mirror of
https://github.com/torvalds/linux.git
synced 2024-12-11 05:33:09 +00:00
992e9fdd7b
This patch adds some tracepoints in extent status tree. Signed-off-by: Zheng Liu <wenqing.lz@taobao.com> Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
501 lines
13 KiB
C
501 lines
13 KiB
C
/*
|
|
* fs/ext4/extents_status.c
|
|
*
|
|
* Written by Yongqiang Yang <xiaoqiangnk@gmail.com>
|
|
* Modified by
|
|
* Allison Henderson <achender@linux.vnet.ibm.com>
|
|
* Hugh Dickins <hughd@google.com>
|
|
* Zheng Liu <wenqing.lz@taobao.com>
|
|
*
|
|
* Ext4 extents status tree core functions.
|
|
*/
|
|
#include <linux/rbtree.h>
|
|
#include "ext4.h"
|
|
#include "extents_status.h"
|
|
#include "ext4_extents.h"
|
|
|
|
#include <trace/events/ext4.h>
|
|
|
|
/*
|
|
* According to previous discussion in Ext4 Developer Workshop, we
|
|
* will introduce a new structure called io tree to track all extent
|
|
* status in order to solve some problems that we have met
|
|
* (e.g. Reservation space warning), and provide extent-level locking.
|
|
* Delay extent tree is the first step to achieve this goal. It is
|
|
* original built by Yongqiang Yang. At that time it is called delay
|
|
* extent tree, whose goal is only track delay extent in memory to
|
|
* simplify the implementation of fiemap and bigalloc, and introduce
|
|
* lseek SEEK_DATA/SEEK_HOLE support. That is why it is still called
|
|
* delay extent tree at the following comment. But for better
|
|
* understand what it does, it has been rename to extent status tree.
|
|
*
|
|
* Currently the first step has been done. All delay extents are
|
|
* tracked in the tree. It maintains the delay extent when a delay
|
|
* allocation is issued, and the delay extent is written out or
|
|
* invalidated. Therefore the implementation of fiemap and bigalloc
|
|
* are simplified, and SEEK_DATA/SEEK_HOLE are introduced.
|
|
*
|
|
* The following comment describes the implemenmtation of extent
|
|
* status tree and future works.
|
|
*/
|
|
|
|
/*
|
|
* extents status tree implementation for ext4.
|
|
*
|
|
*
|
|
* ==========================================================================
|
|
* Extents status encompass delayed extents and extent locks
|
|
*
|
|
* 1. Why delayed extent implementation ?
|
|
*
|
|
* Without delayed extent, ext4 identifies a delayed extent by looking
|
|
* up page cache, this has several deficiencies - complicated, buggy,
|
|
* and inefficient code.
|
|
*
|
|
* FIEMAP, SEEK_HOLE/DATA, bigalloc, punch hole and writeout all need
|
|
* to know if a block or a range of blocks are belonged to a delayed
|
|
* extent.
|
|
*
|
|
* Let us have a look at how they do without delayed extents implementation.
|
|
* -- FIEMAP
|
|
* FIEMAP looks up page cache to identify delayed allocations from holes.
|
|
*
|
|
* -- SEEK_HOLE/DATA
|
|
* SEEK_HOLE/DATA has the same problem as FIEMAP.
|
|
*
|
|
* -- bigalloc
|
|
* bigalloc looks up page cache to figure out if a block is
|
|
* already under delayed allocation or not to determine whether
|
|
* quota reserving is needed for the cluster.
|
|
*
|
|
* -- punch hole
|
|
* punch hole looks up page cache to identify a delayed extent.
|
|
*
|
|
* -- writeout
|
|
* Writeout looks up whole page cache to see if a buffer is
|
|
* mapped, If there are not very many delayed buffers, then it is
|
|
* time comsuming.
|
|
*
|
|
* With delayed extents implementation, FIEMAP, SEEK_HOLE/DATA,
|
|
* bigalloc and writeout can figure out if a block or a range of
|
|
* blocks is under delayed allocation(belonged to a delayed extent) or
|
|
* not by searching the delayed extent tree.
|
|
*
|
|
*
|
|
* ==========================================================================
|
|
* 2. ext4 delayed extents impelmentation
|
|
*
|
|
* -- delayed extent
|
|
* A delayed extent is a range of blocks which are contiguous
|
|
* logically and under delayed allocation. Unlike extent in
|
|
* ext4, delayed extent in ext4 is a in-memory struct, there is
|
|
* no corresponding on-disk data. There is no limit on length of
|
|
* delayed extent, so a delayed extent can contain as many blocks
|
|
* as they are contiguous logically.
|
|
*
|
|
* -- delayed extent tree
|
|
* Every inode has a delayed extent tree and all under delayed
|
|
* allocation blocks are added to the tree as delayed extents.
|
|
* Delayed extents in the tree are ordered by logical block no.
|
|
*
|
|
* -- operations on a delayed extent tree
|
|
* There are three operations on a delayed extent tree: find next
|
|
* delayed extent, adding a space(a range of blocks) and removing
|
|
* a space.
|
|
*
|
|
* -- race on a delayed extent tree
|
|
* Delayed extent tree is protected inode->i_es_lock.
|
|
*
|
|
*
|
|
* ==========================================================================
|
|
* 3. performance analysis
|
|
* -- overhead
|
|
* 1. There is a cache extent for write access, so if writes are
|
|
* not very random, adding space operaions are in O(1) time.
|
|
*
|
|
* -- gain
|
|
* 2. Code is much simpler, more readable, more maintainable and
|
|
* more efficient.
|
|
*
|
|
*
|
|
* ==========================================================================
|
|
* 4. TODO list
|
|
* -- Track all extent status
|
|
*
|
|
* -- Improve get block process
|
|
*
|
|
* -- Extent-level locking
|
|
*/
|
|
|
|
static struct kmem_cache *ext4_es_cachep;
|
|
|
|
int __init ext4_init_es(void)
|
|
{
|
|
ext4_es_cachep = KMEM_CACHE(extent_status, SLAB_RECLAIM_ACCOUNT);
|
|
if (ext4_es_cachep == NULL)
|
|
return -ENOMEM;
|
|
return 0;
|
|
}
|
|
|
|
void ext4_exit_es(void)
|
|
{
|
|
if (ext4_es_cachep)
|
|
kmem_cache_destroy(ext4_es_cachep);
|
|
}
|
|
|
|
void ext4_es_init_tree(struct ext4_es_tree *tree)
|
|
{
|
|
tree->root = RB_ROOT;
|
|
tree->cache_es = NULL;
|
|
}
|
|
|
|
#ifdef ES_DEBUG__
|
|
static void ext4_es_print_tree(struct inode *inode)
|
|
{
|
|
struct ext4_es_tree *tree;
|
|
struct rb_node *node;
|
|
|
|
printk(KERN_DEBUG "status extents for inode %lu:", inode->i_ino);
|
|
tree = &EXT4_I(inode)->i_es_tree;
|
|
node = rb_first(&tree->root);
|
|
while (node) {
|
|
struct extent_status *es;
|
|
es = rb_entry(node, struct extent_status, rb_node);
|
|
printk(KERN_DEBUG " [%u/%u)", es->start, es->len);
|
|
node = rb_next(node);
|
|
}
|
|
printk(KERN_DEBUG "\n");
|
|
}
|
|
#else
|
|
#define ext4_es_print_tree(inode)
|
|
#endif
|
|
|
|
static inline ext4_lblk_t extent_status_end(struct extent_status *es)
|
|
{
|
|
BUG_ON(es->start + es->len < es->start);
|
|
return es->start + es->len - 1;
|
|
}
|
|
|
|
/*
|
|
* search through the tree for an delayed extent with a given offset. If
|
|
* it can't be found, try to find next extent.
|
|
*/
|
|
static struct extent_status *__es_tree_search(struct rb_root *root,
|
|
ext4_lblk_t offset)
|
|
{
|
|
struct rb_node *node = root->rb_node;
|
|
struct extent_status *es = NULL;
|
|
|
|
while (node) {
|
|
es = rb_entry(node, struct extent_status, rb_node);
|
|
if (offset < es->start)
|
|
node = node->rb_left;
|
|
else if (offset > extent_status_end(es))
|
|
node = node->rb_right;
|
|
else
|
|
return es;
|
|
}
|
|
|
|
if (es && offset < es->start)
|
|
return es;
|
|
|
|
if (es && offset > extent_status_end(es)) {
|
|
node = rb_next(&es->rb_node);
|
|
return node ? rb_entry(node, struct extent_status, rb_node) :
|
|
NULL;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* ext4_es_find_extent: find the 1st delayed extent covering @es->start
|
|
* if it exists, otherwise, the next extent after @es->start.
|
|
*
|
|
* @inode: the inode which owns delayed extents
|
|
* @es: delayed extent that we found
|
|
*
|
|
* Returns the first block of the next extent after es, otherwise
|
|
* EXT_MAX_BLOCKS if no delay extent is found.
|
|
* Delayed extent is returned via @es.
|
|
*/
|
|
ext4_lblk_t ext4_es_find_extent(struct inode *inode, struct extent_status *es)
|
|
{
|
|
struct ext4_es_tree *tree = NULL;
|
|
struct extent_status *es1 = NULL;
|
|
struct rb_node *node;
|
|
ext4_lblk_t ret = EXT_MAX_BLOCKS;
|
|
|
|
trace_ext4_es_find_extent_enter(inode, es->start);
|
|
|
|
read_lock(&EXT4_I(inode)->i_es_lock);
|
|
tree = &EXT4_I(inode)->i_es_tree;
|
|
|
|
/* find delay extent in cache firstly */
|
|
if (tree->cache_es) {
|
|
es1 = tree->cache_es;
|
|
if (in_range(es->start, es1->start, es1->len)) {
|
|
es_debug("%u cached by [%u/%u)\n",
|
|
es->start, es1->start, es1->len);
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
es->len = 0;
|
|
es1 = __es_tree_search(&tree->root, es->start);
|
|
|
|
out:
|
|
if (es1) {
|
|
tree->cache_es = es1;
|
|
es->start = es1->start;
|
|
es->len = es1->len;
|
|
node = rb_next(&es1->rb_node);
|
|
if (node) {
|
|
es1 = rb_entry(node, struct extent_status, rb_node);
|
|
ret = es1->start;
|
|
}
|
|
}
|
|
|
|
read_unlock(&EXT4_I(inode)->i_es_lock);
|
|
|
|
trace_ext4_es_find_extent_exit(inode, es, ret);
|
|
return ret;
|
|
}
|
|
|
|
static struct extent_status *
|
|
ext4_es_alloc_extent(ext4_lblk_t start, ext4_lblk_t len)
|
|
{
|
|
struct extent_status *es;
|
|
es = kmem_cache_alloc(ext4_es_cachep, GFP_ATOMIC);
|
|
if (es == NULL)
|
|
return NULL;
|
|
es->start = start;
|
|
es->len = len;
|
|
return es;
|
|
}
|
|
|
|
static void ext4_es_free_extent(struct extent_status *es)
|
|
{
|
|
kmem_cache_free(ext4_es_cachep, es);
|
|
}
|
|
|
|
static struct extent_status *
|
|
ext4_es_try_to_merge_left(struct ext4_es_tree *tree, struct extent_status *es)
|
|
{
|
|
struct extent_status *es1;
|
|
struct rb_node *node;
|
|
|
|
node = rb_prev(&es->rb_node);
|
|
if (!node)
|
|
return es;
|
|
|
|
es1 = rb_entry(node, struct extent_status, rb_node);
|
|
if (es->start == extent_status_end(es1) + 1) {
|
|
es1->len += es->len;
|
|
rb_erase(&es->rb_node, &tree->root);
|
|
ext4_es_free_extent(es);
|
|
es = es1;
|
|
}
|
|
|
|
return es;
|
|
}
|
|
|
|
static struct extent_status *
|
|
ext4_es_try_to_merge_right(struct ext4_es_tree *tree, struct extent_status *es)
|
|
{
|
|
struct extent_status *es1;
|
|
struct rb_node *node;
|
|
|
|
node = rb_next(&es->rb_node);
|
|
if (!node)
|
|
return es;
|
|
|
|
es1 = rb_entry(node, struct extent_status, rb_node);
|
|
if (es1->start == extent_status_end(es) + 1) {
|
|
es->len += es1->len;
|
|
rb_erase(node, &tree->root);
|
|
ext4_es_free_extent(es1);
|
|
}
|
|
|
|
return es;
|
|
}
|
|
|
|
static int __es_insert_extent(struct ext4_es_tree *tree, ext4_lblk_t offset,
|
|
ext4_lblk_t len)
|
|
{
|
|
struct rb_node **p = &tree->root.rb_node;
|
|
struct rb_node *parent = NULL;
|
|
struct extent_status *es;
|
|
ext4_lblk_t end = offset + len - 1;
|
|
|
|
BUG_ON(end < offset);
|
|
es = tree->cache_es;
|
|
if (es && offset == (extent_status_end(es) + 1)) {
|
|
es_debug("cached by [%u/%u)\n", es->start, es->len);
|
|
es->len += len;
|
|
es = ext4_es_try_to_merge_right(tree, es);
|
|
goto out;
|
|
} else if (es && es->start == end + 1) {
|
|
es_debug("cached by [%u/%u)\n", es->start, es->len);
|
|
es->start = offset;
|
|
es->len += len;
|
|
es = ext4_es_try_to_merge_left(tree, es);
|
|
goto out;
|
|
} else if (es && es->start <= offset &&
|
|
end <= extent_status_end(es)) {
|
|
es_debug("cached by [%u/%u)\n", es->start, es->len);
|
|
goto out;
|
|
}
|
|
|
|
while (*p) {
|
|
parent = *p;
|
|
es = rb_entry(parent, struct extent_status, rb_node);
|
|
|
|
if (offset < es->start) {
|
|
if (es->start == end + 1) {
|
|
es->start = offset;
|
|
es->len += len;
|
|
es = ext4_es_try_to_merge_left(tree, es);
|
|
goto out;
|
|
}
|
|
p = &(*p)->rb_left;
|
|
} else if (offset > extent_status_end(es)) {
|
|
if (offset == extent_status_end(es) + 1) {
|
|
es->len += len;
|
|
es = ext4_es_try_to_merge_right(tree, es);
|
|
goto out;
|
|
}
|
|
p = &(*p)->rb_right;
|
|
} else {
|
|
if (extent_status_end(es) <= end)
|
|
es->len = offset - es->start + len;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
es = ext4_es_alloc_extent(offset, len);
|
|
if (!es)
|
|
return -ENOMEM;
|
|
rb_link_node(&es->rb_node, parent, p);
|
|
rb_insert_color(&es->rb_node, &tree->root);
|
|
|
|
out:
|
|
tree->cache_es = es;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* ext4_es_insert_extent() adds a space to a delayed extent tree.
|
|
* Caller holds inode->i_es_lock.
|
|
*
|
|
* ext4_es_insert_extent is called by ext4_da_write_begin and
|
|
* ext4_es_remove_extent.
|
|
*
|
|
* Return 0 on success, error code on failure.
|
|
*/
|
|
int ext4_es_insert_extent(struct inode *inode, ext4_lblk_t offset,
|
|
ext4_lblk_t len)
|
|
{
|
|
struct ext4_es_tree *tree;
|
|
int err = 0;
|
|
|
|
trace_ext4_es_insert_extent(inode, offset, len);
|
|
es_debug("add [%u/%u) to extent status tree of inode %lu\n",
|
|
offset, len, inode->i_ino);
|
|
|
|
write_lock(&EXT4_I(inode)->i_es_lock);
|
|
tree = &EXT4_I(inode)->i_es_tree;
|
|
err = __es_insert_extent(tree, offset, len);
|
|
write_unlock(&EXT4_I(inode)->i_es_lock);
|
|
|
|
ext4_es_print_tree(inode);
|
|
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* ext4_es_remove_extent() removes a space from a delayed extent tree.
|
|
* Caller holds inode->i_es_lock.
|
|
*
|
|
* Return 0 on success, error code on failure.
|
|
*/
|
|
int ext4_es_remove_extent(struct inode *inode, ext4_lblk_t offset,
|
|
ext4_lblk_t len)
|
|
{
|
|
struct rb_node *node;
|
|
struct ext4_es_tree *tree;
|
|
struct extent_status *es;
|
|
struct extent_status orig_es;
|
|
ext4_lblk_t len1, len2, end;
|
|
int err = 0;
|
|
|
|
trace_ext4_es_remove_extent(inode, offset, len);
|
|
es_debug("remove [%u/%u) from extent status tree of inode %lu\n",
|
|
offset, len, inode->i_ino);
|
|
|
|
end = offset + len - 1;
|
|
BUG_ON(end < offset);
|
|
write_lock(&EXT4_I(inode)->i_es_lock);
|
|
tree = &EXT4_I(inode)->i_es_tree;
|
|
es = __es_tree_search(&tree->root, offset);
|
|
if (!es)
|
|
goto out;
|
|
if (es->start > end)
|
|
goto out;
|
|
|
|
/* Simply invalidate cache_es. */
|
|
tree->cache_es = NULL;
|
|
|
|
orig_es.start = es->start;
|
|
orig_es.len = es->len;
|
|
len1 = offset > es->start ? offset - es->start : 0;
|
|
len2 = extent_status_end(es) > end ?
|
|
extent_status_end(es) - end : 0;
|
|
if (len1 > 0)
|
|
es->len = len1;
|
|
if (len2 > 0) {
|
|
if (len1 > 0) {
|
|
err = __es_insert_extent(tree, end + 1, len2);
|
|
if (err) {
|
|
es->start = orig_es.start;
|
|
es->len = orig_es.len;
|
|
goto out;
|
|
}
|
|
} else {
|
|
es->start = end + 1;
|
|
es->len = len2;
|
|
}
|
|
goto out;
|
|
}
|
|
|
|
if (len1 > 0) {
|
|
node = rb_next(&es->rb_node);
|
|
if (node)
|
|
es = rb_entry(node, struct extent_status, rb_node);
|
|
else
|
|
es = NULL;
|
|
}
|
|
|
|
while (es && extent_status_end(es) <= end) {
|
|
node = rb_next(&es->rb_node);
|
|
rb_erase(&es->rb_node, &tree->root);
|
|
ext4_es_free_extent(es);
|
|
if (!node) {
|
|
es = NULL;
|
|
break;
|
|
}
|
|
es = rb_entry(node, struct extent_status, rb_node);
|
|
}
|
|
|
|
if (es && es->start < end + 1) {
|
|
len1 = extent_status_end(es) - end;
|
|
es->start = end + 1;
|
|
es->len = len1;
|
|
}
|
|
|
|
out:
|
|
write_unlock(&EXT4_I(inode)->i_es_lock);
|
|
ext4_es_print_tree(inode);
|
|
return err;
|
|
}
|