mirror of
https://github.com/torvalds/linux.git
synced 2024-11-25 13:41:51 +00:00
72ff2bf04d
xts_crypt() code doesn't call kernel_fpu_end() after calling kernel_fpu_begin() if walk.nbytes is 0. The correct behavior should be not calling kernel_fpu_begin() if walk.nbytes is 0. Reported-by: syzbot+20191dc583eff8602d2d@syzkaller.appspotmail.com Signed-off-by: Shreyansh Chouhan <chouhan.shreyansh630@gmail.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
1208 lines
33 KiB
C
1208 lines
33 KiB
C
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
/*
|
|
* Support for Intel AES-NI instructions. This file contains glue
|
|
* code, the real AES implementation is in intel-aes_asm.S.
|
|
*
|
|
* Copyright (C) 2008, Intel Corp.
|
|
* Author: Huang Ying <ying.huang@intel.com>
|
|
*
|
|
* Added RFC4106 AES-GCM support for 128-bit keys under the AEAD
|
|
* interface for 64-bit kernels.
|
|
* Authors: Adrian Hoban <adrian.hoban@intel.com>
|
|
* Gabriele Paoloni <gabriele.paoloni@intel.com>
|
|
* Tadeusz Struk (tadeusz.struk@intel.com)
|
|
* Aidan O'Mahony (aidan.o.mahony@intel.com)
|
|
* Copyright (c) 2010, Intel Corporation.
|
|
*/
|
|
|
|
#include <linux/hardirq.h>
|
|
#include <linux/types.h>
|
|
#include <linux/module.h>
|
|
#include <linux/err.h>
|
|
#include <crypto/algapi.h>
|
|
#include <crypto/aes.h>
|
|
#include <crypto/ctr.h>
|
|
#include <crypto/b128ops.h>
|
|
#include <crypto/gcm.h>
|
|
#include <crypto/xts.h>
|
|
#include <asm/cpu_device_id.h>
|
|
#include <asm/simd.h>
|
|
#include <crypto/scatterwalk.h>
|
|
#include <crypto/internal/aead.h>
|
|
#include <crypto/internal/simd.h>
|
|
#include <crypto/internal/skcipher.h>
|
|
#include <linux/jump_label.h>
|
|
#include <linux/workqueue.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/static_call.h>
|
|
|
|
|
|
#define AESNI_ALIGN 16
|
|
#define AESNI_ALIGN_ATTR __attribute__ ((__aligned__(AESNI_ALIGN)))
|
|
#define AES_BLOCK_MASK (~(AES_BLOCK_SIZE - 1))
|
|
#define RFC4106_HASH_SUBKEY_SIZE 16
|
|
#define AESNI_ALIGN_EXTRA ((AESNI_ALIGN - 1) & ~(CRYPTO_MINALIGN - 1))
|
|
#define CRYPTO_AES_CTX_SIZE (sizeof(struct crypto_aes_ctx) + AESNI_ALIGN_EXTRA)
|
|
#define XTS_AES_CTX_SIZE (sizeof(struct aesni_xts_ctx) + AESNI_ALIGN_EXTRA)
|
|
|
|
/* This data is stored at the end of the crypto_tfm struct.
|
|
* It's a type of per "session" data storage location.
|
|
* This needs to be 16 byte aligned.
|
|
*/
|
|
struct aesni_rfc4106_gcm_ctx {
|
|
u8 hash_subkey[16] AESNI_ALIGN_ATTR;
|
|
struct crypto_aes_ctx aes_key_expanded AESNI_ALIGN_ATTR;
|
|
u8 nonce[4];
|
|
};
|
|
|
|
struct generic_gcmaes_ctx {
|
|
u8 hash_subkey[16] AESNI_ALIGN_ATTR;
|
|
struct crypto_aes_ctx aes_key_expanded AESNI_ALIGN_ATTR;
|
|
};
|
|
|
|
struct aesni_xts_ctx {
|
|
u8 raw_tweak_ctx[sizeof(struct crypto_aes_ctx)] AESNI_ALIGN_ATTR;
|
|
u8 raw_crypt_ctx[sizeof(struct crypto_aes_ctx)] AESNI_ALIGN_ATTR;
|
|
};
|
|
|
|
#define GCM_BLOCK_LEN 16
|
|
|
|
struct gcm_context_data {
|
|
/* init, update and finalize context data */
|
|
u8 aad_hash[GCM_BLOCK_LEN];
|
|
u64 aad_length;
|
|
u64 in_length;
|
|
u8 partial_block_enc_key[GCM_BLOCK_LEN];
|
|
u8 orig_IV[GCM_BLOCK_LEN];
|
|
u8 current_counter[GCM_BLOCK_LEN];
|
|
u64 partial_block_len;
|
|
u64 unused;
|
|
u8 hash_keys[GCM_BLOCK_LEN * 16];
|
|
};
|
|
|
|
asmlinkage int aesni_set_key(struct crypto_aes_ctx *ctx, const u8 *in_key,
|
|
unsigned int key_len);
|
|
asmlinkage void aesni_enc(const void *ctx, u8 *out, const u8 *in);
|
|
asmlinkage void aesni_dec(const void *ctx, u8 *out, const u8 *in);
|
|
asmlinkage void aesni_ecb_enc(struct crypto_aes_ctx *ctx, u8 *out,
|
|
const u8 *in, unsigned int len);
|
|
asmlinkage void aesni_ecb_dec(struct crypto_aes_ctx *ctx, u8 *out,
|
|
const u8 *in, unsigned int len);
|
|
asmlinkage void aesni_cbc_enc(struct crypto_aes_ctx *ctx, u8 *out,
|
|
const u8 *in, unsigned int len, u8 *iv);
|
|
asmlinkage void aesni_cbc_dec(struct crypto_aes_ctx *ctx, u8 *out,
|
|
const u8 *in, unsigned int len, u8 *iv);
|
|
asmlinkage void aesni_cts_cbc_enc(struct crypto_aes_ctx *ctx, u8 *out,
|
|
const u8 *in, unsigned int len, u8 *iv);
|
|
asmlinkage void aesni_cts_cbc_dec(struct crypto_aes_ctx *ctx, u8 *out,
|
|
const u8 *in, unsigned int len, u8 *iv);
|
|
|
|
#define AVX_GEN2_OPTSIZE 640
|
|
#define AVX_GEN4_OPTSIZE 4096
|
|
|
|
asmlinkage void aesni_xts_encrypt(const struct crypto_aes_ctx *ctx, u8 *out,
|
|
const u8 *in, unsigned int len, u8 *iv);
|
|
|
|
asmlinkage void aesni_xts_decrypt(const struct crypto_aes_ctx *ctx, u8 *out,
|
|
const u8 *in, unsigned int len, u8 *iv);
|
|
|
|
#ifdef CONFIG_X86_64
|
|
|
|
asmlinkage void aesni_ctr_enc(struct crypto_aes_ctx *ctx, u8 *out,
|
|
const u8 *in, unsigned int len, u8 *iv);
|
|
DEFINE_STATIC_CALL(aesni_ctr_enc_tfm, aesni_ctr_enc);
|
|
|
|
/* Scatter / Gather routines, with args similar to above */
|
|
asmlinkage void aesni_gcm_init(void *ctx,
|
|
struct gcm_context_data *gdata,
|
|
u8 *iv,
|
|
u8 *hash_subkey, const u8 *aad,
|
|
unsigned long aad_len);
|
|
asmlinkage void aesni_gcm_enc_update(void *ctx,
|
|
struct gcm_context_data *gdata, u8 *out,
|
|
const u8 *in, unsigned long plaintext_len);
|
|
asmlinkage void aesni_gcm_dec_update(void *ctx,
|
|
struct gcm_context_data *gdata, u8 *out,
|
|
const u8 *in,
|
|
unsigned long ciphertext_len);
|
|
asmlinkage void aesni_gcm_finalize(void *ctx,
|
|
struct gcm_context_data *gdata,
|
|
u8 *auth_tag, unsigned long auth_tag_len);
|
|
|
|
asmlinkage void aes_ctr_enc_128_avx_by8(const u8 *in, u8 *iv,
|
|
void *keys, u8 *out, unsigned int num_bytes);
|
|
asmlinkage void aes_ctr_enc_192_avx_by8(const u8 *in, u8 *iv,
|
|
void *keys, u8 *out, unsigned int num_bytes);
|
|
asmlinkage void aes_ctr_enc_256_avx_by8(const u8 *in, u8 *iv,
|
|
void *keys, u8 *out, unsigned int num_bytes);
|
|
/*
|
|
* asmlinkage void aesni_gcm_init_avx_gen2()
|
|
* gcm_data *my_ctx_data, context data
|
|
* u8 *hash_subkey, the Hash sub key input. Data starts on a 16-byte boundary.
|
|
*/
|
|
asmlinkage void aesni_gcm_init_avx_gen2(void *my_ctx_data,
|
|
struct gcm_context_data *gdata,
|
|
u8 *iv,
|
|
u8 *hash_subkey,
|
|
const u8 *aad,
|
|
unsigned long aad_len);
|
|
|
|
asmlinkage void aesni_gcm_enc_update_avx_gen2(void *ctx,
|
|
struct gcm_context_data *gdata, u8 *out,
|
|
const u8 *in, unsigned long plaintext_len);
|
|
asmlinkage void aesni_gcm_dec_update_avx_gen2(void *ctx,
|
|
struct gcm_context_data *gdata, u8 *out,
|
|
const u8 *in,
|
|
unsigned long ciphertext_len);
|
|
asmlinkage void aesni_gcm_finalize_avx_gen2(void *ctx,
|
|
struct gcm_context_data *gdata,
|
|
u8 *auth_tag, unsigned long auth_tag_len);
|
|
|
|
/*
|
|
* asmlinkage void aesni_gcm_init_avx_gen4()
|
|
* gcm_data *my_ctx_data, context data
|
|
* u8 *hash_subkey, the Hash sub key input. Data starts on a 16-byte boundary.
|
|
*/
|
|
asmlinkage void aesni_gcm_init_avx_gen4(void *my_ctx_data,
|
|
struct gcm_context_data *gdata,
|
|
u8 *iv,
|
|
u8 *hash_subkey,
|
|
const u8 *aad,
|
|
unsigned long aad_len);
|
|
|
|
asmlinkage void aesni_gcm_enc_update_avx_gen4(void *ctx,
|
|
struct gcm_context_data *gdata, u8 *out,
|
|
const u8 *in, unsigned long plaintext_len);
|
|
asmlinkage void aesni_gcm_dec_update_avx_gen4(void *ctx,
|
|
struct gcm_context_data *gdata, u8 *out,
|
|
const u8 *in,
|
|
unsigned long ciphertext_len);
|
|
asmlinkage void aesni_gcm_finalize_avx_gen4(void *ctx,
|
|
struct gcm_context_data *gdata,
|
|
u8 *auth_tag, unsigned long auth_tag_len);
|
|
|
|
static __ro_after_init DEFINE_STATIC_KEY_FALSE(gcm_use_avx);
|
|
static __ro_after_init DEFINE_STATIC_KEY_FALSE(gcm_use_avx2);
|
|
|
|
static inline struct
|
|
aesni_rfc4106_gcm_ctx *aesni_rfc4106_gcm_ctx_get(struct crypto_aead *tfm)
|
|
{
|
|
unsigned long align = AESNI_ALIGN;
|
|
|
|
if (align <= crypto_tfm_ctx_alignment())
|
|
align = 1;
|
|
return PTR_ALIGN(crypto_aead_ctx(tfm), align);
|
|
}
|
|
|
|
static inline struct
|
|
generic_gcmaes_ctx *generic_gcmaes_ctx_get(struct crypto_aead *tfm)
|
|
{
|
|
unsigned long align = AESNI_ALIGN;
|
|
|
|
if (align <= crypto_tfm_ctx_alignment())
|
|
align = 1;
|
|
return PTR_ALIGN(crypto_aead_ctx(tfm), align);
|
|
}
|
|
#endif
|
|
|
|
static inline struct crypto_aes_ctx *aes_ctx(void *raw_ctx)
|
|
{
|
|
unsigned long addr = (unsigned long)raw_ctx;
|
|
unsigned long align = AESNI_ALIGN;
|
|
|
|
if (align <= crypto_tfm_ctx_alignment())
|
|
align = 1;
|
|
return (struct crypto_aes_ctx *)ALIGN(addr, align);
|
|
}
|
|
|
|
static int aes_set_key_common(struct crypto_tfm *tfm, void *raw_ctx,
|
|
const u8 *in_key, unsigned int key_len)
|
|
{
|
|
struct crypto_aes_ctx *ctx = aes_ctx(raw_ctx);
|
|
int err;
|
|
|
|
if (key_len != AES_KEYSIZE_128 && key_len != AES_KEYSIZE_192 &&
|
|
key_len != AES_KEYSIZE_256)
|
|
return -EINVAL;
|
|
|
|
if (!crypto_simd_usable())
|
|
err = aes_expandkey(ctx, in_key, key_len);
|
|
else {
|
|
kernel_fpu_begin();
|
|
err = aesni_set_key(ctx, in_key, key_len);
|
|
kernel_fpu_end();
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
static int aes_set_key(struct crypto_tfm *tfm, const u8 *in_key,
|
|
unsigned int key_len)
|
|
{
|
|
return aes_set_key_common(tfm, crypto_tfm_ctx(tfm), in_key, key_len);
|
|
}
|
|
|
|
static void aesni_encrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
|
|
{
|
|
struct crypto_aes_ctx *ctx = aes_ctx(crypto_tfm_ctx(tfm));
|
|
|
|
if (!crypto_simd_usable()) {
|
|
aes_encrypt(ctx, dst, src);
|
|
} else {
|
|
kernel_fpu_begin();
|
|
aesni_enc(ctx, dst, src);
|
|
kernel_fpu_end();
|
|
}
|
|
}
|
|
|
|
static void aesni_decrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
|
|
{
|
|
struct crypto_aes_ctx *ctx = aes_ctx(crypto_tfm_ctx(tfm));
|
|
|
|
if (!crypto_simd_usable()) {
|
|
aes_decrypt(ctx, dst, src);
|
|
} else {
|
|
kernel_fpu_begin();
|
|
aesni_dec(ctx, dst, src);
|
|
kernel_fpu_end();
|
|
}
|
|
}
|
|
|
|
static int aesni_skcipher_setkey(struct crypto_skcipher *tfm, const u8 *key,
|
|
unsigned int len)
|
|
{
|
|
return aes_set_key_common(crypto_skcipher_tfm(tfm),
|
|
crypto_skcipher_ctx(tfm), key, len);
|
|
}
|
|
|
|
static int ecb_encrypt(struct skcipher_request *req)
|
|
{
|
|
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
|
|
struct crypto_aes_ctx *ctx = aes_ctx(crypto_skcipher_ctx(tfm));
|
|
struct skcipher_walk walk;
|
|
unsigned int nbytes;
|
|
int err;
|
|
|
|
err = skcipher_walk_virt(&walk, req, false);
|
|
|
|
while ((nbytes = walk.nbytes)) {
|
|
kernel_fpu_begin();
|
|
aesni_ecb_enc(ctx, walk.dst.virt.addr, walk.src.virt.addr,
|
|
nbytes & AES_BLOCK_MASK);
|
|
kernel_fpu_end();
|
|
nbytes &= AES_BLOCK_SIZE - 1;
|
|
err = skcipher_walk_done(&walk, nbytes);
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
static int ecb_decrypt(struct skcipher_request *req)
|
|
{
|
|
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
|
|
struct crypto_aes_ctx *ctx = aes_ctx(crypto_skcipher_ctx(tfm));
|
|
struct skcipher_walk walk;
|
|
unsigned int nbytes;
|
|
int err;
|
|
|
|
err = skcipher_walk_virt(&walk, req, false);
|
|
|
|
while ((nbytes = walk.nbytes)) {
|
|
kernel_fpu_begin();
|
|
aesni_ecb_dec(ctx, walk.dst.virt.addr, walk.src.virt.addr,
|
|
nbytes & AES_BLOCK_MASK);
|
|
kernel_fpu_end();
|
|
nbytes &= AES_BLOCK_SIZE - 1;
|
|
err = skcipher_walk_done(&walk, nbytes);
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
static int cbc_encrypt(struct skcipher_request *req)
|
|
{
|
|
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
|
|
struct crypto_aes_ctx *ctx = aes_ctx(crypto_skcipher_ctx(tfm));
|
|
struct skcipher_walk walk;
|
|
unsigned int nbytes;
|
|
int err;
|
|
|
|
err = skcipher_walk_virt(&walk, req, false);
|
|
|
|
while ((nbytes = walk.nbytes)) {
|
|
kernel_fpu_begin();
|
|
aesni_cbc_enc(ctx, walk.dst.virt.addr, walk.src.virt.addr,
|
|
nbytes & AES_BLOCK_MASK, walk.iv);
|
|
kernel_fpu_end();
|
|
nbytes &= AES_BLOCK_SIZE - 1;
|
|
err = skcipher_walk_done(&walk, nbytes);
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
static int cbc_decrypt(struct skcipher_request *req)
|
|
{
|
|
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
|
|
struct crypto_aes_ctx *ctx = aes_ctx(crypto_skcipher_ctx(tfm));
|
|
struct skcipher_walk walk;
|
|
unsigned int nbytes;
|
|
int err;
|
|
|
|
err = skcipher_walk_virt(&walk, req, false);
|
|
|
|
while ((nbytes = walk.nbytes)) {
|
|
kernel_fpu_begin();
|
|
aesni_cbc_dec(ctx, walk.dst.virt.addr, walk.src.virt.addr,
|
|
nbytes & AES_BLOCK_MASK, walk.iv);
|
|
kernel_fpu_end();
|
|
nbytes &= AES_BLOCK_SIZE - 1;
|
|
err = skcipher_walk_done(&walk, nbytes);
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
static int cts_cbc_encrypt(struct skcipher_request *req)
|
|
{
|
|
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
|
|
struct crypto_aes_ctx *ctx = aes_ctx(crypto_skcipher_ctx(tfm));
|
|
int cbc_blocks = DIV_ROUND_UP(req->cryptlen, AES_BLOCK_SIZE) - 2;
|
|
struct scatterlist *src = req->src, *dst = req->dst;
|
|
struct scatterlist sg_src[2], sg_dst[2];
|
|
struct skcipher_request subreq;
|
|
struct skcipher_walk walk;
|
|
int err;
|
|
|
|
skcipher_request_set_tfm(&subreq, tfm);
|
|
skcipher_request_set_callback(&subreq, skcipher_request_flags(req),
|
|
NULL, NULL);
|
|
|
|
if (req->cryptlen <= AES_BLOCK_SIZE) {
|
|
if (req->cryptlen < AES_BLOCK_SIZE)
|
|
return -EINVAL;
|
|
cbc_blocks = 1;
|
|
}
|
|
|
|
if (cbc_blocks > 0) {
|
|
skcipher_request_set_crypt(&subreq, req->src, req->dst,
|
|
cbc_blocks * AES_BLOCK_SIZE,
|
|
req->iv);
|
|
|
|
err = cbc_encrypt(&subreq);
|
|
if (err)
|
|
return err;
|
|
|
|
if (req->cryptlen == AES_BLOCK_SIZE)
|
|
return 0;
|
|
|
|
dst = src = scatterwalk_ffwd(sg_src, req->src, subreq.cryptlen);
|
|
if (req->dst != req->src)
|
|
dst = scatterwalk_ffwd(sg_dst, req->dst,
|
|
subreq.cryptlen);
|
|
}
|
|
|
|
/* handle ciphertext stealing */
|
|
skcipher_request_set_crypt(&subreq, src, dst,
|
|
req->cryptlen - cbc_blocks * AES_BLOCK_SIZE,
|
|
req->iv);
|
|
|
|
err = skcipher_walk_virt(&walk, &subreq, false);
|
|
if (err)
|
|
return err;
|
|
|
|
kernel_fpu_begin();
|
|
aesni_cts_cbc_enc(ctx, walk.dst.virt.addr, walk.src.virt.addr,
|
|
walk.nbytes, walk.iv);
|
|
kernel_fpu_end();
|
|
|
|
return skcipher_walk_done(&walk, 0);
|
|
}
|
|
|
|
static int cts_cbc_decrypt(struct skcipher_request *req)
|
|
{
|
|
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
|
|
struct crypto_aes_ctx *ctx = aes_ctx(crypto_skcipher_ctx(tfm));
|
|
int cbc_blocks = DIV_ROUND_UP(req->cryptlen, AES_BLOCK_SIZE) - 2;
|
|
struct scatterlist *src = req->src, *dst = req->dst;
|
|
struct scatterlist sg_src[2], sg_dst[2];
|
|
struct skcipher_request subreq;
|
|
struct skcipher_walk walk;
|
|
int err;
|
|
|
|
skcipher_request_set_tfm(&subreq, tfm);
|
|
skcipher_request_set_callback(&subreq, skcipher_request_flags(req),
|
|
NULL, NULL);
|
|
|
|
if (req->cryptlen <= AES_BLOCK_SIZE) {
|
|
if (req->cryptlen < AES_BLOCK_SIZE)
|
|
return -EINVAL;
|
|
cbc_blocks = 1;
|
|
}
|
|
|
|
if (cbc_blocks > 0) {
|
|
skcipher_request_set_crypt(&subreq, req->src, req->dst,
|
|
cbc_blocks * AES_BLOCK_SIZE,
|
|
req->iv);
|
|
|
|
err = cbc_decrypt(&subreq);
|
|
if (err)
|
|
return err;
|
|
|
|
if (req->cryptlen == AES_BLOCK_SIZE)
|
|
return 0;
|
|
|
|
dst = src = scatterwalk_ffwd(sg_src, req->src, subreq.cryptlen);
|
|
if (req->dst != req->src)
|
|
dst = scatterwalk_ffwd(sg_dst, req->dst,
|
|
subreq.cryptlen);
|
|
}
|
|
|
|
/* handle ciphertext stealing */
|
|
skcipher_request_set_crypt(&subreq, src, dst,
|
|
req->cryptlen - cbc_blocks * AES_BLOCK_SIZE,
|
|
req->iv);
|
|
|
|
err = skcipher_walk_virt(&walk, &subreq, false);
|
|
if (err)
|
|
return err;
|
|
|
|
kernel_fpu_begin();
|
|
aesni_cts_cbc_dec(ctx, walk.dst.virt.addr, walk.src.virt.addr,
|
|
walk.nbytes, walk.iv);
|
|
kernel_fpu_end();
|
|
|
|
return skcipher_walk_done(&walk, 0);
|
|
}
|
|
|
|
#ifdef CONFIG_X86_64
|
|
static void aesni_ctr_enc_avx_tfm(struct crypto_aes_ctx *ctx, u8 *out,
|
|
const u8 *in, unsigned int len, u8 *iv)
|
|
{
|
|
/*
|
|
* based on key length, override with the by8 version
|
|
* of ctr mode encryption/decryption for improved performance
|
|
* aes_set_key_common() ensures that key length is one of
|
|
* {128,192,256}
|
|
*/
|
|
if (ctx->key_length == AES_KEYSIZE_128)
|
|
aes_ctr_enc_128_avx_by8(in, iv, (void *)ctx, out, len);
|
|
else if (ctx->key_length == AES_KEYSIZE_192)
|
|
aes_ctr_enc_192_avx_by8(in, iv, (void *)ctx, out, len);
|
|
else
|
|
aes_ctr_enc_256_avx_by8(in, iv, (void *)ctx, out, len);
|
|
}
|
|
|
|
static int ctr_crypt(struct skcipher_request *req)
|
|
{
|
|
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
|
|
struct crypto_aes_ctx *ctx = aes_ctx(crypto_skcipher_ctx(tfm));
|
|
u8 keystream[AES_BLOCK_SIZE];
|
|
struct skcipher_walk walk;
|
|
unsigned int nbytes;
|
|
int err;
|
|
|
|
err = skcipher_walk_virt(&walk, req, false);
|
|
|
|
while ((nbytes = walk.nbytes) > 0) {
|
|
kernel_fpu_begin();
|
|
if (nbytes & AES_BLOCK_MASK)
|
|
static_call(aesni_ctr_enc_tfm)(ctx, walk.dst.virt.addr,
|
|
walk.src.virt.addr,
|
|
nbytes & AES_BLOCK_MASK,
|
|
walk.iv);
|
|
nbytes &= ~AES_BLOCK_MASK;
|
|
|
|
if (walk.nbytes == walk.total && nbytes > 0) {
|
|
aesni_enc(ctx, keystream, walk.iv);
|
|
crypto_xor_cpy(walk.dst.virt.addr + walk.nbytes - nbytes,
|
|
walk.src.virt.addr + walk.nbytes - nbytes,
|
|
keystream, nbytes);
|
|
crypto_inc(walk.iv, AES_BLOCK_SIZE);
|
|
nbytes = 0;
|
|
}
|
|
kernel_fpu_end();
|
|
err = skcipher_walk_done(&walk, nbytes);
|
|
}
|
|
return err;
|
|
}
|
|
|
|
static int
|
|
rfc4106_set_hash_subkey(u8 *hash_subkey, const u8 *key, unsigned int key_len)
|
|
{
|
|
struct crypto_aes_ctx ctx;
|
|
int ret;
|
|
|
|
ret = aes_expandkey(&ctx, key, key_len);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Clear the data in the hash sub key container to zero.*/
|
|
/* We want to cipher all zeros to create the hash sub key. */
|
|
memset(hash_subkey, 0, RFC4106_HASH_SUBKEY_SIZE);
|
|
|
|
aes_encrypt(&ctx, hash_subkey, hash_subkey);
|
|
|
|
memzero_explicit(&ctx, sizeof(ctx));
|
|
return 0;
|
|
}
|
|
|
|
static int common_rfc4106_set_key(struct crypto_aead *aead, const u8 *key,
|
|
unsigned int key_len)
|
|
{
|
|
struct aesni_rfc4106_gcm_ctx *ctx = aesni_rfc4106_gcm_ctx_get(aead);
|
|
|
|
if (key_len < 4)
|
|
return -EINVAL;
|
|
|
|
/*Account for 4 byte nonce at the end.*/
|
|
key_len -= 4;
|
|
|
|
memcpy(ctx->nonce, key + key_len, sizeof(ctx->nonce));
|
|
|
|
return aes_set_key_common(crypto_aead_tfm(aead),
|
|
&ctx->aes_key_expanded, key, key_len) ?:
|
|
rfc4106_set_hash_subkey(ctx->hash_subkey, key, key_len);
|
|
}
|
|
|
|
/* This is the Integrity Check Value (aka the authentication tag) length and can
|
|
* be 8, 12 or 16 bytes long. */
|
|
static int common_rfc4106_set_authsize(struct crypto_aead *aead,
|
|
unsigned int authsize)
|
|
{
|
|
switch (authsize) {
|
|
case 8:
|
|
case 12:
|
|
case 16:
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int generic_gcmaes_set_authsize(struct crypto_aead *tfm,
|
|
unsigned int authsize)
|
|
{
|
|
switch (authsize) {
|
|
case 4:
|
|
case 8:
|
|
case 12:
|
|
case 13:
|
|
case 14:
|
|
case 15:
|
|
case 16:
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int gcmaes_crypt_by_sg(bool enc, struct aead_request *req,
|
|
unsigned int assoclen, u8 *hash_subkey,
|
|
u8 *iv, void *aes_ctx, u8 *auth_tag,
|
|
unsigned long auth_tag_len)
|
|
{
|
|
u8 databuf[sizeof(struct gcm_context_data) + (AESNI_ALIGN - 8)] __aligned(8);
|
|
struct gcm_context_data *data = PTR_ALIGN((void *)databuf, AESNI_ALIGN);
|
|
unsigned long left = req->cryptlen;
|
|
struct scatter_walk assoc_sg_walk;
|
|
struct skcipher_walk walk;
|
|
bool do_avx, do_avx2;
|
|
u8 *assocmem = NULL;
|
|
u8 *assoc;
|
|
int err;
|
|
|
|
if (!enc)
|
|
left -= auth_tag_len;
|
|
|
|
do_avx = (left >= AVX_GEN2_OPTSIZE);
|
|
do_avx2 = (left >= AVX_GEN4_OPTSIZE);
|
|
|
|
/* Linearize assoc, if not already linear */
|
|
if (req->src->length >= assoclen && req->src->length) {
|
|
scatterwalk_start(&assoc_sg_walk, req->src);
|
|
assoc = scatterwalk_map(&assoc_sg_walk);
|
|
} else {
|
|
gfp_t flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ?
|
|
GFP_KERNEL : GFP_ATOMIC;
|
|
|
|
/* assoc can be any length, so must be on heap */
|
|
assocmem = kmalloc(assoclen, flags);
|
|
if (unlikely(!assocmem))
|
|
return -ENOMEM;
|
|
assoc = assocmem;
|
|
|
|
scatterwalk_map_and_copy(assoc, req->src, 0, assoclen, 0);
|
|
}
|
|
|
|
kernel_fpu_begin();
|
|
if (static_branch_likely(&gcm_use_avx2) && do_avx2)
|
|
aesni_gcm_init_avx_gen4(aes_ctx, data, iv, hash_subkey, assoc,
|
|
assoclen);
|
|
else if (static_branch_likely(&gcm_use_avx) && do_avx)
|
|
aesni_gcm_init_avx_gen2(aes_ctx, data, iv, hash_subkey, assoc,
|
|
assoclen);
|
|
else
|
|
aesni_gcm_init(aes_ctx, data, iv, hash_subkey, assoc, assoclen);
|
|
kernel_fpu_end();
|
|
|
|
if (!assocmem)
|
|
scatterwalk_unmap(assoc);
|
|
else
|
|
kfree(assocmem);
|
|
|
|
err = enc ? skcipher_walk_aead_encrypt(&walk, req, false)
|
|
: skcipher_walk_aead_decrypt(&walk, req, false);
|
|
|
|
while (walk.nbytes > 0) {
|
|
kernel_fpu_begin();
|
|
if (static_branch_likely(&gcm_use_avx2) && do_avx2) {
|
|
if (enc)
|
|
aesni_gcm_enc_update_avx_gen4(aes_ctx, data,
|
|
walk.dst.virt.addr,
|
|
walk.src.virt.addr,
|
|
walk.nbytes);
|
|
else
|
|
aesni_gcm_dec_update_avx_gen4(aes_ctx, data,
|
|
walk.dst.virt.addr,
|
|
walk.src.virt.addr,
|
|
walk.nbytes);
|
|
} else if (static_branch_likely(&gcm_use_avx) && do_avx) {
|
|
if (enc)
|
|
aesni_gcm_enc_update_avx_gen2(aes_ctx, data,
|
|
walk.dst.virt.addr,
|
|
walk.src.virt.addr,
|
|
walk.nbytes);
|
|
else
|
|
aesni_gcm_dec_update_avx_gen2(aes_ctx, data,
|
|
walk.dst.virt.addr,
|
|
walk.src.virt.addr,
|
|
walk.nbytes);
|
|
} else if (enc) {
|
|
aesni_gcm_enc_update(aes_ctx, data, walk.dst.virt.addr,
|
|
walk.src.virt.addr, walk.nbytes);
|
|
} else {
|
|
aesni_gcm_dec_update(aes_ctx, data, walk.dst.virt.addr,
|
|
walk.src.virt.addr, walk.nbytes);
|
|
}
|
|
kernel_fpu_end();
|
|
|
|
err = skcipher_walk_done(&walk, 0);
|
|
}
|
|
|
|
if (err)
|
|
return err;
|
|
|
|
kernel_fpu_begin();
|
|
if (static_branch_likely(&gcm_use_avx2) && do_avx2)
|
|
aesni_gcm_finalize_avx_gen4(aes_ctx, data, auth_tag,
|
|
auth_tag_len);
|
|
else if (static_branch_likely(&gcm_use_avx) && do_avx)
|
|
aesni_gcm_finalize_avx_gen2(aes_ctx, data, auth_tag,
|
|
auth_tag_len);
|
|
else
|
|
aesni_gcm_finalize(aes_ctx, data, auth_tag, auth_tag_len);
|
|
kernel_fpu_end();
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int gcmaes_encrypt(struct aead_request *req, unsigned int assoclen,
|
|
u8 *hash_subkey, u8 *iv, void *aes_ctx)
|
|
{
|
|
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
|
|
unsigned long auth_tag_len = crypto_aead_authsize(tfm);
|
|
u8 auth_tag[16];
|
|
int err;
|
|
|
|
err = gcmaes_crypt_by_sg(true, req, assoclen, hash_subkey, iv, aes_ctx,
|
|
auth_tag, auth_tag_len);
|
|
if (err)
|
|
return err;
|
|
|
|
scatterwalk_map_and_copy(auth_tag, req->dst,
|
|
req->assoclen + req->cryptlen,
|
|
auth_tag_len, 1);
|
|
return 0;
|
|
}
|
|
|
|
static int gcmaes_decrypt(struct aead_request *req, unsigned int assoclen,
|
|
u8 *hash_subkey, u8 *iv, void *aes_ctx)
|
|
{
|
|
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
|
|
unsigned long auth_tag_len = crypto_aead_authsize(tfm);
|
|
u8 auth_tag_msg[16];
|
|
u8 auth_tag[16];
|
|
int err;
|
|
|
|
err = gcmaes_crypt_by_sg(false, req, assoclen, hash_subkey, iv, aes_ctx,
|
|
auth_tag, auth_tag_len);
|
|
if (err)
|
|
return err;
|
|
|
|
/* Copy out original auth_tag */
|
|
scatterwalk_map_and_copy(auth_tag_msg, req->src,
|
|
req->assoclen + req->cryptlen - auth_tag_len,
|
|
auth_tag_len, 0);
|
|
|
|
/* Compare generated tag with passed in tag. */
|
|
if (crypto_memneq(auth_tag_msg, auth_tag, auth_tag_len)) {
|
|
memzero_explicit(auth_tag, sizeof(auth_tag));
|
|
return -EBADMSG;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int helper_rfc4106_encrypt(struct aead_request *req)
|
|
{
|
|
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
|
|
struct aesni_rfc4106_gcm_ctx *ctx = aesni_rfc4106_gcm_ctx_get(tfm);
|
|
void *aes_ctx = &(ctx->aes_key_expanded);
|
|
u8 ivbuf[16 + (AESNI_ALIGN - 8)] __aligned(8);
|
|
u8 *iv = PTR_ALIGN(&ivbuf[0], AESNI_ALIGN);
|
|
unsigned int i;
|
|
__be32 counter = cpu_to_be32(1);
|
|
|
|
/* Assuming we are supporting rfc4106 64-bit extended */
|
|
/* sequence numbers We need to have the AAD length equal */
|
|
/* to 16 or 20 bytes */
|
|
if (unlikely(req->assoclen != 16 && req->assoclen != 20))
|
|
return -EINVAL;
|
|
|
|
/* IV below built */
|
|
for (i = 0; i < 4; i++)
|
|
*(iv+i) = ctx->nonce[i];
|
|
for (i = 0; i < 8; i++)
|
|
*(iv+4+i) = req->iv[i];
|
|
*((__be32 *)(iv+12)) = counter;
|
|
|
|
return gcmaes_encrypt(req, req->assoclen - 8, ctx->hash_subkey, iv,
|
|
aes_ctx);
|
|
}
|
|
|
|
static int helper_rfc4106_decrypt(struct aead_request *req)
|
|
{
|
|
__be32 counter = cpu_to_be32(1);
|
|
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
|
|
struct aesni_rfc4106_gcm_ctx *ctx = aesni_rfc4106_gcm_ctx_get(tfm);
|
|
void *aes_ctx = &(ctx->aes_key_expanded);
|
|
u8 ivbuf[16 + (AESNI_ALIGN - 8)] __aligned(8);
|
|
u8 *iv = PTR_ALIGN(&ivbuf[0], AESNI_ALIGN);
|
|
unsigned int i;
|
|
|
|
if (unlikely(req->assoclen != 16 && req->assoclen != 20))
|
|
return -EINVAL;
|
|
|
|
/* Assuming we are supporting rfc4106 64-bit extended */
|
|
/* sequence numbers We need to have the AAD length */
|
|
/* equal to 16 or 20 bytes */
|
|
|
|
/* IV below built */
|
|
for (i = 0; i < 4; i++)
|
|
*(iv+i) = ctx->nonce[i];
|
|
for (i = 0; i < 8; i++)
|
|
*(iv+4+i) = req->iv[i];
|
|
*((__be32 *)(iv+12)) = counter;
|
|
|
|
return gcmaes_decrypt(req, req->assoclen - 8, ctx->hash_subkey, iv,
|
|
aes_ctx);
|
|
}
|
|
#endif
|
|
|
|
static int xts_aesni_setkey(struct crypto_skcipher *tfm, const u8 *key,
|
|
unsigned int keylen)
|
|
{
|
|
struct aesni_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
|
|
int err;
|
|
|
|
err = xts_verify_key(tfm, key, keylen);
|
|
if (err)
|
|
return err;
|
|
|
|
keylen /= 2;
|
|
|
|
/* first half of xts-key is for crypt */
|
|
err = aes_set_key_common(crypto_skcipher_tfm(tfm), ctx->raw_crypt_ctx,
|
|
key, keylen);
|
|
if (err)
|
|
return err;
|
|
|
|
/* second half of xts-key is for tweak */
|
|
return aes_set_key_common(crypto_skcipher_tfm(tfm), ctx->raw_tweak_ctx,
|
|
key + keylen, keylen);
|
|
}
|
|
|
|
static int xts_crypt(struct skcipher_request *req, bool encrypt)
|
|
{
|
|
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
|
|
struct aesni_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
|
|
int tail = req->cryptlen % AES_BLOCK_SIZE;
|
|
struct skcipher_request subreq;
|
|
struct skcipher_walk walk;
|
|
int err;
|
|
|
|
if (req->cryptlen < AES_BLOCK_SIZE)
|
|
return -EINVAL;
|
|
|
|
err = skcipher_walk_virt(&walk, req, false);
|
|
if (!walk.nbytes)
|
|
return err;
|
|
|
|
if (unlikely(tail > 0 && walk.nbytes < walk.total)) {
|
|
int blocks = DIV_ROUND_UP(req->cryptlen, AES_BLOCK_SIZE) - 2;
|
|
|
|
skcipher_walk_abort(&walk);
|
|
|
|
skcipher_request_set_tfm(&subreq, tfm);
|
|
skcipher_request_set_callback(&subreq,
|
|
skcipher_request_flags(req),
|
|
NULL, NULL);
|
|
skcipher_request_set_crypt(&subreq, req->src, req->dst,
|
|
blocks * AES_BLOCK_SIZE, req->iv);
|
|
req = &subreq;
|
|
|
|
err = skcipher_walk_virt(&walk, req, false);
|
|
if (err)
|
|
return err;
|
|
} else {
|
|
tail = 0;
|
|
}
|
|
|
|
kernel_fpu_begin();
|
|
|
|
/* calculate first value of T */
|
|
aesni_enc(aes_ctx(ctx->raw_tweak_ctx), walk.iv, walk.iv);
|
|
|
|
while (walk.nbytes > 0) {
|
|
int nbytes = walk.nbytes;
|
|
|
|
if (nbytes < walk.total)
|
|
nbytes &= ~(AES_BLOCK_SIZE - 1);
|
|
|
|
if (encrypt)
|
|
aesni_xts_encrypt(aes_ctx(ctx->raw_crypt_ctx),
|
|
walk.dst.virt.addr, walk.src.virt.addr,
|
|
nbytes, walk.iv);
|
|
else
|
|
aesni_xts_decrypt(aes_ctx(ctx->raw_crypt_ctx),
|
|
walk.dst.virt.addr, walk.src.virt.addr,
|
|
nbytes, walk.iv);
|
|
kernel_fpu_end();
|
|
|
|
err = skcipher_walk_done(&walk, walk.nbytes - nbytes);
|
|
|
|
if (walk.nbytes > 0)
|
|
kernel_fpu_begin();
|
|
}
|
|
|
|
if (unlikely(tail > 0 && !err)) {
|
|
struct scatterlist sg_src[2], sg_dst[2];
|
|
struct scatterlist *src, *dst;
|
|
|
|
dst = src = scatterwalk_ffwd(sg_src, req->src, req->cryptlen);
|
|
if (req->dst != req->src)
|
|
dst = scatterwalk_ffwd(sg_dst, req->dst, req->cryptlen);
|
|
|
|
skcipher_request_set_crypt(req, src, dst, AES_BLOCK_SIZE + tail,
|
|
req->iv);
|
|
|
|
err = skcipher_walk_virt(&walk, &subreq, false);
|
|
if (err)
|
|
return err;
|
|
|
|
kernel_fpu_begin();
|
|
if (encrypt)
|
|
aesni_xts_encrypt(aes_ctx(ctx->raw_crypt_ctx),
|
|
walk.dst.virt.addr, walk.src.virt.addr,
|
|
walk.nbytes, walk.iv);
|
|
else
|
|
aesni_xts_decrypt(aes_ctx(ctx->raw_crypt_ctx),
|
|
walk.dst.virt.addr, walk.src.virt.addr,
|
|
walk.nbytes, walk.iv);
|
|
kernel_fpu_end();
|
|
|
|
err = skcipher_walk_done(&walk, 0);
|
|
}
|
|
return err;
|
|
}
|
|
|
|
static int xts_encrypt(struct skcipher_request *req)
|
|
{
|
|
return xts_crypt(req, true);
|
|
}
|
|
|
|
static int xts_decrypt(struct skcipher_request *req)
|
|
{
|
|
return xts_crypt(req, false);
|
|
}
|
|
|
|
static struct crypto_alg aesni_cipher_alg = {
|
|
.cra_name = "aes",
|
|
.cra_driver_name = "aes-aesni",
|
|
.cra_priority = 300,
|
|
.cra_flags = CRYPTO_ALG_TYPE_CIPHER,
|
|
.cra_blocksize = AES_BLOCK_SIZE,
|
|
.cra_ctxsize = CRYPTO_AES_CTX_SIZE,
|
|
.cra_module = THIS_MODULE,
|
|
.cra_u = {
|
|
.cipher = {
|
|
.cia_min_keysize = AES_MIN_KEY_SIZE,
|
|
.cia_max_keysize = AES_MAX_KEY_SIZE,
|
|
.cia_setkey = aes_set_key,
|
|
.cia_encrypt = aesni_encrypt,
|
|
.cia_decrypt = aesni_decrypt
|
|
}
|
|
}
|
|
};
|
|
|
|
static struct skcipher_alg aesni_skciphers[] = {
|
|
{
|
|
.base = {
|
|
.cra_name = "__ecb(aes)",
|
|
.cra_driver_name = "__ecb-aes-aesni",
|
|
.cra_priority = 400,
|
|
.cra_flags = CRYPTO_ALG_INTERNAL,
|
|
.cra_blocksize = AES_BLOCK_SIZE,
|
|
.cra_ctxsize = CRYPTO_AES_CTX_SIZE,
|
|
.cra_module = THIS_MODULE,
|
|
},
|
|
.min_keysize = AES_MIN_KEY_SIZE,
|
|
.max_keysize = AES_MAX_KEY_SIZE,
|
|
.setkey = aesni_skcipher_setkey,
|
|
.encrypt = ecb_encrypt,
|
|
.decrypt = ecb_decrypt,
|
|
}, {
|
|
.base = {
|
|
.cra_name = "__cbc(aes)",
|
|
.cra_driver_name = "__cbc-aes-aesni",
|
|
.cra_priority = 400,
|
|
.cra_flags = CRYPTO_ALG_INTERNAL,
|
|
.cra_blocksize = AES_BLOCK_SIZE,
|
|
.cra_ctxsize = CRYPTO_AES_CTX_SIZE,
|
|
.cra_module = THIS_MODULE,
|
|
},
|
|
.min_keysize = AES_MIN_KEY_SIZE,
|
|
.max_keysize = AES_MAX_KEY_SIZE,
|
|
.ivsize = AES_BLOCK_SIZE,
|
|
.setkey = aesni_skcipher_setkey,
|
|
.encrypt = cbc_encrypt,
|
|
.decrypt = cbc_decrypt,
|
|
}, {
|
|
.base = {
|
|
.cra_name = "__cts(cbc(aes))",
|
|
.cra_driver_name = "__cts-cbc-aes-aesni",
|
|
.cra_priority = 400,
|
|
.cra_flags = CRYPTO_ALG_INTERNAL,
|
|
.cra_blocksize = AES_BLOCK_SIZE,
|
|
.cra_ctxsize = CRYPTO_AES_CTX_SIZE,
|
|
.cra_module = THIS_MODULE,
|
|
},
|
|
.min_keysize = AES_MIN_KEY_SIZE,
|
|
.max_keysize = AES_MAX_KEY_SIZE,
|
|
.ivsize = AES_BLOCK_SIZE,
|
|
.walksize = 2 * AES_BLOCK_SIZE,
|
|
.setkey = aesni_skcipher_setkey,
|
|
.encrypt = cts_cbc_encrypt,
|
|
.decrypt = cts_cbc_decrypt,
|
|
#ifdef CONFIG_X86_64
|
|
}, {
|
|
.base = {
|
|
.cra_name = "__ctr(aes)",
|
|
.cra_driver_name = "__ctr-aes-aesni",
|
|
.cra_priority = 400,
|
|
.cra_flags = CRYPTO_ALG_INTERNAL,
|
|
.cra_blocksize = 1,
|
|
.cra_ctxsize = CRYPTO_AES_CTX_SIZE,
|
|
.cra_module = THIS_MODULE,
|
|
},
|
|
.min_keysize = AES_MIN_KEY_SIZE,
|
|
.max_keysize = AES_MAX_KEY_SIZE,
|
|
.ivsize = AES_BLOCK_SIZE,
|
|
.chunksize = AES_BLOCK_SIZE,
|
|
.setkey = aesni_skcipher_setkey,
|
|
.encrypt = ctr_crypt,
|
|
.decrypt = ctr_crypt,
|
|
#endif
|
|
}, {
|
|
.base = {
|
|
.cra_name = "__xts(aes)",
|
|
.cra_driver_name = "__xts-aes-aesni",
|
|
.cra_priority = 401,
|
|
.cra_flags = CRYPTO_ALG_INTERNAL,
|
|
.cra_blocksize = AES_BLOCK_SIZE,
|
|
.cra_ctxsize = XTS_AES_CTX_SIZE,
|
|
.cra_module = THIS_MODULE,
|
|
},
|
|
.min_keysize = 2 * AES_MIN_KEY_SIZE,
|
|
.max_keysize = 2 * AES_MAX_KEY_SIZE,
|
|
.ivsize = AES_BLOCK_SIZE,
|
|
.walksize = 2 * AES_BLOCK_SIZE,
|
|
.setkey = xts_aesni_setkey,
|
|
.encrypt = xts_encrypt,
|
|
.decrypt = xts_decrypt,
|
|
}
|
|
};
|
|
|
|
static
|
|
struct simd_skcipher_alg *aesni_simd_skciphers[ARRAY_SIZE(aesni_skciphers)];
|
|
|
|
#ifdef CONFIG_X86_64
|
|
static int generic_gcmaes_set_key(struct crypto_aead *aead, const u8 *key,
|
|
unsigned int key_len)
|
|
{
|
|
struct generic_gcmaes_ctx *ctx = generic_gcmaes_ctx_get(aead);
|
|
|
|
return aes_set_key_common(crypto_aead_tfm(aead),
|
|
&ctx->aes_key_expanded, key, key_len) ?:
|
|
rfc4106_set_hash_subkey(ctx->hash_subkey, key, key_len);
|
|
}
|
|
|
|
static int generic_gcmaes_encrypt(struct aead_request *req)
|
|
{
|
|
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
|
|
struct generic_gcmaes_ctx *ctx = generic_gcmaes_ctx_get(tfm);
|
|
void *aes_ctx = &(ctx->aes_key_expanded);
|
|
u8 ivbuf[16 + (AESNI_ALIGN - 8)] __aligned(8);
|
|
u8 *iv = PTR_ALIGN(&ivbuf[0], AESNI_ALIGN);
|
|
__be32 counter = cpu_to_be32(1);
|
|
|
|
memcpy(iv, req->iv, 12);
|
|
*((__be32 *)(iv+12)) = counter;
|
|
|
|
return gcmaes_encrypt(req, req->assoclen, ctx->hash_subkey, iv,
|
|
aes_ctx);
|
|
}
|
|
|
|
static int generic_gcmaes_decrypt(struct aead_request *req)
|
|
{
|
|
__be32 counter = cpu_to_be32(1);
|
|
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
|
|
struct generic_gcmaes_ctx *ctx = generic_gcmaes_ctx_get(tfm);
|
|
void *aes_ctx = &(ctx->aes_key_expanded);
|
|
u8 ivbuf[16 + (AESNI_ALIGN - 8)] __aligned(8);
|
|
u8 *iv = PTR_ALIGN(&ivbuf[0], AESNI_ALIGN);
|
|
|
|
memcpy(iv, req->iv, 12);
|
|
*((__be32 *)(iv+12)) = counter;
|
|
|
|
return gcmaes_decrypt(req, req->assoclen, ctx->hash_subkey, iv,
|
|
aes_ctx);
|
|
}
|
|
|
|
static struct aead_alg aesni_aeads[] = { {
|
|
.setkey = common_rfc4106_set_key,
|
|
.setauthsize = common_rfc4106_set_authsize,
|
|
.encrypt = helper_rfc4106_encrypt,
|
|
.decrypt = helper_rfc4106_decrypt,
|
|
.ivsize = GCM_RFC4106_IV_SIZE,
|
|
.maxauthsize = 16,
|
|
.base = {
|
|
.cra_name = "__rfc4106(gcm(aes))",
|
|
.cra_driver_name = "__rfc4106-gcm-aesni",
|
|
.cra_priority = 400,
|
|
.cra_flags = CRYPTO_ALG_INTERNAL,
|
|
.cra_blocksize = 1,
|
|
.cra_ctxsize = sizeof(struct aesni_rfc4106_gcm_ctx),
|
|
.cra_alignmask = AESNI_ALIGN - 1,
|
|
.cra_module = THIS_MODULE,
|
|
},
|
|
}, {
|
|
.setkey = generic_gcmaes_set_key,
|
|
.setauthsize = generic_gcmaes_set_authsize,
|
|
.encrypt = generic_gcmaes_encrypt,
|
|
.decrypt = generic_gcmaes_decrypt,
|
|
.ivsize = GCM_AES_IV_SIZE,
|
|
.maxauthsize = 16,
|
|
.base = {
|
|
.cra_name = "__gcm(aes)",
|
|
.cra_driver_name = "__generic-gcm-aesni",
|
|
.cra_priority = 400,
|
|
.cra_flags = CRYPTO_ALG_INTERNAL,
|
|
.cra_blocksize = 1,
|
|
.cra_ctxsize = sizeof(struct generic_gcmaes_ctx),
|
|
.cra_alignmask = AESNI_ALIGN - 1,
|
|
.cra_module = THIS_MODULE,
|
|
},
|
|
} };
|
|
#else
|
|
static struct aead_alg aesni_aeads[0];
|
|
#endif
|
|
|
|
static struct simd_aead_alg *aesni_simd_aeads[ARRAY_SIZE(aesni_aeads)];
|
|
|
|
static const struct x86_cpu_id aesni_cpu_id[] = {
|
|
X86_MATCH_FEATURE(X86_FEATURE_AES, NULL),
|
|
{}
|
|
};
|
|
MODULE_DEVICE_TABLE(x86cpu, aesni_cpu_id);
|
|
|
|
static int __init aesni_init(void)
|
|
{
|
|
int err;
|
|
|
|
if (!x86_match_cpu(aesni_cpu_id))
|
|
return -ENODEV;
|
|
#ifdef CONFIG_X86_64
|
|
if (boot_cpu_has(X86_FEATURE_AVX2)) {
|
|
pr_info("AVX2 version of gcm_enc/dec engaged.\n");
|
|
static_branch_enable(&gcm_use_avx);
|
|
static_branch_enable(&gcm_use_avx2);
|
|
} else
|
|
if (boot_cpu_has(X86_FEATURE_AVX)) {
|
|
pr_info("AVX version of gcm_enc/dec engaged.\n");
|
|
static_branch_enable(&gcm_use_avx);
|
|
} else {
|
|
pr_info("SSE version of gcm_enc/dec engaged.\n");
|
|
}
|
|
if (boot_cpu_has(X86_FEATURE_AVX)) {
|
|
/* optimize performance of ctr mode encryption transform */
|
|
static_call_update(aesni_ctr_enc_tfm, aesni_ctr_enc_avx_tfm);
|
|
pr_info("AES CTR mode by8 optimization enabled\n");
|
|
}
|
|
#endif
|
|
|
|
err = crypto_register_alg(&aesni_cipher_alg);
|
|
if (err)
|
|
return err;
|
|
|
|
err = simd_register_skciphers_compat(aesni_skciphers,
|
|
ARRAY_SIZE(aesni_skciphers),
|
|
aesni_simd_skciphers);
|
|
if (err)
|
|
goto unregister_cipher;
|
|
|
|
err = simd_register_aeads_compat(aesni_aeads, ARRAY_SIZE(aesni_aeads),
|
|
aesni_simd_aeads);
|
|
if (err)
|
|
goto unregister_skciphers;
|
|
|
|
return 0;
|
|
|
|
unregister_skciphers:
|
|
simd_unregister_skciphers(aesni_skciphers, ARRAY_SIZE(aesni_skciphers),
|
|
aesni_simd_skciphers);
|
|
unregister_cipher:
|
|
crypto_unregister_alg(&aesni_cipher_alg);
|
|
return err;
|
|
}
|
|
|
|
static void __exit aesni_exit(void)
|
|
{
|
|
simd_unregister_aeads(aesni_aeads, ARRAY_SIZE(aesni_aeads),
|
|
aesni_simd_aeads);
|
|
simd_unregister_skciphers(aesni_skciphers, ARRAY_SIZE(aesni_skciphers),
|
|
aesni_simd_skciphers);
|
|
crypto_unregister_alg(&aesni_cipher_alg);
|
|
}
|
|
|
|
late_initcall(aesni_init);
|
|
module_exit(aesni_exit);
|
|
|
|
MODULE_DESCRIPTION("Rijndael (AES) Cipher Algorithm, Intel AES-NI instructions optimized");
|
|
MODULE_LICENSE("GPL");
|
|
MODULE_ALIAS_CRYPTO("aes");
|