ifdef CONFIG_SCHED_AUTOGROUP
REG("autogroup", S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations),
#endif
#ifdef CONFIG_TIME_NS
REG("timens_offsets", S_IRUGO|S_IWUSR, proc_timens_offsets_operations),
#endif
REG("comm", S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
ONE("syscall", S_IRUSR, proc_pid_syscall),
#endif
REG("cmdline", S_IRUGO, proc_pid_cmdline_ops),
ONE("stat", S_IRUGO, proc_tgid_stat),
ONE("statm", S_IRUGO, proc_pid_statm),
REG("maps", S_IRUGO, proc_pid_maps_operations),
#ifdef CONFIG_NUMA
REG("numa_maps", S_IRUGO, proc_pid_numa_maps_operations),
#endif
REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations),
LNK("cwd", proc_cwd_link),
LNK("root", proc_root_link),
LNK("exe", proc_exe_link),
REG("mounts", S_IRUGO, proc_mounts_operations),
REG("mountinfo", S_IRUGO, proc_mountinfo_operations),
REG("mountstats", S_IRUSR, proc_mountstats_operations),
#ifdef CONFIG_PROC_PAGE_MONITOR
REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
REG("smaps", S_IRUGO, proc_pid_smaps_operations),
REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations),
REG("pagemap", S_IRUSR, proc_pagemap_operations),
#endif
#ifdef CONFIG_SECURITY
DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
#endif
#ifdef CONFIG_KALLSYMS
ONE("wchan", S_IRUGO, proc_pid_wchan),
#endif
#ifdef CONFIG_STACKTRACE
ONE("stack", S_IRUSR, proc_pid_stack),
#endif
#ifdef CONFIG_SCHED_INFO
ONE("schedstat", S_IRUGO, proc_pid_schedstat),
#endif
#ifdef CONFIG_LATENCYTOP
REG("latency", S_IRUGO, proc_lstats_operations),
#endif
#ifdef CONFIG_PROC_PID_CPUSET
ONE("cpuset", S_IRUGO, proc_cpuset_show),
#endif
#ifdef CONFIG_CGROUPS
ONE("cgroup", S_IRUGO, proc_cgroup_show),
#endif
#ifdef CONFIG_PROC_CPU_RESCTRL
ONE("cpu_resctrl_groups", S_IRUGO, proc_resctrl_show),
#endif
ONE("oom_score", S_IRUGO, proc_oom_score),
REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adj_operations),
REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
#ifdef CONFIG_AUDIT
REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations),
REG("sessionid", S_IRUGO, proc_sessionid_operations),
#endif
#ifdef CONFIG_FAULT_INJECTION
REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
REG("fail-nth", 0644, proc_fail_nth_operations),
#endif
#ifdef CONFIG_ELF_CORE
REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
#endif
#ifdef CONFIG_TASK_IO_ACCOUNTING
ONE("io", S_IRUSR, proc_tgid_io_accounting),
#endif
#ifdef CONFIG_USER_NS
REG("uid_map", S_IRUGO|S_IWUSR, proc_uid_map_operations),
REG("gid_map", S_IRUGO|S_IWUSR, proc_gid_map_operations),
REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
REG("setgroups", S_IRUGO|S_IWUSR, proc_setgroups_operations),
#endif
#if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS)
REG("timers", S_IRUGO, proc_timers_operations),
#endif
REG("timerslack_ns", S_IRUGO|S_IWUGO, proc_pid_set_timerslack_ns_operations),
#ifdef CONFIG_LIVEPATCH
ONE("patch_state", S_IRUSR, proc_pid_patch_state),
#endif
#ifdef CONFIG_STACKLEAK_METRICS
ONE("stack_depth", S_IRUGO, proc_stack_depth),
#endif
#ifdef CONFIG_PROC_PID_ARCH_STATUS
ONE("arch_status", S_IRUGO, proc_pid_arch_status),
#endif
#ifdef CONFIG_SECCOMP_CACHE_DEBUG
ONE("seccomp_cache", S_IRUSR, proc_pid_seccomp_cache),
#endif
#ifdef CONFIG_KSM
ONE("ksm_merging_pages", S_IRUSR, proc_pid_ksm_merging_pages),
#endif
};
static int proc_tgid_base_readdir(struct file *file, struct dir_context *ctx)
{
return proc_pident_readdir(file, ctx,
tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
}
static const struct file_operations proc_tgid_base_operations = {
.read = generic_read_dir,
.iterate_shared = proc_tgid_base_readdir,
.llseek = generic_file_llseek,
};
struct pid *tgid_pidfd_to_pid(const struct file *file)
{
if (file->f_op != &proc_tgid_base_operations)
return ERR_PTR(-EBADF);
return proc_pid(file_inode(file));
}
static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
{
return proc_pident_lookup(dir, dentry,
tgid_base_stuff,
tgid_base_stuff + ARRAY_SIZE(tgid_base_stuff));
}
static const struct inode_operations proc_tgid_base_inode_operations = {
.lookup = proc_tgid_base_lookup,
.getattr = pid_getattr,
.setattr = proc_setattr,
.permission = proc_pid_permission,
};
/**
* proc_flush_pid - Remove dcache entries for @pid from the /proc dcache.
* @pid: pid that should be flushed.
*
* This function walks a list of inodes (that belong to any proc
* filesystem) that are attached to the pid and flushes them from
* the dentry cache.
*
* It is safe and reasonable to cache /proc entries for a task until
* that task exits. After that they just clog up the dcache with
* useless entries, possibly causing useful dcache entries to be
* flushed instead. This routine is provided to flush those useless
* dcache entries when a process is reaped.
*
* NOTE: This routine is just an optimization so it does not guarantee
* that no dcache entries will exist after a process is reaped
* it just makes it very unlikely that any will persist.
*/
void proc_flush_pid(struct pid *pid)
{
proc_invalidate_siblings_dcache(&pid->inodes, &pid->lock);
}
static struct dentry *proc_pid_instantiate(struct dentry * dentry,
struct task_struct *task, const void *ptr)
{
struct inode *inode;
inode = proc_pid_make_inode(dentry->d_sb, task, S_IFDIR | S_IRUGO | S_IXUGO);
if (!inode)
return ERR_PTR(-ENOENT);
inode->i_op = &proc_tgid_base_inode_operations;
inode->i_fop = &proc_tgid_base_operations;
inode->i_flags|=S_IMMUTABLE;
set_nlink(inode, nlink_tgid);
pid_update_inode(task, inode);
d_set_d_op(dentry, &pid_dentry_operations);
return d_splice_alias(inode, dentry);
}
struct dentry *proc_pid_lookup(struct dentry *dentry, unsigned int flags)
{
struct task_struct *task;
unsigned tgid;
struct proc_fs_info *fs_info;
struct pid_namespace *ns;
struct dentry *result = ERR_PTR(-ENOENT);
tgid = name_to_int(&dentry->d_name);
if (tgid == ~0U)
goto out;
fs_info = proc_sb_info(dentry->d_sb);
ns = fs_info->pid_ns;
rcu_read_lock();
task = find_task_by_pid_ns(tgid, ns);
if (task)
get_task_struct(task);
rcu_read_unlock();
if (!task)
goto out;
/* Limit procfs to only ptraceable tasks */
if (fs_info->hide_pid == HIDEPID_NOT_PTRACEABLE) {
if (!has_pid_permissions(fs_info, task, HIDEPID_NO_ACCESS))
goto out_put_task;
}
result = proc_pid_instantiate(dentry, task, NULL);
out_put_task:
put_task_struct(task);
out:
return result;
}
/*
* Find the first task with tgid >= tgid
*
*/
struct tgid_iter {
unsigned int tgid;
struct task_struct *task;
};
static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
{
struct pid *pid;
if (iter.task)
put_task_struct(iter.task);
rcu_read_lock();
retry:
iter.task = NULL;
pid = find_ge_pid(iter.tgid, ns);
if (pid) {
iter.tgid = pid_nr_ns(pid, ns);
iter.task = pid_task(pid, PIDTYPE_TGID);
if (!iter.task) {
iter.tgid += 1;
goto retry;
}
get_task_struct(iter.task);
}
rcu_read_unlock();
return iter;
}
#define TGID_OFFSET (FIRST_PROCESS_ENTRY + 2)
/* for the /proc/ directory itself, after non-process stuff has been done */
int proc_pid_readdir(struct file *file, struct dir_context *ctx)
{
struct tgid_iter iter;
struct proc_fs_info *fs_info = proc_sb_info(file_inode(file)->i_sb);
struct pid_namespace *ns = proc_pid_ns(file_inode(file)->i_sb);
loff_t pos = ctx->pos;
if (pos >= PID_MAX_LIMIT + TGID_OFFSET)
return 0;
if (pos == TGID_OFFSET - 2) {
struct inode *inode = d_inode(fs_info->proc_self);
if (!dir_emit(ctx, "self", 4, inode->i_ino, DT_LNK))
return 0;
ctx->pos = pos = pos + 1;
}
if (pos == TGID_OFFSET - 1) {
struct inode *inode = d_inode(fs_info->proc_thread_self);
if (!dir_emit(ctx, "thread-self", 11, inode->i_ino, DT_LNK))
return 0;
ctx->pos = pos = pos + 1;
}
iter.tgid = pos - TGID_OFFSET;
iter.task = NULL;
for (iter = next_tgid(ns, iter);
iter.task;
iter.tgid += 1, iter = next_tgid(ns, iter)) {
char name[10 + 1];
unsigned int len;
cond_resched();
if (!has_pid_permissions(fs_info, iter.task, HIDEPID_INVISIBLE))
continue;
len = snprintf(name, sizeof(name), "%u", iter.tgid);
ctx->pos = iter.tgid + TGID_OFFSET;
if (!proc_fill_cache(file, ctx, name, len,
proc_pid_instantiate, iter.task, NULL)) {
put_task_struct(iter.task);
return 0;
}
}
ctx->pos = PID_MAX_LIMIT + TGID_OFFSET;
return 0;
}
/*
* proc_tid_comm_permission is a special permission function exclusively
* used for the node /proc/<pid>/task/<tid>/comm.
* It bypasses generic permission checks in the case where a task of the same
* task group attempts to access the node.
* The rationale behind this is that glibc and bionic access this node for
* cross thread naming (pthread_set/getname_np(!self)). However, if
* PR_SET_DUMPABLE gets set to 0 this node among others becomes uid=0 gid=0,
* which locks out the cross thread naming implementation.
* This function makes sure that the node is always accessible for members of
* same thread group.
*/
static int proc_tid_comm_permission(struct user_namespace *mnt_userns,
struct inode *inode, int mask)
{
bool is_same_tgroup;
struct task_struct *task;
task = get_proc_task(inode);
if (!task)
return -ESRCH;
is_same_tgroup = same_thread_group(current, task);
put_task_struct(task);
if (likely(is_same_tgroup && !(mask & MAY_EXEC))) {
/* This file (/proc/<pid>/task/<tid>/comm) can always be
* read or written by the members of the corresponding
* thread group.
*/
return 0;
}
return generic_permission(&init_user_ns, inode, mask);
}
static const struct inode_operations proc_tid_comm_inode_operations = {
.permission = proc_tid_comm_permission,
};
/*
* Tasks
*/
static const struct pid_entry tid_base_stuff[] = {
DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
DIR("fdinfo", S_IRUGO|S_IXUGO, proc_fdinfo_inode_operations, proc_fdinfo_operations),
DIR("ns", S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
#ifdef CONFIG_NET
DIR("net", S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
#endif
REG("environ", S_IRUSR, proc_environ_operations),
REG("auxv", S_IRUSR, proc_auxv_operations),
ONE("status", S_IRUGO, proc_pid_status),
ONE("personality", S_IRUSR, proc_pid_personality),
ONE("limits", S_IRUGO, proc_pid_limits),
#ifdef CONFIG_SCHED_DEBUG
REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations),
#endif
NOD("comm", S_IFREG|S_IRUGO|S_IWUSR,
&proc_tid_comm_inode_operations,
&proc_pid_set_comm_operations, {}),
#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
ONE("syscall", S_IRUSR, proc_pid_syscall),
#endif
REG("cmdline", S_IRUGO, proc_pid_cmdline_ops),
ONE("stat", S_IRUGO, proc_tid_stat),
ONE("statm", S_IRUGO, proc_pid_statm),
REG("maps", S_IRUGO, proc_pid_maps_operations),
#ifdef CONFIG_PROC_CHILDREN
REG("children", S_IRUGO, proc_tid_children_operations),
#endif
#ifdef CONFIG_NUMA
REG("numa_maps", S_IRUGO, proc_pid_numa_maps_operations),
#endif
REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations),
LNK("cwd", proc_cwd_link),
LNK("root", proc_root_link),
LNK("exe", proc_exe_link),
REG("mounts", S_IRUGO, proc_mounts_operations),
REG("mountinfo", S_IRUGO, proc_mountinfo_operations),
#ifdef CONFIG_PROC_PAGE_MONITOR
REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
REG("smaps", S_IRUGO, proc_pid_smaps_operations),
REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations),
REG("pagemap", S_IRUSR, proc_pagemap_operations),
#endif
#ifdef CONFIG_SECURITY
DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
#endif
#ifdef CONFIG_KALLSYMS
ONE("wchan", S_IRUGO, proc_pid_wchan),
#endif
#ifdef CONFIG_STACKTRACE
ONE("stack", S_IRUSR, proc_pid_stack),
#endif
#ifdef CONFIG_SCHED_INFO
ONE("schedstat", S_IRUGO, proc_pid_schedstat),
#endif
#ifdef CONFIG_LATENCYTOP
REG("latency", S_IRUGO, proc_lstats_operations),
#endif
#ifdef CONFIG_PROC_PID_CPUSET
ONE("cpuset", S_IRUGO, proc_cpuset_show),
#endif
#ifdef CONFIG_CGROUPS
ONE("cgroup", S_IRUGO, proc_cgroup_show),
#endif
#ifdef CONFIG_PROC_CPU_RESCTRL
ONE("cpu_resctrl_groups", S_IRUGO, proc_resctrl_show),
#endif
ONE("oom_score", S_IRUGO, proc_oom_score),
REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adj_operations),
REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
#ifdef CONFIG_AUDIT
REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations),
REG("sessionid", S_IRUGO, proc_sessionid_operations),
#endif
#ifdef CONFIG_FAULT_INJECTION
REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
REG("fail-nth", 0644, proc_fail_nth_operations),
#endif
#ifdef CONFIG_TASK_IO_ACCOUNTING
ONE("io", S_IRUSR, proc_tid_io_accounting),
#endif
#ifdef CONFIG_USER_NS
REG("uid_map", S_IRUGO|S_IWUSR, proc_uid_map_operations),
REG("gid_map", S_IRUGO|S_IWUSR, proc_gid_map_operations),
REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
REG("setgroups", S_IRUGO|S_IWUSR, proc_setgroups_operations),
#endif
#ifdef CONFIG_LIVEPATCH
ONE("patch_state", S_IRUSR, proc_pid_patch_state),
#endif
#ifdef CONFIG_PROC_PID_ARCH_STATUS
ONE("arch_status", S_IRUGO, proc_pid_arch_status),
#endif
#ifdef CONFIG_SECCOMP_CACHE_DEBUG
ONE("seccomp_cache", S_IRUSR, proc_pid_seccomp_cache),
#endif
#ifdef CONFIG_KSM
ONE("ksm_merging_pages", S_IRUSR, proc_pid_ksm_merging_pages),
#endif
};
static int proc_tid_base_readdir(struct file *file, struct dir_context *ctx)
{
return proc_pident_readdir(file, ctx,
tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
}
static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
{
return proc_pident_lookup(dir, dentry,
tid_base_stuff,
tid_base_stuff + ARRAY_SIZE(tid_base_stuff));
}
static const struct file_operations proc_tid_base_operations = {
.read = generic_read_dir,
.iterate_shared = proc_tid_base_readdir,
.llseek = generic_file_llseek,
};
static const struct inode_operations proc_tid_base_inode_operations = {
.lookup = proc_tid_base_lookup,
.getattr = pid_getattr,
.setattr = proc_setattr,
};
static struct dentry *proc_task_instantiate(struct dentry *dentry,
struct task_struct *task, const void *ptr)
{
struct inode *inode;
inode = proc_pid_make_inode(dentry->d_sb, task, S_IFDIR | S_IRUGO | S_IXUGO);
if (!inode)
return ERR_PTR(-ENOENT);
inode->i_op = &proc_tid_base_inode_operations;
inode->i_fop = &proc_tid_base_operations;
inode->i_flags |= S_IMMUTABLE;
set_nlink(inode, nlink_tid);
pid_update_inode(task, inode);
d_set_d_op(dentry, &pid_dentry_operations);
return d_splice_alias(inode, dentry);
}
static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
{
struct task_struct *task;
struct task_struct *leader = get_proc_task(dir);
unsigned tid;
struct proc_fs_info *fs_info;
struct pid_namespace *ns;
struct dentry *result = ERR_PTR(-ENOENT);
if (!leader)
goto out_no_task;
tid = name_to_int(&dentry->d_name);
if (tid == ~0U)
goto out;
fs_info = proc_sb_info(dentry->d_sb);
ns = fs_info->pid_ns;
rcu_read_lock();
task = find_task_by_pid_ns(tid, ns);
if (task)
get_task_struct(task);
rcu_read_unlock();
if (!task)
goto out;
if (!same_thread_group(leader, task))
goto out_drop_task;
result = proc_task_instantiate(dentry, task, NULL);
out_drop_task:
put_task_struct(task);
out:
put_task_struct(leader);
out_no_task:
return result;
}
/*
* Find the first tid of a thread group to return to user space.
*
* Usually this is just the thread group leader, but if the users
* buffer was too small or there was a seek into the middle of the
* directory we have more work todo.
*
* In the case of a short read we start with find_task_by_pid.
*
* In the case of a seek we start with the leader and walk nr
* threads past it.
*/
static struct task_struct *first_tid(struct pid *pid, int tid, loff_t f_pos,
struct pid_namespace *ns)
{
struct task_struct *pos, *task;
unsigned long nr = f_pos;
if (nr != f_pos) /* 32bit overflow? */
return NULL;
rcu_read_lock();
task = pid_task(pid, PIDTYPE_PID);
if (!task)
goto fail;
/* Attempt to start with the tid of a thread */
if (tid && nr) {
pos = find_task_by_pid_ns(tid, ns);
if (pos && same_thread_group(pos, task))
goto found;
}
/* If nr exceeds the number of threads there is nothing todo */
if (nr >= get_nr_threads(task))
goto fail;
/* If we haven't found our starting place yet start
* with the leader and walk nr threads forward.
*/
pos = task = task->group_leader;
do {
if (!nr--)
goto found;
} while_each_thread(task, pos);
fail:
pos = NULL;
goto out;
found:
get_task_struct(pos);
out:
rcu_read_unlock();
return pos;
}
/*
* Find the next thread in the thread list.
* Return NULL if there is an error or no next thread.
*
* The reference to the input task_struct is released.
*/
static struct task_struct *next_tid(struct task_struct *start)
{
struct task_struct *pos = NULL;
rcu_read_lock();
if (pid_alive(start)) {
pos = next_thread(start);
if (thread_group_leader(pos))
pos = NULL;
else
get_task_struct(pos);
}
rcu_read_unlock();
put_task_struct(start);
return pos;
}
/* for the /proc/TGID/task/ directories */
static int proc_task_readdir(struct file *file, struct dir_context *ctx)
{
struct inode *inode = file_inode(file);
struct task_struct *task;
struct pid_namespace *ns;
int tid;
if (proc_inode_is_dead(inode))
return -ENOENT;
if (!dir_emit_dots(file, ctx))
return 0;
/* f_version caches the tgid value that the last readdir call couldn't
* return. lseek aka telldir automagically resets f_version to 0.
*/
ns = proc_pid_ns(inode->i_sb);
tid = (int)file->f_version;
file->f_version = 0;
for (task = first_tid(proc_pid(inode), tid, ctx->pos - 2, ns);
task;
task = next_tid(task), ctx->pos++) {
char name[10 + 1];
unsigned int len;
tid = task_pid_nr_ns(task, ns);
if (!tid)
continue; /* The task has just exited. */
len = snprintf(name, sizeof(name), "%u", tid);
if (!proc_fill_cache(file, ctx, name, len,
proc_task_instantiate, task, NULL)) {
/* returning this tgid failed, save it as the first
* pid for the next readir call */
file->f_version = (u64)tid;
put_task_struct(task);
break;
}
}
return 0;
}
static int proc_task_getattr(struct user_namespace *mnt_userns,
const struct path *path, struct kstat *stat,
u32 request_mask, unsigned int query_flags)
{
struct inode *inode = d_inode(path->dentry);
struct task_struct *p = get_proc_task(inode);
generic_fillattr(&init_user_ns, inode, stat);
if (p) {
stat->nlink += get_nr_threads(p);
put_task_struct(p);
}
return 0;
}
static const struct inode_operations proc_task_inode_operations = {
.lookup = proc_task_lookup,
.getattr = proc_task_getattr,
.setattr = proc_setattr,
.permission = proc_pid_permission,
};
static const struct file_operations proc_task_operations = {
.read = generic_read_dir,
.iterate_shared = proc_task_readdir,
.llseek = generic_file_llseek,
};
void __init set_proc_pid_nlink(void)
{
nlink_tid = pid_entry_nlink(tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
nlink_tgid = pid_entry_nlink(tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
}